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Abstract
Resource description framework (RDF) and Property Graph databases are emerging tech-

nologies that are used for storing graph-structured data. We compare these technologies

through a molecular biology use case: glycan substructure search. Glycans are branched

tree-like molecules composed of building blocks linked together by chemical bonds. The

molecular structure of a glycan can be encoded into a direct acyclic graph where each node

represents a building block and each edge serves as a chemical linkage between two build-

ing blocks. In this context, Graph databases are possible software solutions for storing gly-

can structures and Graph query languages, such as SPARQL and Cypher, can be used to

perform a substructure search. Glycan substructure searching is an important feature for

querying structure and experimental glycan databases and retrieving biologically meaning-

ful data. This applies for example to identifying a region of the glycan recognised by a glycan

binding protein (GBP). In this study, 19,404 glycan structures were selected from Glyco-

meDB (www.glycome-db.org) and modelled for being stored into a RDF triple store and a

Property Graph. We then performed two different sets of searches and compared the query

response times and the results from both technologies to assess performance and accu-

racy. The two implementations produced the same results, but interestingly we noted a dif-

ference in the query response times. Qualitative measures such as portability were also

used to define further criteria for choosing the technology adapted to solving glycan sub-

structure search and other comparable issues.

Introduction
Nowadays the use of high throughput technologies and optimized pipelines allows life scien-
tists to generate terabytes of data in a reduced amount of time and subsequently feed quickly
and comprehensively online bioinformatics databases. In this scenario, the interoperability
between data resources has become a fundamental challenge. Issues are gradually being
solved in applications involving genome (DNA) or transcriptome (RNA) analyses but
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problems remain for less documented molecules such as lipids, glycans (also referred to as
“carbohydrate”, “oligosaccharide” or “polysaccharide” to designate this type of molecule) or
metabolites.

Glycosylation is the addition of glycan molecules to proteins and/or lipids. It is an important
post-translational modification that enhances the functional diversity of proteins and influ-
ences their biological activities and circulatory half-life. A glycan is a branched tree-like mole-
cule that naturally lends itself to graph encoding. However, glycans have long been described
in the IUPAC linear format [1], that is, as regular expressions delineating branching structures
with different bracket types. Such encoding can generate directional/linkage/topology ambigu-
ity and is not sufficient in the handling of incomplete or repeated units. More recently, several
encoding formats for glycans have developed based on sets of nodes and edges, e.g., GlycoCT
[2], Glyde-II [3,4], IUPAC condensed [5], KCAM/KCF [6,7] or more recently WURCS [8].
To date the GlycoCT format is acknowledged as the default format for data sharing between
databases [9] and consequently the most commonly used format for storing structural data.
Glycans are composed of monosaccharides (8 common building blocks and dozens of less fre-
quent ones as described in MonosaccharideDB (http://www.monosaccharidedb.org) that are
cyclic molecules. These monosaccharides are linked together in different ways depending on
carbon attachment positions in the cycle as detailed further.

In a graph representation of a glycan, each monosaccharide residue is a node possibly asso-
ciated with a list of properties and each linkage is an edge also potentially associated with a list
of properties. In fact, chemical bonds between building blocks, called glycosidic linkages, are
transformed into edges in the acyclic graph structure. An example is shown in Fig 1, where the
simplified graphic representation popularised by the Consortium for Functional Glycomics
(CFG) [10] (originally proposed by the authors of Essentials in Glycobiology [11]) is matched
to a graph. This notation assigns each monosaccharide to a coloured shape (e.g., yellow circle
for galactose, shortened as Gal). Shared colours or shapes express structural similarity among
monosaccharides. For example, N-Acetylgalactosamine (yellow square) differs from galactose
(yellow circle) through a so-called substituent (removal of an OH group and addition of an
amino-acetyl group). “Substituent” as a property is precisely the type that qualifies a node.

Starting with the CarbBank project in 1987 [12], a range of glycoinformatics resources con-
taining glycan-related information has been developed thereby creating a variety of reference
databases [13–15]. In the last two years, two articles [16,17] have been published proposing
mechanisms for connecting glycan-related (or glycomics) databases. The respective authors
suggested moving towards new technologies designed for semantic web, which are adapted to
aggregating information from different sources. The outcome for these proposals was a com-
mon standard ontology called GlycoRDF [16] that is now being widely adopted by the commu-
nity to develop glycomics resources that cooperate and share standard formats enabling
federated queries [9]. Nonetheless, in an effort to confirm the relevance of RDF as the technol-
ogy of choice for glycomics data representation and integration, comparison with other graph-
based technologies such as Property Graph is necessary. In this paper we discuss methods for
interconnecting different databases through addressing the question of glycan substructure
(motif or pattern) searching. This report should be considered as a preliminary study of feasi-
bility and a comparison between different software implementations. Our main goal is to
compare the performance of these two technologies (RDF and Property Graph) for glycan
substructure search. In this study, Neo4j was chosen as a representative option for Property
Graphs and multiple RDF triple stores were tested mainly due to the shared graph query lan-
guage. Specifically, we have used for the latter: Virtuoso Open-Source Edition [18], Sesame
[19], Jena Fuseki [20] and Blazegraph [21].

Property Graph and RDF Triple Store Comparison
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Searching (sub)structures is meaningful in glycomics. It matches the concept of glycan epi-
tope or glycan determinant associated with the part of the whole structure that is recognized by
glycan-binding proteins, which include lectins, receptors, toxins, adhesins, antibodies and
enzymes [22]. Several substructure search solutions have been developed including for
instance, regular expression matching [23] as applied to processing glycans in linear format
(IUPAC) [5]. Although these approaches have showed reasonable robustness, they also have
intrinsic limitations especially in handling structural ambiguities. Frequently, experimental
data is insufficient to assign a precise monosaccharide (e.g., Galactose) to a position in the
structure so that it is characterised only by its carbon content (e.g., Hexose). Regular expres-
sions do not account for dependencies while a graph description handles inheritance of proper-
ties (e.g., Hexose -> Galactose). Emerging technologies capable of storing graph models can be
used, namely, Resource Description Framework (RDF) [24] and Property Graph databases
[25]. Even though RDF and Property Graph databases can be used to reach the same goal,
these two approaches are not synonymous and can be distinguished. RDF is designed for stor-
ing statements in the form of subject–predicate–object called triples, whereas a Property Graph

Fig 1. Glycan CFG encoding and graph encoding.On the left hand side a glycan structure encoded with CFG nomenclature is presented, while the right
hand side shows the same structure translated into a graph. Each monosaccharide or substituent becomes a node and each glycosidic bond becomes an
edge in the graph. Avoiding any loss of information all the properties of each monosaccharide or substituent are converted in node properties whereas
glycosidic bond properties are translated in edge properties. To be more clear the colour code associate with the monosaccharide type is preserved among
the images.

doi:10.1371/journal.pone.0144578.g001
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is designed to implement different types of graphs such as hypergraphs, undirected graphs,
weighted graphs, etc. Nonetheless, all possible types of graphs can be built with triples and
stored in an RDF triple store [26]. Furthermore, Property Graphs are node-centric whereas
RDF triple stores are edge-centric. For this reason, RDF triple stores use a list of edges, many of
which are properties of a node and not critical to the graph structure itself. Moreover, Property
Graph databases tend to be optimized for graph traversals where only one big graph is present.
With RDF triple stores, the cost of traversing an edge tends to be logarithmic [27]. Finally, the
query language is another key point in the comparison: RDF triple stores support SPARQL
[28] as a native query language whereas Property Graphs have mainly proprietary languages.
Even though Neo4J has a plugin for SPARQL, it relies essentially on its own proprietary lan-
guage called Cypher [29]. In either case, a substructure search can be defined with the query
language provided by these new technologies. To reach our benchmarking goal in this applica-
tion, we first describe the main steps of building substructure search software using alterna-
tively an RDF triple store or a Property Graph databases. We then provide a selection of
quantitative and qualitative measures investigated during the study such as portability. Finally,
we summarise the main achievements and draw some conclusions on the expected characteris-
tics of a web application for glycan substructure search.

Material and Methods
The development of a software solution to perform glycan substructure searching involves two
main tasks 1) the storage of glycan structures and 2) translation of a query into a specific query
language for pulling out all the glycan structures that match the query pattern.

The glycan encoding and the data storage sections provide details regarding these tasks
using native graph stores. The substructure search query shows how specific languages pro-
vided by RDF and Property Graph databases can be used.

Data structure
As previously described most dedicated glycan databases store structures using string encoding
standards. This multiplicity led to create a new layer between the data store and the glycan
encoding formats to decouple the glycan structure information from any string-encoding
format.

A comprehensive framework was developed within the EUROCarbDB project for parsing
multiple glycan encoding formats [30]. Even though this framework is still used and includes
parsers for each glycan encoding format, for pragmatic reasons we have relied on an in-house
library, called MzJava [31]. It is an open source library that provides a data structure and spe-
cific readers for multiple glycan encoding formats that are not limited to processing mass spec-
trometry data. The MzJava data structure organizes the information from a glycan structure
into a directed acyclic graph, which can be directly stored into a graph storage solution. Mono-
saccharides, the basic units, which compose the glycan structures, are treated as graph nodes
and all the biological properties of these building blocks are stored as separate node properties.
Substituents—particular building blocks, which can be combined with basic units—are han-
dled separately from monosaccharides and are represented as extra nodes in the data structure.

All glycosidic linkages are transformed into edges in the acyclic graph structure. Other
edges are introduced for every linkage between monosaccharides and substituents, so-called
substituent linkages. Each edge carries a list of properties, which identify different chemical
aspects of the bond itself. Each glycan is represented by a set of nodes selected between avail-
able monosaccharides and substituents and a set of edges, which connect the nodes (Fig 1).

Property Graph and RDF Triple Store Comparison
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The direct acyclic graph used by the Mzjava data structure can be directly loaded into a native
graph store.

Data Storage
The data store interacts with the data structure layer that was introduced in the previous sec-
tion. Native storage of the direct acyclic graphs used by the data structure layer was the first
main requirement for the data store. Because both RDF and Property Graph technologies fulfil
this requirement, we have developed two different data stores using each of these technologies.

For populating the data stores, a collection of known glycan structures was extracted from
GlycomeDB [13], the largest repository of known glycan structures publicly available. It con-
tains more than 34,000 structures collected from different online resources. The GlycoCT ver-
sion of GlycomeDB [13] was used in this study to compare the performance of RDF versus
Property Graph and the MzJava reader used to translate all structures into the supported data
structure, which were then stored into both RDF triple store and Property Graph data stores
(see “Glycan encoding” section). All the structures with repeats, underdetermined regions or
containing not fully characterised monosaccharides were omitted from this study in order to
produce consistent results with each query and ease comparison between the two implementa-
tions. In the end, the data store contained 19404 possibly redundant glycan structures (redun-
dancy comes for instance for the same structure identified in two different species since at this
stage, we do not account for taxonomy). Each structure was treated as a single graph, meaning
that both implementations contain 19,404 disconnected graphs. In the end, the dataset con-
tained 233,633 distinct nodes divided in 19,404 different graphs, with an average of 12 nodes
for each graph. Here, the largest is composed of 63 nodes other details about the distribution of
nodes among the structures are provided in S10 Table.

Details about the development of the two data storage implementations are illustrated in the
following sections.

RDF implementation
RDF can only deal with triples, statements in the form subject-predicate-object. For this reason,
it is necessary to develop a model that translates a glycan structure with all potential biological
properties into a list of triples. Fig 2 shows how this model can be used for a simple structure
with a monosaccharide and a substituent.

The proposed model is based on the GlycoCT standard where the structure is encoded in a
residue list and a connectivity list. All monosaccharides and substituents are treated as separate
components and annotated in the residue list with a specific ID. The connectivity list contains
the linkages between the components annotated in the residue list. Our model follows the same
principle: all substituents are treated as separate components as opposed to merging them with
their associated monosaccharides in order to avoid contaminating the model with biological
assumptions.

“Glycan” is the first entity in the model and it has two predicates associated: “closematch”
taken from the SKOS ontology and “has_residue”. The “closematch” predicate connects the
“Glycan” entity with URLs that identify the specific glycan in other databases. In this way, ref-
erences to external databases can be kept in our model for refining the search. The user can
always add alternative references using the same predicate. The “Glycan” entity links each
monosaccharide and substituent to the “has_residue” predicate, grouping together all the
building blocks that belong to the same glycan structure.

Every “Residue” entity represents a particular monosaccharide or substituent, so the num-
ber of components for each structure is equal to the sum of monosaccharides and substituents.

Property Graph and RDF Triple Store Comparison
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Chemical properties related to the components can be stored using RDF:property. In this
model we provide “residue:monosaccharide” and “residue:substituent” as RDF:type for specify-
ing the type of components and properties like “monosaccharide:Gal” or “substituent:NAcetyl”
can be used for defining the actual molecule.

All predicates available are shown in Fig 2 whereas the list of all monosaccharides and sub-
stituents already defined in the ontology can be found in S11 Table. The user can extend the
ontology adding new predicates or property to encode supplementary information regarding
nodes.

Component entities are connected to each other following the actual pattern of the glycan
structure. In other words, a triple with a “links_To” predicate is added to the triple store for
each linkage between two different components. In this ontology no entity represents linkages,
we rely on multiple triples for storing the specifications of a linkage. Each time a piece of infor-
mation about a specific edge is added, a new triple with the parent node as subject and the
child node as object is inserted in the triple store. The information is encapsulated in the

Fig 2. Ontology overview.Overview of the ontology developed for translating glycan structures into RDF/semantic triples. The figure shows all the
predicates and the entities used for defining a glycan structures into the RDF triple store.

doi:10.1371/journal.pone.0144578.g002
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predicate itself. The ontology provides the user with several predicates for describing each
piece of information related to the linkage.

Starting from the root node every linkage between a parent component and a child is added
to the triple store following a breadth first search algorithm. Thus we prevent any possible edge
duplication in the graph.

In the end, each glycan structure stored in the RDF triple store is composed of at least a
“Glycan” entity associated with many different “Residue” entities.

By introducing a predicate for each linkage and component property, we allow the stratifica-
tion of information. The potential loss of performance due to spreading information on differ-
ent layers is justified by our wish to preserve approximate search options (e.g. search with
missing information or tolerating mismatches). Indeed, merging all properties within a predi-
cate lacks the flexibility that is crucial for glycan substructure search tolerating fuzzy matches.

Neo4j implementation
The Java API provided by Neo4j was used for storing glycan structures into a Property Graph.
Each structure has been added to the same graph and the glycan structure ID has been stored
in all the nodes related to a particular structure. The final result is a disconnected graph where
structures can be grouped by ID. Spreading the glycan ID, as opposed to keeping it in the root
node, is useful to quickly retrieve the identifier when the substructure does not include the
root node. In finer details, each monosaccharide or substituent has been added to the graph
database as a node whereas each linkage is encoded as a relationship between two nodes. To
encode biological properties of components or linkages we have used respectively node and
relationship properties. Property Graphs can directly store graphs including nodes and edges
properties.

Substructure Search Query
Starting from a substructure query, each data store implementation is queried in order to
retrieve all glycan structures that contain the query pattern. In fact, there is no difference
between a complete structure and a substructure in terms of encoding format. Consequently,
the workflow presented in the Glycan encoding section can be used for extrapolating and orga-
nizing the substructure information into a common data structure. Then the direct acyclic
graph is translated into a technology specific language for performing a graph pattern search
among the structures contained in the data store. The languages provided by RDF and Property
Graph databases describe a graph pattern and find all the graphs which contain it, and support
our software solution for the retrieval of all the structures in the data store that contain a query
substructure.

The following illustrates the process of translating the data structure graph into specific
RDF and Property Graph databases query languages.

RDF SPARQL Query
Following the ontology described in Fig 2, glycan substructures can be translated into a SPARQL
query. A native support to this query language is provided by each RDF triple store, thereby not
tying our solution to any particular product, however, the queries support SPARQL 1.1 [32]. Fig
3A shows the translation process on a substructure where a galactose residue is connected to a
glucose with an alpha 1,3 linkage. Every monosaccharide or substituent becomes an entity and
each property is encoded in one of the predicates or the properties described in the model. Ses-
ame API [19] together with the appropriate JDBC driver has been used for querying Virtuoso

Property Graph and RDF Triple Store Comparison
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Openlink, Blazegraph, Sesame and Jena Fuseki. Detailed examples of larger structures are pro-
vided in the S1 File.

Neo4j Cypher Query
In order to interact with the database, Neo4j provides a native query language called Cypher.
The translation process of a glycan substructure into a Cypher query is shown in Fig 3B. Two
main parts are present in the query: the graph pattern and the property specification. The first
part delineates the shape of the substructure while the second specifies the properties of each
node or edge. In addition to Cypher, Neo4j provides a native object access Java API to interact
with the database. Cypher is known to be slower than the native object access [33], however
version 2.2 has improved performance and comes with a new cost-based query optimizer.

Setup
All tests were performed using a Dell Precision T7400 with the following hardware features:

• CPU: Intel(R) Xeon(R) X5482

• RAM: 56 GB DDR2 ECC

Fig 3. Query building example. A. Example of use of the RDFmodel to build a SPARQL query from a glycan substructure focussing on the translation
process. The prefix part of the query is omitted but further detailed examples are provided in the S1 File. B. The same example is shown with building a
Cypher query, the native language in Neo4J. Similarly, additional examples are provided in the S1 File.

doi:10.1371/journal.pone.0144578.g003
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• Hard disk capacity: 500 GB

• Operating system: Linux Cent OS version 6.6 64-bit

• Java JDK version: 8

• RDF triple store: Virtuoso Open-Source Edition version 7.2, Sesame 4.0, Jena Fuseki v2, Bla-
zegraph 1.5.3

• Property Graph: Neo4j Community version 2.2

For Virtuoso, NumberOfBuffers and MaxDirtyBuffers were changed to 170,000 and
130,000 respectively. Moreover, the MaxCheckpointRemap was adjusted according to the size
of our database. A further increase of the buffers reported the same performance. Neo4j
embedded version was preferred over the REST implementation. The embedded version has
the advantage of removing any latency introduced by the REST communication between the
service and the server. Moreover, it can be accessed directly from the java application with a
specific API provided by Neo4j.

For building the Neo4j instance, Node_auto_indexing and Relationship_auto_indexing
have been activated. In addition, we have set the cache_type option to “strong” in order to keep
the whole database in RAM.

We have used Java JDK version 8 to run Neo4j, Blazegraph, Jena Fuseki and Sesame setting
the heap size to 8 GB.

Results and Discussion
In an effort to compare the usage of Property Graph vs. RDF triple store to address the sub-
structure search problem, we built a dataset with 19,404 glycan structures extracted from the
glycan structure repository GlycomeDB and compared the average query time of two data sets
described in S8 and S9 Tables. The size of the queries have been divided into five groups:

• Very short: less than 5 residues

• Short: between 5 and 15 residues

• Middle: between 15 and 25 residues

• Large: between 25 and 35 residues

• Very large: more than 35 residues

The first set contains 128 queries (S8 Table) that represent biologically relevant use-cases and
have been identified as glycoepitopes, that is, parts of glycans recognised by glycan-binding pro-
teins. This list was obtained from the GlycoEpitope database [34] and further substantiated by
information reviewed in [22]. Glycoepitopes are limited in size, i.e. between 2 and 13 residues
but approximately 70% of these substructures contain between four and seven residues. This ref-
erence set is important for the future implementation of a web application that will perform sub-
structure search for glycobiologist users. It contains mainly short and very short queries.

The second set (S9 Table) contains 60 queries. The structures were randomly picked in Gly-
comeDB, with the prerequisite of spanning between 25 and 60 residues. This set was exclusively
created for benchmark purposes and contains only large and very large queries. There is no bio-
logically relevant relation in these substructures, but this data set pushes the software to its limits
and tests the reliability of different implementations of RDF triple stores and Property Graphs.

Property Graph and RDF Triple Store Comparison
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Quantitative Measures
At first an empty query was performed to initiate the test environment and then each query
structure, present in S8 (first set) and S9 (second set) was run 10 times and the average query
time was calculated for the last nine queries. All time is measured in seconds (s).

The results (S1 Table) for the first set of queries show that the Virtuoso RDF triple store and
Blazegraph have a better query response in 95% of the queries, the other 5% is cover by Sesame.
Neo4j, as the only representative of Property Graph, only performed faster than Virtuoso for
12 queries (Ids 49 to 52 in S1 Table) and never exceeded the performance of Blazegraph. The
average query time through the whole set of queries shows that Neo4j performance is compara-
ble with Sesame but is still 0.8 s slower than Blazegraph.

S2 Table shows the results for the second query set that were technically more instructive.
Virtuoso Triple store column is empty because we could not run the benchmark with this RDF
triple store. Using the machine described in the setup, we have tested both the development
and stable versions of Virtuoso and none of them produced an output result. However, we
observed two different behaviours: using the stable version, the machine froze after submitting
the query until Virtuoso crashed. With the development version, we were not able to get any
query results after hours of computation. We attempted to solve this problem while setting to 5
the swappiness of the operating system, to no avail. In the end, we contacted the Openlink sup-
port but have not yet received an answer. RDF technology is relatively new and some imple-
mentations still need debugging or meet scaling issues.

When compared to the RDF triple stores, Neo4j slowed down as the size of the queries
increased. In this case, the difference between Neo4j and Blazegraph, calculated on the average
query time in the whole set, is close to 4 seconds. Surprisingly Jena Fuseki, the slowest database
in the first benchmark, is almost 2 second faster than Neo4j. The average response time was cal-
culated for each query in both datasets and the results are summarised in Fig 4. The average
query response time of three glycan determinants shown in Fig 5 is detailed in Table 1. Complete
information regarding the results obtained with the two sets is provided in the S4 and S5 Tables.

Contrary to our initial intention, we have not fully tested Neo4j with SPARQL since the sup-
porting third-party plugin runs approximately 2.4 to 27 times slower than Jena Fuseki [35],
which is already the slowest RDF triple store in our benchmark. Dealing with a large discon-
nected graph is the key point of the discussion. Property Graphs are in general optimised for
storing large connected graphs, for example friend-of-a-friend networks. The data structure is
designed to efficiently perform a graph traversal that computes the shortest path between two
nodes or retrieves all the friends of a friend. These conditions are not satisfied in our substruc-
ture search problem where the graph is a collection of small and disconnected graphs. For each
query, the Property Graph database performs a full scan of the collection searching for a spe-
cific pattern. In other words the software engine has to search the root of each structure and
start the traversal. This matches the use case guiding Neo4j’s implementation and design but
not the specificity of glycan substructure search.

In contrast, RDF is an information representation with different technological implementa-
tions. In most RDF triple stores, a single table of four columns holds one quad, i.e. triple plus
graph identifier, per row. When a specific pattern is searched in the structure collection, the
engine retrieves all the glycan entities and runs a traversal on each one. The process is sped up
by the use of entity indices that allows the RDF engine to find the next structure more effi-
ciently than a Property Graph database.

In the end, graph pattern searching as implemented by RDF databases appears to match
more closely the glycan substructure use case, which (in the absence of bugs) explains why this
type of graph database performs well on our benchmark.

Property Graph and RDF Triple Store Comparison
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All the results divided by specific methods can be found in supporting materials S3–S7
Tables.

Qualitative Measures
We provide qualitative measures concerning the query language, the ease of usage and the level
of support. Although difficult to evaluate, these criteria are significant for choosing which type
of technology to use. In the last part we underline some cross-platform issues related to the Vir-
tuoso triple store.

Query language. As described above RDF triple stores support the World Wide Web Con-
sortium (W3C) endorsed SPARQL standard as the common query language. Consequently,
the proposed (sub)structure search can be used by different RDF implementations without
changing the application. In comparison, Property Graphs are language specific relying on

Fig 4. Average query time. The mean value calculated on the response times of each query in both sets is shown in two bar charts. Panel (A) shows the
mean query times for the first set and panel (B) contains the values for the second set. The column assign to Virtuoso in the second set of query is empty
because we could not record any data due to a problem in running large and very large queries.

doi:10.1371/journal.pone.0144578.g004
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proprietary languages such as Cypher (Neo4j), which potentially limits application portability
and requires drastic change in the software when moving to alternative implementations.

The W3C promotes the development of high-quality standards, making SPARQL a good
choice for production software. In the case of Neo4j, there are add-on components that allow
this Property Graph to be accessed as a triple store and potentially queried with SPARQL. As
mentioned earlier, third-party contributors implemented these plugins and there is no guaran-
tee of future development and support. In this study, we have not tested these plugins mainly
because they have poor performance [35]. SPARQL is translated into a native object access API
introducing latency in the query process and negatively impacting performance.

Finally, providing a standardised query language gives RDF an important advantage, espe-
cially when the stability of the software technology used is crucial.

Level of support. Although RDF and Property Graph databases were recently introduced,
they have lively communities behind them showing the need for natively storing graph data.
RDF and SPARQL standards have extensive support both from the W3C and the triple store

Fig 5. 2D structure of query glycoepitopes. The 2-dimensional structure of three well-known glycoepitopes listed in Table 1, namely (A) Lactosamine Type
One. (B) Blood Group A. (C) Sialyl Lewis X is shown. Response time for each is shown in Table 1.

doi:10.1371/journal.pone.0144578.g005

Table 1. Comparison of average response query time for 3 glycoepitopes (see Fig 5). A comparison of the average query time of Property Graph and
RDF triple store databases tested in this study (columns) for three well known epitopes (rows). SPARQL and Cypher queries for these glycoepitopes are pro-
vided in the S1 File.

Virtuoso Neo4j Sesame Jena Fuseki Blazegraph

Lactosamine Type One 0.114 s 0.827 s 0.814s 0.941 s 0.495 s

Blood Group A 0.104 s 0.945 s 0.817 s 0.869 s 0.225 s

Sialyl Lewis X 0.469 s 1.012 s 0.706 s 1.970 s 0.120 s

doi:10.1371/journal.pone.0144578.t001
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vendor websites. Google groups and user groups are available for supporting the development
and discussing issues for both technologies.

The Property Graph community compared to that of RDF is fragmented due to the lack of
standards in query language and API. Most of the support for Neo4j and Cypher comes from
the online manual available on the company website. With each new release, the manual is
updated and explains how to get the maximum performance out of this database. Despite a
detailed documentation and multiple tutorials provided by the Neo4j site, the query language
lacks support from other industry partners. Three different query languages were proposed for
Neo4j in the past 11 years and the current Cypher may not be the last.

The RDF community instead is led by the W3C that periodically updates the standard fol-
lowing community suggestions. All implementations of RDF triple store have to follow the
W3C recommendations. The actual availability of multiple triple store implementations gives
the RDF community more stability compared to Neo4J. Moreover, Open Data [36] and Linked
Data movements are pushing the usage on RDF and SPARQL as a way of interconnecting
online resources. In bioinformatics, some online resources such as UniProt [37] are already
accessible through SPARQL. Regarding the four RDF triple stores tested in this study, each
vendor website provides useful information about setting up the environment and tweak the
settings.

In the end, the possibility of connecting multiple online resources and the stability shown
by the RDF community place RDF in a favourable position compared to Property Graph.

Ease of usage. The embedded version of Neo4j databases can be easily added to a java
project through a jar or a dependency. The API for building the graph is simple and intuitive.
A great advantage is provided by the option of directly adding properties to nodes and edges.

Theoretically speaking Neo4j and Property Graph databases fit our problem better than
RDF, nevertheless they are not designed for multiple disconnected graphs in one instance. For
this reason, the structure identifier had to be spread in all the nodes that belong to the same gly-
can. The duplication of information in the database implies an increased use of memory, which
can be a problem for large datasets. This problem can be addressed but any corresponding
solution requires extra nodes or properties leading to the same issue.

RDF shows more flexibility in terms of provided API. Different java libraries like Jena or
Sesame are available for connecting a java application with every triple store. Moreover, both
libraries provide an in memory triple store that can be used for testing purposes. In our study
we have used both libraries and there are well documented and easy to use. Virtuoso, like Bla-
zegraph and Jena Fuseki, runs as a standalone server with a useful web interface for managing
configuration parameters.

The main obstacle to design substructure search software with RDF has been the ontology
definition. Building up ontology for converting glycan structures into triples has been the most
time consuming part. It involves reflecting on how to spread the information through different
triples in a way that each piece is easy to retrieve and every software requirement is fulfilled. In
contrast, defining a specific ontology for substructure search allows storing multiple discon-
nected graphs in the same database without losing performance.

The shared API and SPARQL, the common query language, made it possible to run four dif-
ferent RDF triple stores without changing our application code but only choosing the right
connection driver.

In conclusion, Property Graph databases provide a ready to use solution for substructure
search whereas RDF needs a specific ontology for tackling the problem. The development of an
ontology can be challenging and time consuming but provides a more flexible solution.

Cross Platform Issues. We tested both substructure search implementations under Linux
andWindows environments with the same dataset of glycan structures.
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Using the Neo4j implementation hardly any difference in terms of query speed and size of
results was observed. As Neo4j is implemented in Java, it behaves in the same way on all the
systems that can run a Java Virtual Machine, the same situation for Sesame, Jena Fuseki and
Blazegraph. However, the Virtuoso implementation produces different query results in differ-
ent environments. The structures retrieved in the Windows environment were often a subset of
the ones retrieved under Linux. In order to establish which answer was correct all results were
checked manually notably all the structures retrieved in the Linux environment were correct
and in agreement with the Neo4J results. This may mean that Virtuoso triple store possibly
contains inconsistencies between the Windows and the Linux version.

We have found a second obstacle during the test with the second query set. In this case,
Linux andWindows implementations either crashed after query submission or they caused a
crash or a freeze of the machine itself. We could not test the second query set despite several
attempts to fix the problem. The novelty of RDF and Property Graph databases technologies
can easily explain the presence of issues in the code. Only a large community of users over sev-
eral years of development will help resolve this type of problems.

Conclusion
In this paper, we delineated two strategies for substructure searching using new technologies
like Property Graph and RDF triple store databases. Using two specific sets of substructures we
document that in all the cases RDF has been faster than Property Graph and the gap is increas-
ing with the size of the query. This led us to conclude that our model with Blazegraph RDF Tri-
ple Store reduces the query response time that remains close to one second in all the queries of
both tested sets. Qualitative measures were discussed to provide the reader with additional cri-
teria for selecting the appropriate technology. Overall, even though both technologies show
advantages and disadvantages related to specific qualitative measures, the general lack of stan-
dards related to Property Graphs can play a key role in choosing between RDF triple stores and
Property Graph databases. In the specific case of substructure search, Property Graphs were
seen as a ready-to-use solution for prototyping software. However, when performance and
interoperability between different resources is considered, an RDF triple store appears as a
more efficient technology.

This study lays the foundation to a possible web application for substructure search. The
proposed model is destined to evolve and include a wider set of biological properties in future
versions.
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