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Abstract
With the merit on representing traffic conflict through examining the crash mechanism and

causality proactively, crash surrogate measures have long been proposed and applied to

evaluate the traffic safety. However, the driver’s Perception-Reaction Time (PRT), an impor-

tant variable in crash mechanism, has not been considered widely into surrogate measures.

In this regard, it is important to know how the PRT affects the performances of surrogate

indicators. To this end, three widely used surrogate measures are firstly modified by involv-

ing the PRT into their crash mechanisms. Then, in order to examine the difference caused

by the PRT, a comparative study is carried out on a freeway section of the Pacific Motorway,

Australia. This result suggests that the surrogate indicators’ performances in representing

rear-end crash risks are improved with the incorporating of the PRT for the investigated

section.

Introduction
The increase in motor-vehicle crash has been well recognised as a major health problem by
World Health Organization (WHO). It is stated that around 1.24 million people lost their lives
and 50 million were injured in crashes on the roads around the world each year. Further, as the
leading cause of death for young people aged 15–29 years, road crashes take an enormous toll
on individuals and communities as well as on national economies [1]. In Australia, it was
reported that the social cost of vehicle crashes was estimated as AUD 27 billions per annum
with devastating social impacts [2]. Among these crashes, those on motorways are recognized
as more severe than crashes on urban streets in terms of their consequences. According to the
crash data provided by Department of Transport and Main Roads (DTMR) of Queensland,
there are over 70% fatal crashes occurred on rural and inter-city roads each year. Inter-city
motorways are usually designed to carry the travel demands among cities with high speed.
Crashes occurred on motorways would potentially cause significant traffic delay and health,
economic and environmental problems. In this regard, it is of great importance to investigate
the traffic safety on motorways. The road safety has become a high-priority issue to traffic engi-
neers and traffic authorities for decades. Researchers and engineers proposed many methods to
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improve road safety such as: the application of Intelligent Transportation System (ITS) pro-
grams [3, 4], the synergy of traffic energy saving [5–7] and autonomous vehicles [8, 9].

In order to reduce the crashes, many researchers have been contributed to find the possible
reasons related to the crashes. Traditionally, a range of safety-related concerns are addressed
by establishing the relationship between discrete crash counts and traffic/geometric parameters
[10–13], relying heavily on historical crash data and statistical techniques [14–16]. However, as
pointed out by Chin and Quek [17] and Tarko et al. [18], these traditional prediction models
have some drawbacks and restrictions. First, due to the infrequence and sporadic occurrence of
accidents, significant efforts are consumed on collecting and maintaining the appropriate data.
Second, accidents are not always uniformly reported, which can produce biased conclusions.
Third, these prediction models are purely dependent on statistical techniques and historical
crash data, without taking into account the crash mechanism. Further, crash records for safety
analysis are considered as a reactive approach, which requires a sufficiently large number of
serious accidents to take place in advance. Consequently, surrogate indicators are proposed as
a supplementary method of the accumulation of crashes in safety evaluation.

Surrogate indicators are firstly proposed and used to evaluate the treatment beforehand in
medical sciences, and then utilized to reduce or eliminate the crashes by traffic engineers and
researchers [19–28]. As suggested by Tarko et al. [18], surrogate events should satisfy two basic
requirements: 1) surrogate events should be exacted from observable non-crash events by
using some practical method (surrogate measure); 2) it is feasible to examine the relationship
between these surrogate events and corresponding crash frequency and severity. Crash surro-
gate indicators have been well recognized as good safety indicators for analysing and predicting
crashes. Firstly, surrogate events occur much more frequently than crashes with strong proba-
bilistic properties. Secondly, as states between safe and crash, surrogate events can reflect the
potential crash causality and mechanism. Last but not least, surrogate indicator is regarded as a
proactive rather than reactive approach, which can proactively assess safety before crashes
occur.

Although many surrogate indicators are proposed and applied to traffic safety during the
past half century, to the best of our knowledge, little if not none takes into account the driver’s
perception-reaction time (PRT). The primary objective of this study is to examine whether or
not the incorporation of the PRT could improve the performance of a surrogate indicator. To
this end, we firstly propose the modified surrogate indicators by taking into account the PRT.
Based on the collected trajectory data on Pacific motorways, we validate the VISSIM simulation
model by the error tests and trajectory comparison. Lastly, we evaluate the performances of the
modified surrogate indicators based on the crash data on the motorway.

Literature Review
Various surrogate indicators, including Time To Collision (TTC), Deceleration Rate To avoid
Crash (DRAC), Crash Potential Index (CPI) and Proportion of Stopping Distance (PSD), are
proposed and applied in safety evaluations. Based on the assumption that both vehicles keep
the speeds unchanged during the process, the surrogate indicator TTC is defined as the time
remains until a collision between two vehicles would have occurred [19, 20, 28], mathemati-
cally,

TTC ¼
D1�2

V2 � V1

; if V2 > V1

1 ; otherwise

ð1Þ
8<
:

where D1−2 represents the distance gap between the leading and following vehicle; V1 and V2
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denote the speeds of the leading and following vehicles at the initial time, respectively. TTC has
become one of the most well-recognized microscopic safety indicators, and been widely applied
to evaluate the level of safety in different situations of traffic [27–31]. Further, Minderhoud and
Bovy [32] develop the extended time to collision as the measures for traffic safety assessment
based on TTC notion which can evaluate the risk more comprehensively by taking into account
the full course of vehicles over space and time [20].

DRAC is another widely-used surrogate indicator. It is defined [20, 33] as the minimum
deceleration rate required by the following vehicle to avoid a crash with the leading vehicle if
the speed of leading vehicle is unchanged during the process. Mathematically, DRAC can be
denoted as:

DRAC ¼
ðV2 � V1Þ2

D1�2

; if V2 > V1

0; otherwise

ð2Þ

8><
>:

DRAC is recognized as an effective measure of safety performance in safety evaluation [32,
34]. The AASHTO [35] suggests that a given vehicle is in conflict if its DRAC exceeds a thresh-
old 3.4 m/s2. Higher value of DRAC indicates a more dangerous car-following scenario.

CPI is defined [20, 36] as the aggregated probability for those car-following sceanrios where
the following vehicles’ DRAC values exceed their braking capacities or Maximum Available
Deceleration Rates (MADR) during a given time period, mathematically,

CPIi ¼

XN
t¼0

PðDRACiðtÞ > MADRiÞ � Dt

T
ð3Þ

where DRACi(t) andMADRi are the DRAC and MADR value for the following vehicle of ith

car-following scenario at discrete time t respectively; N and Δt are the total number and the
duration of time interval inspected; T is the total time duration investigated, where T = N � Δt.
MADR is vehicle and scenario-specific, and usually represented by truncated normal distribu-
tions [36, 37]. The surrogate indicator CPI is broadly used to evaluate the road risk in safety
analysis [34, 37]. By taking into account the deceleration capacity of vehicles, CPI can deliver
more comprehensive results due to the MADR distribution.

PSD is defined [20, 26, 34, 38] as the ratio between the remaining distance RD and the mini-
mum acceptable stopping distance MSD, mathematically,

PSD ¼ RD
MSD

ð4Þ

where the remaining distance RD denotes the distance between the initial point and the poten-
tial point of collision, while the minimum acceptable stopping distance MSD represents the
minimum stopping distance required based on the assumption of maximum deceleration rate
used. PSD is measured by comparing the available and minimum acceptable stopping dis-
tances, all scenarios with PSD less than 1 are regarded as unsafe, where the collisions cannot be
avoided with maximum acceptable deceleration rate taken. PSD is regarded as a good surrogate
indicator and has been used for safety evaluation [34, 39].

Although the selected surrogate indicators are widely used in traffic safety evaluation, none
of them takes into account the PRT. The PRT, which is defined as the minimum time required
for the driver to react, is an important parameter in traffic safety and designing. For example,
the National Association of Australian State Road Authorities (NAASRA) is currently using
the PRT as the standard in the area of geometric road design for the visibility. Besides, it is used
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to estimate the stopping distance in the computation of horizontal and vertical profiles in high-
way design [40]. Further, the PRT also plays a significant role in the designing of the duration
of yellow phase at signalized intersections [41]. During the onset of yellow phase, either a driver
stops safely before the stop line or proceeds through the intersection before the end of yellow
phase are both highly related to the PRT. In reality, the safety of intersections is maintained by
alleviating the dilemma zone which is calculated based on the estimation of the PRT. Accord-
ingly, PRT is of significant importance in traffic safety. However, this important parameter is
not considered into the crash mechanisms of most widely used surrogate indicators. The possi-
ble reason would be the time gap between the study of surrogate indicators and PRT. It is
found that most of the well-recognized surrogate indicators were proposed in 70’s of 19th cen-
tury, while most of the studies of PRT were carried out in this century. Before the distributions
of PRT were obtained, the surrogate indicators have been proposed and widely used in safety
evaluations. Hence seldom research has been done to establish the link between the PRT and
surrogate indicators. Due to the ignorance of the PRT in most surrogate indicators, it is of
great importance to take into account the PRT in safety evaluation due to its significance in
crash mechanism. Wang and Stamatiadis [42–44] proposed a series of pioneering works to cre-
atively incorporate the impact of the PRT in order to better evaluate intersection safety. Yet lit-
tle research has been done for proactive motorway safety evaluation with the consideration of
the PRT.

Three Modified Surrogate Indicators

Modified Deceleration Rate to Avoid a Crash (MDRAC)
This paper aims to examine whether the consideration of the PRT can improve the surrogate
indicator’s performance or not. To this end, we reanalyse the crash mechanisms of selected sur-
rogate indicators by considering the phase of the PRT.

Fig 1 shows the crash mechanism of DRAC by taking into account the PRT, where a critical
situation is depicted when the following vehicle just adapts its speed to that of the leading vehi-
cle in time. As can be seen in Fig 1, the distance travelled by the following vehicle should be
equal to the available distance, mathematically:

TTC � ðV2 � V1Þ þ V1 � Rþ V2 � V1

d2
� V1 ¼ V2 � Rþ V2

2 � V2
1

2d2

ð5Þ

by simplifying Eq 5, MDRAC can be represented as:

d2 ¼
V2 � V1

2ðTTC � RÞ ð6Þ

Accordingly, MDRAC can be expressed by speeds, PRT and TTC as follows,

MDRAC ¼
V2 � V1

2ðTTC � RÞ ; if TTC > R

1 ; otherwise

8V2 > V1 ð7Þ
8<
:

where V2 and V1 represent the speeds of the following and leading vehicles, respectively; R
denotes the PRT; d2 is the deceleration rate of the following vehicle; and TTC represents the
time to collision value for the initial state (t = 0). This finding is also derived by Wang and Sta-
matiadis [42–44].

By comparing with DRAC, MDRAC is able to reflect the severity on the basis of TTC. For
the same car-following scenario, the MDRAC can be varied due to the different PRTs of
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distinct drivers. If TTC is less than PRT, the following driver would not have enough time to
react, a collision is not avoidable. In this paper, 3.4 m/s2 is suggested as the threshold of
MDRAC by AASHTO [35].

Modified Crash Potential Index (MCPI)
Since CPI describes the probability that a given vehicle DRAC exceeds its maximum available
deceleration rate (MADR) or braking capacity, by using MDRAC instead of DRAC, the modi-
fied CPI (MCPI) can be represented as:

MCPIi ¼

XN
t¼0

PðMDRACiðtÞ > MADRiÞ � Dt

T
ð8Þ

whereMDRACi(t) is the MDRAC value for the ith car-following scenario at discrete time t, esti-
mated by Eq 7, N and Δt are the total number and duration of time interval inspected; T is the
total time duration investigated. According to the distribution of MADR, MCPI is measured
based on the results of MDRAC.MCPI represents the crash potential index based on the con-
sideration of the PRT, a higher MCPI indicates a more dangerous scenario.

Modified Proportion of Stopping Distance (MPSD)
By taking into account the PRT, we propose modified surrogate indicator PSD by updating the
minimum acceptable stopping distance (MSD). In this conflict process, the modified MSD
(MMSD) should contain two parts: 1) the distance travelled for the following vehicle during its
PRT; 2) the braking distance travelled by the following vehicle its PRT till it stops, mathemati-
cally

MMSD ¼ V2Rþ V2
2

2d2
ð9Þ

where V2 is the speed of the following vehicle, R represents the PRT of the following driver, d2
denotes the maximum acceptable deceleration rate taken by the following vehicle. Then, the

Fig 1. Conflict process of MDARC.

doi:10.1371/journal.pone.0138617.g001
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modified PSD (MPSD) can be expressed as:

MPSD ¼ RD
MMSD

¼ V2 � TTC
V2 � Rþ V2

2

2d2

¼ TTC

Rþ V2

2d2

ð10Þ

MPSD is believed to be more realistic compared to the traditional PSD. However, it is
impossible to get the scenario-specific PRT during a survey. In this regard, the distribution of
PRT is introduced. According to the previous research, the distribution of PRT is observed to
be lognormally distributed [45–48]. Green [48] suggests the log-normal distributions as a
mean of 1.3 seconds and a standard deviation of 0.6 second for the crossing and lane change
situations. For rear-end situation, PRT is reported by Triggs and Harris [45] to follow a lognor-
mal distribution with a mean of 0.92 second and a standard deviation of 0.28 second. Without
loss of generality, we use the lognormal distribution with a mean of 0.92 second and a standard
deviation of 0.28 second as the PRT distribution in this study for rear-end situation.

Validation of the Micro-Traffic Simulation Model
VISSIM is a useful micro-traffic simulation tool, which has been widely used in traffic simula-
tion [40–44, 49]. In this research, VISSIM is applied to simulate the traffic of the investigated
section on the Pacific Motorway. To ensure the accuracy of VISSIM on simulation, we validate
our simulation model by comparing the speeds and volumes [50–53]. All field data are col-
lected on the investigated section which is located between the exits #20 and #9 of the north-
bound of Pacific Motorway.

Based on previous studies [26, 37, 54], we use four error tests to assess the differences
between the simulation results and the field data: (1) Theil’s inequality coefficient (U); (2) root
mean square percentage error (RMSPE); (3) root mean square error (RMSE); (4) mean per-
centage error (MPE), mathematically,

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N0

XN0

n¼1

ðysn � y0nÞ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N0

XN0

n¼1

ðysnÞ2
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N0

XN0

n¼1

ðy0nÞ2
s ð11Þ

RMSPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N0

XN0

n¼1

ysn � y0n
y0n

� �2

vuut ð12Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N0

XN0

n¼1

ðysn � y0nÞ2
vuut ð13Þ

MPE ¼ 1

N0

XN0

n¼1

ysn � y0n
y0n

� �
ð14Þ

where ysn represents the simulation value (speed) of the nth vehicle in the VISSIM model; y0n
denotes the field value of the nth vehicle; N0 is the number of observations. We randomly select
20 vehicles from the field data and record their times. Then these vehicles will be matched with
those generated from our simulation model according to the recorded time. In this study, the
four error tests are carried out for comparing the speeds of randomly selected vehicles. Five
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groups of field data are randomly extracted, each of which contains 20 vehicles. The average
error tests are aggregated in Table 1. As can be seen in the table, the simulation model performs
well.

We further use Geoffery E. Heavers (GEH) test to conduct volume validation. Geoffery E.
Heavers (GEH), a modified chi-square statistics, has been widely employed to compare the fit-
ness between simulation and field data [51–53]. Mathematically, GEH can be represented as

GEH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS� FÞ2
ðSþ FÞ=2

s
ð15Þ

where S denotes simulated data, while F represents field data. GEH is regarded as a good statis-
tical measure by considering both relative and absolute differences between simulated and field
data. In this study, the field and simulated data of 20 randomly chosen time periods are com-
pared. Each time period contains one hour. Table 2 shows the results on comparison of total
flow per hour between field and simulated data. As suggested by Dowling et al. [51] and Holm

Table 1. Error tests of speeds.

Number of group RMSE(m/s) RMSPE (%) MPE (%) U (%)

1 2.88 11.31 5.75 0.24

2 2.77 11.30 4.13 0.23

3 3.39 13.35 7.42 0.28

4 3.36 12.34 6.67 0.26

5 2.99 11.74 5.64 0.24

Average 3.08 12.01 5.92 0.25

doi:10.1371/journal.pone.0138617.t001

Table 2. Comparison of total flow per hour between field and simulated data.

Number of time period Field data Simulated data GEH

1 6045 5966 1.02

2 5823 5752 0.93

3 5088 5019 0.97

4 4801 4732 1.00

5 4547 4504 0.64

6 4175 4155 0.31

7 5770 5691 1.04

8 5992 5859 1.73

9 5995 5869 1.64

10 4888 4832 0.80

11 5150 5086 0.89

12 2747 2739 0.15

13 4424 4383 0.62

14 3918 3873 0.72

15 4552 4499 0.79

16 4491 4439 0.78

17 5779 5735 0.58

18 6011 5901 1.43

19 6024 5923 1.31

20 4866 4798 0.98

doi:10.1371/journal.pone.0138617.t002
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et al. [52], a GEH value for sum volume of all links less than 4 is considered as a good fit. There-
fore, Table 2 further demonstrates the effectiveness of the simulation model.

Performance Analysis of Modified Surrogate Indicators

Data Description
In order to test the performances of the traditional and modified surrogate indicators, we carry
out a case study on the Pacific Motorway. The Pacific Motorway (M1) in Queensland, Austra-
lia, is the major urban road corridor connecting Tugun to the Sunshine Coast hinterland via
the Gold Coast and Brisbane. In this research, the investigated section is chosen between the
exits #20 and #9 of the northbound Pacific Motorway. Based on the traffic data provided by the
department of TMR in Queensland, the average traffic volume, speed and time headway for
each 15-minute from 21st July 2014 (Monday) to 27th July 2014 (Sunday) are available for each
lane, respectively. By setting these parameters in VISSIM, the traffic condition of the investi-
gated section can be simulated. Thus the risk of the whole section can be evaluated by different
surrogate indicators based on the trajectories generated by VISSIM. Furthermore, according to
the historical crash data provided by TMR, all rear-end crashes for this section from 2005 to
2013 are considered into analysis.

A Comparative Study of Crash Surrogate Indicators
With the aim of testing the impact of the PRT, we compare the performances of traditional and
modified surrogate indicators on the crash prediction. In this study, we use VISSIM to simulate
the traffic situation of investigated section for 168 successive time periods (24 hours per day
times 7 days) fromMonday to Sunday. Based on the trajectory data, we exacted the traffic data
such as the speed of leading (V1) and following vehicle (V2), the length of the leading vehicle (l1),
the time headway of the following vehicle (h2) in any car-following scenario. Suggested by Vogel
[55], the gap distance of this car following scenario (D1−2) can be estimated as (V2 × h2 − l1).
According the definitions of surrogates, the risk can be represented by different surrogate indica-
tors. By considering the randomness or heterogeneity of PRT andMADR, we use Monte-Carlo
method to calculate the risk by applying different surrogates. For each car-following scenario, the
risk is calculated based on 1000 seeds for both distributions. The concepts of individual and soci-
etal risk were proposed by Considine [56] and have been widely used in safety evaluation [26, 30,
57, 58]. Individual risk is defined as the crash risk or threat to an individual motorist, which is
regarded as the likelihood of collision occurring to the individual traveler i. For each car-follow-
ing scenario, the individual risk can be obtained by comparing the surrogate value and the surro-
gate threshold. In this study, the thresholds of DRAC (MDRAC), CPI (MCPI) and PSD (MPSD)
are 3.4 m/s2, 0 and 1 respectively. Further, the societal risk is defined as the combined risk of all
individual risks to all of the affected motorists during time period Tmeasured by surrogate indi-
cator j, mathematically represented by

SRj ¼
XM
i¼1

ZT

0

IRijðtÞdt �
XM
i¼1

XN
t¼0

IRijðtÞ � tsc ð16Þ

where IRij(t) represents the individual risk of the discrete scenario i at discrete time tmeasured
by surrogate j, τsc is the time-scan interval, there are a total ofN time instances during time period
T. In this study, the probabilistic properties of crashes during weekdays are found to be different
with those during weekends. In this regard, we categorize all the data into weekdays and week-
ends for better representation.
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Fig 2 shows the linear relationships between the crash counts and societal risks represented
by different surrogate indicators (P values<0.05). The R square value indicates how well the
societal risk fits crash counts in a linear model. The higher R square value indicates better per-
formance of the surrogate indicator on predicting crash in a linear relationship. As can be seen

Fig 2. The relationship between societal risk and crash counts.

doi:10.1371/journal.pone.0138617.g002
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in Fig 2, the R squares of modified surrogate indicators MDRAC (0.5847), MCPI (0.4989) and
MPSD (0.5143) are higher than those of the traditional surrogates DRAC (0.4492), CPI
(0.2201) and PSD (0.4433), respectively. Besides, it is found that the R square difference
(0.2788) between MCPI and CPI is greater than that (0.0710) between MPSD and PSD and
that (0.1355) between MDRAC and DRAC.

Findings and Discussions
According to our analysis, it is found that the modified surrogate indicators have higher R
squares compared with traditional ones. There is no surprise that the crash prediction perfor-
mance is improved by considering the PRT. Further, the impact on CPIs is much more signifi-
cant than that on the other two indicators. The possible reason relies on their different
methodology of crash mechanism. By considering the PRT in the crash mechanism, MDRAC
will be measured by TTC, PRT and speed difference. For the cases in which PRT is greater than
TTC, a collision will happen before the following driver reacts to stop, thus the MDRAC is
infinity and the value of MCPI is 1. Accordingly, in those cases, the value of CPI can be greatly
changed by taking into account the PRT. Consequently, PRT is a critical parameter to deter-
mine potential risk in the crash mechanism of MCPI. However, for those cases in which PRT is
greater than TTC, the values of DRAC are likely to be greater than 3.4 m/s2 due to the small
TTC. Then these scenarios are considered as dangerous. Thus the R square difference between
DRAC and MDRAC is not as big as that of CPI and MCPI. In other words, the consideration
of the PRT affects the performance of MCPI in a higher degree than that of MDRAC. Besides,
in the crash mechanism of PSD, PRT is only adding to the MSD which can slightly change the
ratio of RD and MSD, hence the consideration of the PRT would just slightly decrease MPSD.

It is of great importance to carry out more studies by considering the PRT into the surrogate
modelling. Two further works can be done based on this study. Firstly, the PRT can be incorpo-
rated into the crash mechanisms of surrogate indicators which are designed for the crossing
and lane changing situations. Secondly, another comparative study can be accomplished to
examine the different impacts of PRT on surrogate indicators in terms of different speed limits.

Acknowledgments
We are grateful to the Department of TMR in Queensland on the data collection for this
research.

Author Contributions
Conceived and designed the experiments: XQ. Performed the experiments: YK XQ AE. Ana-
lyzed the data: YK JW. Contributed reagents/materials/analysis tools: YK XQ. Wrote the
paper: YK XQ AE.

References
1. World Health Organization (WHO) (2013) Global report on road safety 2013: Supporting a decade of

action. WHO Press, World Health Organization. 20 Avenue Appia, 1211 Geneva 27, Switzerland.

2. Department of Infrastructure and Regional Development (DIRD), 2013. Road safety. Available: http://
www.infrastructure.gov.au/roads/safety.

3. Lee C, Hellinga B, Saccomanno F (2006) Evaluation of variable speed limits to improve traffic safety.
Transportation Research Part C: Emerging Technologies 14 (3), 213–228.

4. Chen D, Ahn S (2015) Variable speed limit control for severe con-recurrent freeway bottlenecks. Trans-
portation Research Part C: Emerging Technologies 55, 210–230.

Driver's Perception Reaction Time vs Crash Surrogate Measures

PLOS ONE | DOI:10.1371/journal.pone.0138617 September 23, 2015 10 / 13

http://www.infrastructure.gov.au/roads/safety
http://www.infrastructure.gov.au/roads/safety


5. Hu X, Murgovski N, Johannesson L, Egardt B (2013) Energy efficiency analysis of a series plug-in
hybrid electric bus with different energy management strategies and battery sizes. Applied Energy
111, 1001–1009.

6. Hu X, Murgovski N, Johannesson L, Egardt B (2014) Comparison of three electrochemical energy buff-
ers applied to a hybrid bus powertrain with simultaneous optimal sizing and energy management. IEEE
Transactions on Intelligent Transportation Systems 15 (3), 1193–1205.

7. Hu X, Murgovski N, Johannesson L, Egardt B (2015) Optimal dimensioning and power management of
a fuel cell/battery hybrid bus via convex programming. IEEE/ASME Transaction on mechatronics 20,
457–468.

8. Alonso J, Milanes V, Perez J, Onieva E, Gonzalez C, de Pedro T (2011) Autonomous vehicle contrl sys-
tems for safe crossroads. Transportation Research Part C: Emerging Technologies 19, 1095–1110.

9. Zhu M (2013) Approach to collision avoidance for autonomous vehicles at intersection. Journal of
Computational Information Systems 9, 10013–10020.

10. Hauer E (1982) Traffic conflicts and exposure. Accident Analysis and Prevention 14, 359–364.

11. Daniels S, Brijs T, Nuyts E, Wets G (2011) Extended prediction models for crashes at roundabouts.
Safety Science 49, 198–207.

12. Haque MM, Chin HC, Debnath AK (2012) An investigation on multi-vehicle motorcycle crashes using
log-linear models. Safety Science 50, 352–362.

13. Cheng L, Geedipally SR, Ye D (2013) The Poisson-Weibull generalized linear model for analysing
motor vehicle crash data. Safety Science 54, 38–42.

14. Ye X, Pendyala RM, Washington SP, Konduri K, Oh J (2009) A simultaneous equations model of crash
frequency by collision type for rural intersections. Safety Science 47, 443–452.

15. Lord D, Mannering FL (2010) The statistical analysis of crash frequency data: a review and assessment
of methodological alternatives. Transportation Research Part A 44, 291–305.

16. Wang C, Quddus MA, Ison SG (2013) The effect of traffic and road characteristics on road safety: A
review and future research direction. Safety Science 57, 264–275.

17. Chin HC, Quek ST (1997) Measurement of traffic conflicts. Safety Science 26,169–185.

18. Tarko A, Davis G, Saunier N, Sayed T, Washington S (2009) White paper: surrogate measures of
safety. Committee on Safety Data Evaluation and Analysis (ANB20).

19. Hayward JC (1972) Near miss determination through use of a scale of danger. Transportation
Research Record 384, 24–34.

20. Kuang Y, Qu X (2014) A Review of Crash Surrogate Events. Vulnerability, Uncertainty, and Risk 2254–
2264. doi: 10.1061/9780784413609.226

21. Gettman D, Head L (2007) Surrogate safety measures from traffic simulation models. Transportation
Research Record 1840, 104–115.

22. EI-Basyouny K, Sayed T (2013) Safety performance functions using traffic conflicts. Safety Science
55, 160–164.

23. Sayed T, Zaki MH, Autey J (2013) Automated safety diagnosis of vehicle-bicycle interactions using
computer vision analysis. Safety Science 59, 163–172.

24. Wu KF, Jovanis PP (2012) Crashes and crash-surrogate events: explanatory modelling with naturalistic
driving data. Accident Analysis and Prevention 45, 507–516. doi: 10.1016/j.aap.2011.09.002 PMID:
22269536

25. Wu KF, Jovanis PP (2013) Defining, screening, and validating crash surrogate events using naturalistic
driving data. Accident Analysis and Prevention 61, 10−22. doi: 10.1016/j.aap.2012.10.004 PMID:
23177902

26. Kuang Y, Qu X, Wang S (2015) A Tree-structured Crash Surrogate Measure for Freeways. Accident
Analysis and Prevention 77, 137–148. doi: 10.1016/j.aap.2015.02.007 PMID: 25710638

27. Li Y, Bai Y (2009) Effectiveness of temporary traffic control measures in highway work zones. Safety
Science 47, 453–458.

28. Meng Q, Qu X (2012) Estimation of rear-end vehicle crash frequencies in urban road tunnels. Accident
Analysis and Prevention 48, 254–263. doi: 10.1016/j.aap.2012.01.025 PMID: 22664688

29. Lu G, Cheng B, Lin Q, Wang Y (2012) Quantitative indicator of homeostatic risk perception in car follow-
ing. Safety Science 50, 1898–1905.

30. Qu X, Kuang Y, Oh E, Jin S (2014a) Safety Evaluation for Expressways: A comparative study for mac-
roscopic and microscopic indicators. Traffic Injury Prevention 15, 89–93.

Driver's Perception Reaction Time vs Crash Surrogate Measures

PLOS ONE | DOI:10.1371/journal.pone.0138617 September 23, 2015 11 / 13

http://dx.doi.org/10.1061/9780784413609.226
http://dx.doi.org/10.1016/j.aap.2011.09.002
http://www.ncbi.nlm.nih.gov/pubmed/22269536
http://dx.doi.org/10.1016/j.aap.2012.10.004
http://www.ncbi.nlm.nih.gov/pubmed/23177902
http://dx.doi.org/10.1016/j.aap.2015.02.007
http://www.ncbi.nlm.nih.gov/pubmed/25710638
http://dx.doi.org/10.1016/j.aap.2012.01.025
http://www.ncbi.nlm.nih.gov/pubmed/22664688


31. Qu X, Yang Y, Liu Z, Jin S, Weng J (2014b) Potential crash risks of expressway on-ramps and off-
ramps: A case study in Beijing, China. Safety Science 70, 58–62.

32. Minderhoud M, Bovy P (2001) Extended time-to-collision measures for road traffic safety assessment.
Accident Analysis and Prevention 33, 89–97. PMID: 11189125

33. Cooper F, Ferguson N (1976) Traffic studies at t-junctions—a conflict simulation model. Traffic Engi-
neering and Control 17, 306–309.

34. Guido G, Saccomanno F, Vitale A, Astarita V, Festa D (2011) Comparing safety performance measures
obtained from video capture data. Journal of Transportation Engineering 137, 481–491.

35. American Association of State Highway and Transportation Officials (AASHTO) (2004) A policy on geo-
metric design of highways and streets. American Association of State Highway and Transportation
Officials. Washington, DC.

36. Cunto F, Saccomanno FF (2008) Calibration and validation of simulated vehicle safety performance at
signalized intersections. Accident Analysis and Prevention 40, 1171–1179. doi: 10.1016/j.aap.2008.
01.003 PMID: 18460386

37. Meng Q, Weng J (2011) Evaluation of rear-end crash risk at work zone using work zone traffic data.
Accident Analysis and Prevention 43, 1291–1300. doi: 10.1016/j.aap.2011.01.011 PMID: 21545857

38. Allen BL, Shin BT, Cooper DJ (1978) Analysis of traffic conflicts and collision. Transportation Research
Record 667, 67–74.

39. Federal HighWay Administration (FHWA) (2008) Surrogate safety assessment model and validation:
final report. Publication No.FHWA-HRT-08-051. Federal Highway Administration, USA.

40. Fambro DB, Fitzpatrick K, Koppa RJ (2000) New stopping sight distance model for use in highway geo-
metric design. Transportation Research Record 1701, 1–8.

41. Rakha H, El-Shawarby I, Seti JR (2007) Characterizing driver behavior on signalized intersection
approaches at the onset of a yellow phase trigger. IEEE Transactions on ITS 8, 630–640.

42. Wang C, Stamatiadis N (2013a) A surrogate safety measure for simulation-based conflict study. Trans-
portation Research Record 2386, 72–80.

43. Wang C, Stamatiadis N (2013b) The derivation of a new surrogate measure of crash severity. Pre-
sented at 93rd Annual Meeting of the Transportation Research Board, Washington, D.C.

44. Wang C, Stamatiadis N (2014) Evaluation of a simulation-based surrogate safety metric. Accident Anal-
ysis and Prevention 71, 82–92. doi: 10.1016/j.aap.2014.05.004 PMID: 24892875

45. Triggs T, Harris W (1982) Reaction time of drivers to road stimuli. Technical Report, Monash Univer-
sity, Human Factor Group, Department of Psychology.

46. Taoka GT (1989) Break reaction times of unaltered drivers. ITE Journal 59, 19–21.

47. Summala H (2000) Brake reaction times and driver behaviour analysis. Transportation Human Factors
2, 217–226.

48. Green M (2008) How Long Does It Take to Stop? Methodological Analysis of Driver Perception-Brake
Times. Transportation Human Factors 2, 195–216.

49. Huang F, Liu P, Yu H, WangW (2013) Identifying if VISSIM simulation model and SSAM provide rea-
sonable estimates for field measured traffic conflicts at signalized interactions. Accident Analysis and
Prevention 50, 1014–1024. doi: 10.1016/j.aap.2012.08.018 PMID: 23000074

50. Benekohal RF (1989) Procedure for validation of microscopic traffic flow simulation models. Transpor-
tation Research Part B 35, 293–312.

51. Dowling R, Skabardnis A, Alexiadis V (2004) Traffic analysis toolbox. Volume III: Guidelines for apply-
ing traffic microsimulation software. Federal Highway Administration, FHWA, Publication No. FHWA-
HRT-04-040, Washington, D.C.

52. Holm P, Tomich D, Sloboden J, Lowranc C (2007) Traffic analysis toolbox volume IV: guidelines for
applying CORSIMmicrosimulation modelling software. Federal Highway Administration, FHWA, Publi-
cation No. FHWA-HOP-07-079, Washington, D.C.

53. Habtemichael F, Picado-Santos L (2014) Crash risk evaluation of aggressive driving on motorways:
microscopic traffic simulation approach. Transportation Research Part F 23, 101–112.

54. BhamGH, Benekohal RF (2004) A high fidelity model based on cellular automata and car-following
concepts. Transportation Research Part C 12, 1–32.

55. Vogel K (2003) A comparison of headway and time to collision as safety indicators. Accident Analysis
and Prevention 35, 427–433. PMID: 12643960

56. Considine M (1984) The assessment of individual and societal risks. SRD Report R310, safety and
Reliability directorate. UK Atomic Energy Authority, Warrington.

Driver's Perception Reaction Time vs Crash Surrogate Measures

PLOS ONE | DOI:10.1371/journal.pone.0138617 September 23, 2015 12 / 13

http://www.ncbi.nlm.nih.gov/pubmed/11189125
http://dx.doi.org/10.1016/j.aap.2008.01.003
http://dx.doi.org/10.1016/j.aap.2008.01.003
http://www.ncbi.nlm.nih.gov/pubmed/18460386
http://dx.doi.org/10.1016/j.aap.2011.01.011
http://www.ncbi.nlm.nih.gov/pubmed/21545857
http://dx.doi.org/10.1016/j.aap.2014.05.004
http://www.ncbi.nlm.nih.gov/pubmed/24892875
http://dx.doi.org/10.1016/j.aap.2012.08.018
http://www.ncbi.nlm.nih.gov/pubmed/23000074
http://www.ncbi.nlm.nih.gov/pubmed/12643960


57. Meng Q, Qu X, Wang X, Yuanita V, Wong SC (2011) Quantitative risk assessment modelling for nonho-
mogeneous urban road tunnels. Risk Analysis 31, 382–403. doi: 10.1111/j.1539-6924.2010.01503.x
PMID: 21029142

58. Kuang Y, Qu X, Wang S (2014) Propagation and dissipation of crash risk on saturated freeways. Trans-
portmetrica B: Transport Dynamics 2, 203–214.

Driver's Perception Reaction Time vs Crash Surrogate Measures

PLOS ONE | DOI:10.1371/journal.pone.0138617 September 23, 2015 13 / 13

http://dx.doi.org/10.1111/j.1539-6924.2010.01503.x
http://www.ncbi.nlm.nih.gov/pubmed/21029142

