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Abstract 

Genetic mutations of phaeochromocytoma (PCC) and paraganglioma (PGL) are 

mainly classified into two major clusters.  Cluster 1 mutations are involved with the pseudo 

hypoxic pathway and comprised of PHD2, VHL, SDHx, IDH, HIF2A, MDH2 and FH 

mutated PCC/PGL.  Cluster 2 mutations are associated with abnormal activation of kinase 

signalling pathways and included mutations of RET, NF1, KIF1Bβ, MAX and TMEM127.  In 

addition, VHL, SDHx (cluster 1 genes) and RET, NF1 (cluster 2 genes) germline mutations 

are involved in the neuronal precursor cell pathway in the pathogeneses of PCC/PGL.  Also, 

GDNF, H-ras, K-ras, GNAS, CDKN2A (p16), p53, BAP1, BRCA1&2, ATRX and KMT2D 

mutations have roles in the development of PCC/PGLs.  Overall, known genetic mutations 

account for the pathogenesis of approximately 60% of PCC/PGLs.   Genetic mutations, 

pathological parameters and biochemical markers are used for better prediction of the 

outcome of patients with this group of tumours.  Immunohistochemistry and gene 

sequencing can ensure a more effective detection, prediction of malignant potential and 

treatment of PCC/PCLs.  

 

Keywords:  phaeochromocytoma; paraganglioma; mutations; immunohistochemistry; 

sequencing 
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1. Introduction 

A neuroendocrine tumour that arises in the chromaffin cells in adrenal medulla is 

termed phaeochromocytoma (PCC).  Extra-adrenal tumours arising from chromaffin cells are 

known as paraganglioma (PGL).  PGL can occur in many different sites in the body and can 

be classified into sympathetic or parasympathetic depending on the type of paraganglia from 

which they originate [1, 2].    

 Incidence of PCC/PGL is around 2-5 patients per million per year.  The collective 

incidence of PCC and PGL is about 1 per 100,000-300,000 in the general population where 

PCC is the most frequent tumour and PGL are much rarer (0.5 per million) [3, 4].  The 

highest incidence of the tumours occurs between 30 and 50 years, with an almost equal 

gender affinity [5-8].  However, some studies have reported a slight preference for females 

[9, 10].  Symptoms are produced due to excess catecholamine production in PCC and 

sympathetic PGL [3].  

As both PCC and PGL originate from chromaffin cells, the histological  features of 

these tumours are similar.  Occasionally, unusual histological patterns like composite 

tumours or oncocytic change are noted [11-13].   Although scoring systems based on 

morphology as well as clinical features have been proposed to assess malignant potential of 

these tumours [14, 15], they have not been validated fully.  Despite this, huge advances have 

been achieved in understanding the molecular pathogenesis of this group of lesions. Sporadic 

PCCs/PGLs are usually unicentric and unilateral while familial PCCs/PGLs are often multicentric and 

bilateral.  Germline mutations and familial syndromes are known to be associated with 8-24% 

of sporadic phaeochromocytoma due to the advancement in genetics [7, 8].  More recent 

studies have indicated, however, that up to 40% of cases could be attributed to germline 

mutations in a growing list of susceptibility genes having interconnecting pathways [16]    
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Somatic mutations in inherited PCC/PGL genes can be detected in 25–30% of 

sporadic tumours.   Also, somatic mutations in PCC/PGL can cause metastatic tumours  in 

paediatric cases, and are mostly diagnosed before the age of 40 years [17].  Overall, germline 

and somatic mutations in a known PCC/PGL gene are present in 60% of tumours [18]. 

The current study provides a comprehensive review of the genetic mutations reported 

in PCC/PGL and focuses on the newly discovered genes.  It is anticipated that improved 

understanding of the pathogenesis in PCC/PCL may provide hints to aid the prediction of 

malignant potential and detecting novel molecular targets for therapy of this group of 

tumours.  

 

2. Molecular Genetics 

2.1 Genetic Pathways involved in PCC/PGL 

Transcriptome studies show that many PCC/PGLs and their inherent genetic 

mutations can be classified into two major clusters depending on their gene expression profile 

[19].  

Cluster1 or the angiogenic cluster genes are involved with the pseudo hypoxic 

pathway of tumour development and they are PHD2, VHL, SDHx, IDH, HIF2A, MDH2 and 

FH mutated PCC/PGL [19].  The molecular pathways of these genes and downstream targets 

are listed in Figure 1.  Favier et al. in 2012 reported that cluster 1 tumours showed a marked 

increase in vascularization and in the expression of vasoendothelial growth factor (VEGF) 

and its receptors [20].  VEGF proteins and receptors are the main factors in angiogenesis of 

cancers [21, 22].  Also,  increased VEGF expression was observed in both benign and 

malignant tumours from cluster 1 [20].  In addition, characterization of the methylation 

profiles has revealed that SDHX mutated tumours in cluster 1 display a hypermethylated 

phenotype [23]. 
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Cluster 2 or kinase signalling cluster involve genetic mutations associated with 

abnormal activation of kinase signalling pathways such as PI3Kinase/AKT, and the 

mTOR pathway [20].  The molecular pathway of these genes and downstream targets are 

listed in Figure 2.   

The gene clusters are further subdivided based on transcription profiles.  Cluster 1 can 

be divided into subcluster 1A and 1B.  Cluster 1A contains PCC/PGL related to SDHx and 

FH while Cluster 1B contains tumours with HIF2A and VHL respectively [24].  Cluster 2 can 

be divided into groups 2A, 2B, 2C and 2D.   Group 2A comprises RET, MAX, NF1 and 

TMEM127 mutated tumours whereas groups 2B and 2C are sporadic tumours [19, 25].   

Group 2D tumours are lacking known mutations related to PCC/PGL.  The subdivisions of 

cluster 1 and 2 molecular pathways of these genes in PCC/PGL are listed in Figure 3.    

 

2.2 Cluster 1 genes  

2.2.1 Elegans Homolog of 1 (EGLN1) / Prolyl hydroxylase domain proteins (PHD2)  

Hypoxia-inducible factors (HIFs) function as key players in the cell response to 

hypoxia.  Prolyl hydroxylase domain proteins (PHDs) initiate the degradation of the HIF-α 

protein through its hydroxylation [26]. There are three main isoforms of prolyl hydroxylase 

domain proteins namely PHD1, PHD2, and PHD3 which are encoded by the genes 

EGLN2, EGLN1, and EGLN3, respectively [26].   

The PHD2–VHL–HIF-2α pathway plays a crucial role in erythropoiesis; a partial 

interruption of the pathway can cause erythrocytosis, whereas drastic alterations of the 

pathway are associated with the development of tumours [27].  Mutations in PHD2 have been 

implicated in the pathogenesis of polycythaemia in humans [28].  Germline mutation of 

PHD2 was first reported in a patient with erythrocytosis and recurrent PGL by Ladroue et al. 

in 2008 using direct sequencing [29]. 
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Astuti et al. demonstrated the mutation analysis of EGLN1 (PHD2), EGLN2 (PHD1) 

and EGLN3 (PHD3) in 82 inherited PGL patients through PCR sequencing [30].  This study 

noted no germline mutations for PHDs 1-3 and there was absence of mutation in known 

PCC/PGL susceptibility genes in the selected samples [30].  Welander et al. detected a novel 

germline mutation for the first time in PHD2 in a PCC along with other known susceptibility 

genes in PCC after analysing 72 PCCs and 14 PGLs through targeted next generation 

sequencing [31].  Also, by using Sanger DNA sequencing, Yang and colleagues have 

reported a PHD1 germline mutation in one patient along with a novel germline PHD2 

mutation in another patient presenting with recurrent PCC/PGL along with polycythaemia 

[27].  

These studies showed that germline mutations in this group of genes are not a 

frequent event in PCC/PGLs.  Nevertheless, PHD1 mutation is the latest inherited 

abnormality that contributes to the development of PCCs/PGLs.  The study by Yang et al. 

further provides evidence that the PHD2–VHL–HIF-2α pathway plays a role in the 

pathogenesis of PCC/PGL and their association with polycythaemia.   

 

2.2.2 Von Hippel Lindau (VHL) 

Von Hippel Lindau (VHL) is a tumour suppressor gene located on chromosome 

3p25.3 consisting of 3 exons [32].  VHL was first identified by positional cloning in 1993 and 

is reported to have involvement in oxygen dependent regulation of hypoxia-inducible factor 

(HIF) [33].  Von Hippel-Lindau (VHL) syndrome is an autosomal dominant disorder caused 

by germline mutation of the VHL gene.  The incidence of the syndrome is 1 in 36,000 births 

[4].  It is characterized by clear cell renal cell carcinomas, PCCs, PGLs, haemangioblastomas 

as well as cysts of the retina, cerebellum, kidney and pancreas [34].   
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 VHL was classified into type 1 (without phaeochromocytoma) and type 2 (with 

phaeochromocytoma) by Neumann and Wiestler in 1991 [35].  Brauch et al. further 

subdivided VHL type 2 into type 2A (with phaeochromocytoma), type 2B (with 

phaeochromocytoma and renal cell carcinoma) and type 2C (patients with isolated 

phaeochromocytoma without haemangioblastoma or renal cell carcinoma) [36].  

 Regarding the prevalence, PCCs occur in 6%-9% of individuals with Von Hippel-

Lindau syndrome type 1 and the prevalence rises to 40%-59% in persons with Von Hippel-

Lindau syndrome type 2 [37, 38, 39]. The mean age of onset of PCC in patients with Von 

Hippel-Lindau syndrome is approximately at 30 years [4].  However, some individuals may 

also present with this neoplasm before the age of 10 years [34].  VHL-associated PCCs are 

frequently bilateral and multiple. These tumours characteristically produce only 

norepinephrine.  This is because of the lack of the enzyme phenyl ethanolamine-N-methyl 

transferase, an enzyme responsible for the conversion of norepinephrine into epinephrine in 

adrenal medulla [37].   

In PCC/PGLs, VHL mutations noted were often missense mutations [39].  Also, these 

tumours are rarely malignant and a younger age group is commonly affected [40].  

Somatic VHL mutations in head and neck paragangliomas were reported for the first time by 

Merlo et al. in 2013 [41].  The VHL gene was analysed in 53 PGL tissues by gene 

sequencing, multiplex-ligation–dependent probe amplification, and quantitative PCR. VHL 

somatic mutation was found in 50% (2/4) of non-SDH mutated head and neck PGLs [41].  

These results indicate that VHL mutation can predict the clinical diagnosis of PCCs 

and plays an important role in the pathogenesis of sporadic head and neck paragangliomas.   
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2.2.3 Succinate Dehydrogenase Complex (SDHX) 

Succinate dehydrogenase (SDH) is a mitochondrial enzyme complex which is part of 

both the Kreb’s cycle and electron transport chain [42].  SDH oxidizes succinate to fumarate 

in the Kreb’s cycle (citric acid cycle) and transports electrons to coenzyme Q in the electron 

transport chain [42].   

Succinate dehydrogenase consists of four subunits, SDHA, SDHB, SDHC and 

SDHD.  Subunits A and B form the core of the SDH protein, whereas the other two subunits 

C and D, are often referred as the anchoring subunits [43].  In 2009, two factors involved in 

the assembly of the SDH complex were discovered, SDHAF1 [44] and SDHAF2 [45], which 

may play a role in the development of cancers associated with this pathway.  In practice, the 

mutation of any of the SDH members (SDHX) can be detected by the loss of protein SDHB 

as determined by immunohistochemistry.  This is because that these subunits are linked 

together.  Mutations of any of these genes cause defects in the structure of these subunits and 

faulty assembly, which will result in loss of the SDHB protein [46].   

In year 2000, SDHD mutations were discovered in sporadic and familial PGL/PCC 

[47-49].  Germline mutations in the SDHX genes give rise to familial PCC/PGL syndrome.  

Familial paraganglioma syndromes are autosomal dominant inherited diseases caused by 

mutations in SDHX genes. They have been classified into 5 paraganglioma syndromes, 

PGL1, PGL2, PGL3, PGL4 and PGL5 caused by mutations in SDHD, SDHAF2, SDHC, 

SDHB and SDHA respectively [4].  SDHD protein positivity can also be used to detect the 

mutation of SDHD in cases where the interpretation of SDHB protein by 

immunohistochemistry is difficult [50].  

Hensen et al. determined the mutation frequency of the four SDH genes in 1,045 

patients from 340 Dutch families with PCC/PGLs.  The most commonly mutated gene was 

SDHD (87.1%), followed by SDHAF2 (6.7%), SDHB (5.9%), and SDHC (0.3%) [51]. 
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2.2.3.1 Succinate Dehydrogenase Complex Subunit A (SDHA) 

 PGL5 is caused by mutations in the SDHA gene.  Homozygous germline mutations in 

SDHA are linked to Leigh syndrome.  Heterozygous germline mutation of SDHA was first 

reported by Burnichon et al. in a patient presenting with a catecholamine-secreting abdominal 

PGL [52].  Also, SDHA germline mutations in PCCs were reported by Kopershoek et al. after 

analysing 316 PCC/PGL tissues by immunohistochemistry and sequence analysis [53].  The 

study reported the importance of the use of SDHA immunohistochemistry in detecting 

patients with germline SDHA mutations [53].  Also, Welander et al. in 2014 reported 2 PCCs 

with SDHA mutations using targeted next generation sequencing on 86 PCC/PGL tissues.  

These 2 cases with mutations were males and the tumours were benign [31].   

 

2.2.3.2  Succinate Dehydrogenase Complex Subunit B (SDHB) 

SDHB mutation in four PGLs was reported for the first time by Astuti et al [49].  

Another study reported SDHB germline missense mutation in a case of sporadic malignant 

PCC in 2002 [54].   Among SDHX genes, SDHB mutations in PCC/PGL are associated with 

higher morbidity and mortality [55, 56].  

PGL4 is transmitted in an autosomal dominant pattern with incomplete penetrance.  

SDHB mutation carriers were more likely to develop PGL4 and malignant disease [49, 57].  

PGL4 usually presents with PGLs although it can be also present as PCC, head and neck 

PGLs or both types of tumour simultaneously [57].  The mean age of onset for patients with 

PGL4 is 25–30 years [57, 58].  SDHB mutation in PGL4 is associated with an increased risk 

of malignancy [55, 58].  The morbidity associated with these tumours is related mainly to its 

metastatic potential [58, 59].   
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2.2.3.3 Succinate Dehydrogenase Complex Subunit C (SDHC) 

SDHC mutations were first reported in PGLs in 2000 by Niemann et al [60].  PGL3 is 

an autosomal-dominant syndrome without maternal imprinting caused by mutation in the 

SDHC gene [61].  This syndrome is characterised by head and neck PGLs.  PGL3 usually 

develops with solitary head and neck paragangliomas.   Nevertheless, some cases coursing 

with adrenal PCC and PGLs in other sites have been reported [4].   SDHC-associated tumours 

are not likely to be PCC.  Also, they are more likely to be benign and do not have multiple 

tumours.  [61]. The mean age at diagnosis of these tumours is 38 years [59].  

SDHC mutations were detected in 4% (22/492) of patients with parasympathetic PGL 

in a study reported by Schiavi et al. but there was no case of PCC having SDHC mutation 

[61].  Mannelli et al. reported the association of SDHC mutation with PCC [62].    Later, 

Peczkowska et al. also reported the association [63].    All patients with  SDHC mutations had 

PGLs and no PCCs were detected [61, 64].  .     

 

2.2.3.4 Succinate Dehydrogenase Complex Subunit D (SDHD) 

 Germ line mutations in SDHD were reported in PGL by Baysal et al. in 2000 using 

direct sequencing [47].  Pigny et al., in 2008 reported the first case of a paraganglioma with 

maternal transmission of the mutated SDHD gene [65].  Piccini et al. revealed that SDHD 

was  the most mutated 80.5% (29/36) gene among the genes coding for the SDHX complex 

after analysis of samples from 79 patients with head and neck paragangliomas by polymerase 

chain reaction and sequencing [66].  

PGL1 is the autosomal dominant syndrome caused by mutation in the SDHD gene. 

Clinically this syndrome is characterised by multiple head and neck PGLs with an age of 

onset of 28–31 years.  The PCCs can also be manifested either unilateral or bilateral tumours 

[55, 58, 67]. 
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2.2.3.5 Succinate Dehydrogenase Complex Assembly Factor 2(SDH5/ SDHAF2) 

Correct flavination of SDHAF2 is essential for a fully functional succinate 

dehydrogenase complex [45].  Loss of SDHAF2 results in loss-of-function of succinate 

dehydrogenase and a reduction in stability of the enzyme complex, leading to diminished 

amounts of all subunits [45].  Mutations in SDHAF2 were detected in unrelated large Dutch 

and Spanish families with hereditary PGLs [45, 68, 69].  SDHAF2 mutated tumours have 

been mostly identified as parasympathetic PGLs, and no metastases have been described [68, 

69].  

PGL2 is an autosomal-dominant syndrome caused by mutation in the SDH5/SDHAF2 

gene characterised by hereditary paragangliomas [45].  To date, no  PCC has been reported in 

PGL2 syndrome.  The average age of onset for patients with PGL2 is 33 years [68].  

  

2.2.3.6 Carney-Stratakis dyad and Carney triad 

Carney–Stratakis syndrome (Carney dyad) is an autosomal dominant syndrome 

associated with mutations in SDHB, SDHC and SDHD [70].  Both genders are affected 

equally in this syndrome and the mean age of onset is 23 years [4].  This syndrome is 

characterised by PGLs and gastrointestinal stromal tumours (GISTs) but not pulmonary 

chondroma, in contrast to the Carney triad.  Carney triad is a rare disorder that primarily 

affects young women and the mean age of onset is 20 years [71].  The classic Carney triad 

includes extra-adrenal sympathetic paraganglioma, gastrointestinal stromal tumours and 

pulmonary chondroma.  Adrenal cortical adenoma, oesophageal leiomyoma and PCCs were 

also shown to be associated with this syndrome [71].  No genetic mutations are reported so 

far in hereditary PGLs in Carney triad [71, 72].  However, hyper-methylation of SDHC was 

reported by Haller and colleagues in 3 of 4 patients with Carney triad [73].  
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2.2.4 Isocitrate Dehydrogenase (IDH)   

In the Kreb’s cycle, IDH catalyses the oxidative decarboxylation and converts 

isocitrate into alpha keto glutarate (αKG) [74].  Mutation in the isocitrate dehydrogenase 1 

gene was first discovered by sequencing in colorectal cancers [75].  Since then, mutations in 

isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in tumours of neural origin 

[76]. 

 IDH1/2 mutations are heterozygous point mutations and are suggestive of activating, 

oncogenic mutations.  IDH mutants are not able to competently carry out the normal 

oxidative reaction, which results instead in the conversion of αKG to 2hydroxyglutarate 

(2HG) [77].  2HG is not present in normal cells.  The accumulation of 2HG in cells with 

IDH1/2 mutations is a form of oncometabolite [78] which results in the activation of  pseudo-

hypoxic pathway [79].  The consequences of activation this pathway may contribute to the 

pathogenesis of PGL/PCC [80]. 

Gaal et al. in 2010 for the first time reported IDH1 mutation in paraganglioma after 

analysing 365 PCC/PGLs (253 paraffin embedded tissues and 112 frozen tissues).  A somatic 

heterozygous IDH1 p.Arg132Cys mutation was detected in a sporadic carotid paraganglioma 

diagnosed in a 61-year-old woman.  On the other hand, no mutation was detected in PCC 

[81].  However, a study by Yao et al. did not find any mutation of IDH1 after analysis of 104 

PCC/PGL tissue samples [82].  This suggests that pathogenic mutations in these genes do not 

account for the majority of PCC/PGLs that display a pseudo-hypoxic profile [82].   

 

2.2.5 Endothelial Pas Domain Protein 1 (HIF2A/EPAS1) 

 Wang et al. in 1995 described hypoxia-inducible factors (HIFs), which are 

transcription factors that respond to changes in tissue oxygen concentration [83].  These 
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proteins are composed of α and β subunits [83].  The HIF-β subunit is constitutively 

expressed whereas the HIF-α subunit is inducible by hypoxia [84].  Abnormal HIF-α function 

enhances cell proliferation and growth [85].  Recently, several groups have established that 

mutations in HIF2A/EPAS1 that lead to HIF2 stabilisation are implicated in the pathogenesis 

of PCC/PGL.  This could be the second most frequently affected oncogene in PCC/PGL after 

RET [18, 31, 86, 87].  

 The first report of somatic HIF2A mutations in paragangliomas and 

somatostatinomas that were clinically associated with polycythaemia was published in 2012 

using PCR assay in two patients [88].  Pacak et al. indicated the existence of a new syndrome 

with multiple PGLs and somatostatinomas associated with polycythaemia and suggested this 

new syndrome resulted from somatic gain-of-function HIF2A mutations, which cause an 

upregulation of hypoxia-related genes [89]. In 2013, the first association of a 

somatic HIF2A mutation in PCC and congenital polycythaemia was reported [87]. 

Germline EPAS1/HIF2A mutation with congenital polycythaemia associated with 

multiple PGLs was first reported by Lorenzo et al. using Sanger sequencing [90].  Also, 

Mendez et al. assessed 41 PCC/PGL tissues for mutations in EPAS1.  Of these tumours, 17% 

(7/41) were found to carry somatic EPAS1 mutations.  Three of them also had congenital 

erythrocytosis, whereas 3 were single sporadic PCC/PGL cases.  This study reported that 

HIF2A mutations can cause sporadic PCC/PGL in the absence of polycythaemia [86]. 

Welander et al. identified both somatic and germline mutations in the EPAS1 gene 

after analysing 42 patients with sporadic PCCs [31].  All EPAS1-mutated tumours displayed a 

pseudo-hypoxic gene expression pattern, suggestive of an oncogenic role of the identified 

mutations [31].  

Buffet et al showed that HIF2A-related tumours were caused by post zygotic 

mutations occurring in early developmental stages.  They suggested that germline mosaicism 
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can lead to PCC/PGL, polycythaemia and somatostatinoma in the same patient and should be 

considered during the familial genetic counselling in persons diagnosed with HIF2A-related 

polycythaemia-paraganglioma syndrome [91]. 

 

2.2.6 Fumarate Hydratase (FH) 

Fumarate hydratase (FH) is a homotetramer which catalyses the hydration of fumarate 

to malate in Kreb's cycle and is located on chromosome 1q42 [92]. Germline mutations 

in FH gene cause hereditary leiomyomatosis and renal cell carcinoma [93].  Pollard et al. 

showed that in cells deficient in fumarate hydratase,  the cells accumulated fumarate and 

succinate which stabilized HIF1A, leading to pseudo-hypoxia resulting in tumorigenesis in 

paragangliomas, leiomyoma and renal cell carcinoma [92].  Selak et al. also showed that 

succinate and fumarate can activate the oncogenic HIF pathway by inhibiting HIF prolyl 

hydroxylases [94].  

Letouze et al. in 2013 identified for the first time a germline mutation in FH causing 

PGL after exome sequencing of one hyper-methylated sample without SDHX mutation 

among 145 PCC/PGL tissue samples [23].   

Clark and colleagues did exome resequencing studies in a child with 

phaeochromocytoma and identified a candidate FH missense mutation (p.Cys434Tyr).  Then, 

analysis of mutation of FH was done in 71 patients with PCC/PGL.  They detected another 

candidate missense mutation (p.Glu53Lys) by candidate gene sequencing.  In vitro analyses 

demonstrated that both missense mutations (p.Cys434Tyr and p.Glu53Lys) were catalytically 

inactive and extended the clinical phenotype associated with FH mutations to paediatric PCC 

[95]. 

Castro et al. identified germline FH mutations in 0.83% (5/598) of patients with 

PCC/PGL after collecting blood and tissue samples from 598 PCC/PGL patients through 
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direct Sanger sequencing [96].  The mean age at diagnosis of the patients with mutation was 

45 years.  Three out of the 5 (60%) tumours with the mutation showed metastasis [96].  

FH mutations should be considered as a new rare source of predisposition to 

PCC/PGLs.  FH inactivation causes PGL/PCC by establishing a hypermethylator phenotype 

[23].  FH deficient PCC/PGLs display a similar genetic pathway of development as SDHB-

mutated malignant PCC/PGL. Therefore mutation screening for FH mutation should be 

included in PCC/PGL genetic testing and also for PCC/PGL with malignant behaviour [96]. 

 

2.2.7 Malate dehydrogenase2 (MDH2)    

Malate dehydrogenase 2 (MDH2) is a tumour suppressor gene located on 

chromosome 7q11.23 [97].  It helps in the reversible oxidation of malate to oxaloacetate, in 

the Kreb’s cycle [98].  The protein encoded by this gene is localized to the mitochondria and 

may play a key role in the malate-aspartate transport that operates in the metabolic 

coordination between cytosol and mitochondria [98].  Diseases associated with MDH2 

mutation include 1-2-hydroxyglutaric aciduria and sleeping sickness [99]. 

Cascon et al. for the first time reported germline MDH2 c.429+1G>T mutation in 

paraganglioma through whole-exome sequencing, using tumour DNA from a male patient 

diagnosed with multiple malignant paragangliomas [100].  Study also reported that MDH2 

mutations are associated with a methylator phenotype and had a transcriptional profile similar 

to SDH gene mutated tumours.  Genetic study of five asymptomatic relatives of the patient 

showed that two of them carried MDH2 mutation thus showing MDH2 to be a new familial 

paraganglioma gene [100].   
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2.2.8 Genetic mechanism in Cluster 1 genes 

The pathway for the manifestation of cluster 1 genes is the pseudo-hypoxic pathway.  

Hypoxia is a state which occurs when oxygen concentration drops below 21%.  On the other 

hand, pseudo-hypoxia is a state where cellular oxygen is present in sufficient amounts and 

this oxygen cannot be processed further due to a disruption in oxygen-sensing pathways 

[101].  Hypoxia Inducible Factors (HIFs) are transcription factors which are activated under 

hypoxic or pseudo-hypoxic conditions and are composed of oxygen-sensitive α-subunit and 

stable β-subunit.  HIFs consist of three isoforms HIF-1α, HIF-2α, and HIF-3α [102].  HIF-1α 

is activated during short periods of severe hypoxia, while HIF-2α is activated under mild 

hypoxia for more prolonged periods of time [101].   

Under normoxic conditions, HIF-1α and HIF-2α are degraded via the ubiquitin-

proteasome pathway. This pathway is controlled by the VHL protein which ubiquitinates 

HIF-α and leads to degradation of HIFs by the proteasome enzyme complex [101, 102].  This 

activity requires proline hydroxylation of HIF-1α and this process is mediated by members of 

the EGLN/PHD family [101]. However, hypoxic or pseudo-hypoxic conditions lead to HIF-

1α stabilization which in turn leads to activation of HIF target genes including those 

associated with angiogenesis, haematopoiesis, cell growth and cell migration [101].   

Mutations within the VHL, PHD2 genes result in the absence of functional VHL 

protein.  This VHL protein deficiency will further induce pseudo-hypoxia in cells and as a 

result of this, HIF-1α is allowed to accumulate and bind to HIF-1β.  Following this, 

transcription of several target genes associated with angiogenesis, energy metabolism, 

survival, and growth will occur and these will in turn leads to the pathogenesis of PCC/PGLs 

[33, 103].  

Mutated SDH complex has also been associated with pseudo-hypoxic response [104].  

Inactivation of SDH complex causes accumulation of succinate and this inhibits EGLN/PHD 
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enzyme activity, thereby leading to HIF-stabilization and activation of HIF target genes 

resulting in the development of PCC/PGLs [94].  

FH mutations in PCC/PGL hypoxic pathways results in loss of fumarate hydratase 

activity [101].  This loss of FH enzymatic activity results in the accumulation of intracellular 

fumarate which competitively inhibits EGLN1/ PHD, thus stabilizing the HIF complex and 

similarly activating its oncogenic target genes resulting in tumour development [105]. 

 Hydroxylation and stabilization of HIF-2α protein is mediated by HIF2A mutations.  

Also, this HIF2A mutation prevents recognition of HIF-2α protein by VHL and thus results in 

increased HIF-2α stabilization.  This in turn leads to the activation of many hypoxia-related 

genes and may result in development of PCC/PGL [29, 101] 

 Studies have shown that HIF-1α and HIF-2α are overexpressed in SDH and VHL 

mutated PCCs and PGLs [104, 106].  Also a study by Castro et al. showed that FH-mutated 

PCCs/PGLs displayed the same epigenetic changes as SDHB-related tumours [96]. Thus, 

cluster1 tumours cause pseudo-hypoxic response by stabilizing HIFs under normoxic 

conditions and result in PCC/PGL pathogenesis.     

 

2. 3. Cluster 2 genes  

2.3.1. Kinesin Family Member1B (KIF1B) 

Kinesin family member 1B (KIF1B) is a member of the kinesin 3 family of genes 

which have a specific cellular role in energy transport [107].  It is a large gene of 50 exons 

located at chromosome 1p36.22 and encodes two isoforms, KIF1Bα and KIF1Bβ [107].    

  The function of KIF1Bβ is to act as a tumour suppressor gene which is necessary for 

neuronal apoptosis [108].  KIF1Bβ act as a haplo-insufficiency tumour suppressor and its 

allelic loss is believed to be involved in the pathogenesis of neuroblastoma and other cancers 

[109].  
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 In 2008, Schlisio et al. reported KIF1B β mutations for the first time in 

phaeochromocytoma without any other inclining mutations [108].   The group sequenced 52 

PCC tissues and identified KIF1B β missense variants in two PCC samples [108].  A family 

with germline mutations of KIF1B β predisposing to neuroblastoma, ganglioneuroma, PCC 

and lung carcinoma was also reported [110].  A study by Welander and colleagues on 72 

PCC and 14 PGL tissue samples using targeted next generation sequencing reported a novel 

KIF1Bβ germline mutation in a PCC patient [31].  In the same study, another PCC with a 

somatic missense mutation of KIF1Bβ in combination with a germline NF1 mutation was 

also reported [31].  No case of PGL associated with KIF1B mutation has been reported in the 

literature. 

KIF1B β is necessary for neuronal apoptosis when nerve growth factor becomes 

limiting and is frequently deleted in neural crest-derived tumours.  Also, inherited loss-of-

function KIF1Bβ missense mutations in PCC prove that KIF1Bβ is a genetic target of these 

diseases.    

 

2.3.2. Rearranged during Transfection Proto oncogene (RET) 

RET is an oncogene which is counted among the PCC/PGL susceptibility genes. The 

RET gene is involved in cell growth and differentiation and the protein is mainly expressed in 

urogenital and neural crest precursor cells.  RET activation is essential for the development of 

kidneys as well as the sympathetic, parasympathetic, and enteric nervous system 

[111].  Oncogenic activation of RET has been shown to activate both PI3K/AKT and 

RAS/RAF/MAPK dependent pathways [112].  

Multiple endocrine neoplasia 2 (MEN2), an autosomal dominant disorder, occurs as a 

result of germ line activating missense mutations of RET with an incidence of 1:35000 in the 

general population [4, 113].  Based on the presence of phaeochromocytoma, 
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hyperparathyroidism, and characteristic physical features, MEN 2 can be grouped into 

MEN2A, MEN2B and familial medullary thyroid carcinoma.  Among the three types, 

MEN2B is the most aggressive form.   Patients with MEN2A or MEN2B have an 

approximately 50% chance of developing PCC [113, 114].  PCC associated with RET 

mutations is mostly bilateral and have high chances of recurrence, though low risk of 

malignancy [113].  PGL is reported to be rare in MEN2 [115, 116].  In MEN2, patients with 

PCCs usually present between the ages of 30 and 40 years [37, 58]. 

 

2.3.3. Neurofibromin 1 (NF1) 

The NF l gene serves as a tumour suppressor gene as its main function is to suppress 

cell proliferation by converting RAS protein into its inactive form, thereby inhibiting the 

oncogenic RAS/RAF/MAPK signalling pathway [117].  It also inhibits the 

PI3K/AKT/mTOR pathway via suppression of RAS [118].   

Neurofibromatosis type I (NF1), or von Recklinghausen disease, is an autosomal 

dominant disorder caused by mutation in the NF1gene, characterized by cafe-au-lait spots, 

lisch nodules in the eye, axillary and inguinal freckling and fibromatous tumours of the skin 

[4].  The worldwide incidence of NF1 is 1 in 3000-4000 people [4]. 

  Incidence of PCCs in NF1 patients is around 0.1%-5.7%.  Patients with NF1 have 

hypertension and show a relatively high frequency of PCCs.   The tumours in these patients 

occur mostly unilaterally and are seldom PGLs [4, 58].  NF1 associated PCCs are frequently 

malignant.  Also, the average age of tumour occurrence in these patients is 40 years [4, 37, 

58].  The diagnosis of this syndrome is usually achieved during childhood and the diagnosis 

is based on its clinical presentation.  Genetic testing for NF1 mutations is not routinely 

performed as the NF1 gene is large and there is no known discrete mutation hot spots 

associated with development of PCC [119]. 
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  About 20% of sporadic PCC/PGL has mutations in the NF1 gene.  The NF1 gene is 

the most frequent target of somatic, truncating mutations in sporadic phaeochromocytoma 

[40, 119].  Burnichon et al., using direct sequencing of the NF1 gene and single nucleotide 

polymorphism array, reported a high level of NF1 somatic alterations in 41% (25/61) of 

phaeochromocytoma tissues. However,  the alleged higher rate of somatic NF1 mutations in 

this study is due to a selection bias since Burnichon et al. studied only those sporadic tumours 

belonging to cluster 2A [119].  In another study carried out by Welander et al. using high-

density single nucleotide polymorphism (SNP) microarrays, 23.8% (10/42) of unselected 

sporadic PCCs were found to exhibit somatic NF1 mutations [40]. Welander et al. also noted 

that NF1 mutated neuroendocrine tumours were often PCCs, rarely malignant and often noted 

in middle aged patients [40].  Thus, approximately one-fifth of sporadic PCCs may have 

somatic NF1 mutations.  A majority of the tumours in both studies displayed loss of 

heterozygosity at the NF1 locus, indicating that deletion may be a major mechanism of NF1 

alteration in PCCs and PGLs.  

 

2.3.4. Transmembrane protein 127 (TMEM 127) 

Transmembrane protein 127(TMEM 127) was identified as a PCC/PGL susceptibility 

gene through a family with an autosomal dominant inheritance of phaeochromocytoma [120].  

It is a tumour suppressor gene of 4 exons identified by positional cloning on chromosome 

2q11 [120].  Qin et al. identified germline TMEM127 mutations in a population of 103 tissue 

samples of PCC.  The PCCs bearing mutations comprised 30% of the tested familial tumours 

and about 3% of the tested sporadic phaeochromocytoma.  Qin et al. demonstrated that PCCs 

with TMEM127 mutation showed hyper-phosphorylation of mammalian target of rapamycin 

(mTOR) effector proteins and indicated that TMEM127 is a negative regulator of mTOR 

[120].   mTOR is a member of the phosphatidylinositol-3kinase (PI3K)-related kinase family 
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which modulate cellular growth, angiogenesis and cell survival.  Elevated mTOR signalling 

has been detected in many common human cancers and clinical trials are underway for 

mTOR inhibitors in multiple cancers [121, 122].   

Neuman et al. reported germline mutations of TMEM 127 in 4% (2/48) of patients 

with multiple PGLs [123].  Thus, both phaeochromocytoma and paraganglioma have now 

been identified in association with germline TMEM127 gene mutations.   

In a multi-institutional study comprising of 990 patients with PCC/PGL, using 

multiplex polymerase chain reaction in DNA from blood and tissue samples,  TMEM127 

mutations were identified in 2% (20/990) of the cases, all of which had PCC [82].  A clear 

family history of phaeochromocytoma was present in only 25% (5/20) of cases which 

indicates that TMEM127 mutation could be associated with sporadic PCC [82].  

 With regards to cellular mechanisms, the tumour suppressive properties of TMEM127 

cause variation of mTOR function in the endolysosome.  Also, mutations of TMEM127 lead 

to increase in mTOR signalling, a feature that may help in the development of PCC/PGL 

[120, 123].  

 

2.3.5. Myc Associated Factor X (MAX) 

Myc associated factor X (MAX) is a gene of five exons, associated with regulation of 

cell proliferation, differentiation and death [124].  MAX plays a crucial role in the control of 

the MYC/MAX pathway; the deregulation of which contributes to numerous neoplastic 

conditions, including neuroblastoma [125, 126, 127]. 

Next generation exome sequencing helped to discover germline mutations of MAX in 

12 patients with PCC [128].  Segregation of MAX mutation, lack of MAX protein in the 

tumours by immunohistochemical analysis and loss of the wild-type MAX alleles in the 

tumours indicated that MAX is a tumour suppressor gene [128]. 
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Burnichon et al. in 2012 sequenced MAX from DNA obtained from the blood 

leucocytes of 1,694 patients with PCC/PGL using a multiplex PCR-based method.  For the 

first time, MAX mutation was noted in PGL [127].  The study also confirmed the presence of 

somatic mutations of MAX in 1.65% (4/245) of PCC/PGL [127].   

 A study by Comino-Mendez et al. showed 25% of their patients (3/12) had PCCs 

with MAX mutation that showed metastasis at diagnosis [126].  These findings supported the 

idea that functional loss of MAX protein is correlated to metastatic potential suggesting that 

MAX mutations are associated with a high risk of malignancy. A study by Burnichon et al, 

however, did not support the above theory as only 7% (2/28) of MAX mutation bearing 

tumours developed metastasis [127]. 

  In the literature, MAX mutations have been studied in different series with a total of 

2041 cases of PCC/PGLs [66, 127, 128, 129].  Overall, the frequency of MAX mutation in the 

population is 1.9% (40/2041).   Also, mutations were noted in cases with multiple tumours.  

In the literature, MAX mutation was also noted in 5 cases of malignant phaeochromocytoma 

[126, 127].  Thus, the prognostic importance of the MYC/MAX pathway in the development 

of both hereditary and sporadic forms of PCC/PGL should not be overlooked.  In addition, 

mutation of MAX as reflected by loss of MAX protein expression was found to be detectable 

by immunohistochemistry [126].  In general, the frequency of MAX mutation in PCC/PGLs is 

low, so targeted genetic screening should be considered after the more common genes have 

been excluded.  

 

2.3.6. Menin (MEN1) 

Multiple endocrine neoplasia type I is an autosomal dominant disorder characterized 

by tumours of the parathyroid, pancreatic islets, duodenal endocrine cells, and the anterior 
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pituitary [130].  Some patients may also develop adrenal cortical tumours, carcinoid tumours, 

facial angiofibromas, collagenomas and lipomas [131, 132]  

The tumour suppressor gene, Multiple endocrine neoplasia 1 (MEN1), mutations in 

which cause multiple endocrine neoplasia type I was discovered by positional cloning [130].  

The MEN1 gene with its product, menin, is involved in transcriptional regulation, genome 

stability, and cell proliferation [132].  

Interestingly, seven cases of PCC associated with MEN1 syndrome have been 

reported in the literature [131, 133].  In all cases, the tumours were unilateral with 

malignancy noted only in one patient [131].  The first association of PGL with MEN1 

syndrome revealed a new missense mutation of the MEN1 gene. The genetic mutation was 

reported by Jamilloux et al. in 2014 in a 58-year-old woman presenting with three features of 

MEN1 syndrome (hyperparathyroidism, pancreatic neuroendocrine tumour, and 

adrenocortical adenoma) along with PGL.  Screening for other genes causing PGL was 

negative.  The new germline mutation p.Arg275Lys of the MEN1 gene was identified by 

direct sequencing and has not been previously reported [134].  

Screening of patients with MEN1 mutations in PCC/PGL is potentially important. If 

the result is negative, it proves that the disorder is not associated with a germline abnormality 

of MEN1.  On the other hand, a positive result would benefit the family members as there is a 

rationale for appropriate screening for early detection of MEN1 syndrome [135].    

 

2.3.7. Genetic pathway for Cluster 2 genes 

The genes in cluster 2, RET /NF1/TMEM127/MAX/ KIF1Bβ, are connected with 

oncogenic kinase signalling pathways.   

Oncogenic activation of RET prompts an activation of the tyrosine kinase receptor 

which activates PI3 kinase (PI3K)/AKT/mTOR and RAS/RAF/ERK signalling pathway 
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[112].  Both pathways promote cell proliferation, growth, and survival leading to PCC/PGL 

development [136, 137].  

The NF1 gene product neurofibromin activates an enzyme, ras GTPase, to inhibit Ras 

and downstream growth signals which results in the activation of RAS/RAF/MAPK and 

Akt/mTOR signalling pathways, thus loss of function in this gene results in PCC/PGL 

formation [117, 118].    

TMEM127 mutations promote pathogenesis of PCC/PGL by cessation of negative 

regulation of mTOR signalling through membrane interactions [120].  Activation of mTOR is 

deregulated in many human cancers and is a downstream signal of both RET and NF1 

mutations via the PI3K/AKT pathway [120]. 

MAX protein is a cofactor of the proto-oncogene MYC and functions as a 

transcription factor in association with MYC and MXD [126].  A link between the 

MYC/MAX/MXD1, PI3K/AKT/mTOR and RAS/RAF/MAPK signalling cascades has been 

reported and consequently, alterations in MAX-MYC signalling can in turn promote the 

development of tumours in PCC/PGLs [138, 139,140].   

KIF1Bβ mutant tumours cluster with PCCs carrying RET or NF1 mutations, and 

independently from those with mutations in VHL or SDH genes [110].  This two-cluster 

structure triggers overlapping features of the respective mutations, comprising the activation 

of RAS/RAF/ERK signalling in RET- and NF1-mutant PCC [19].  Also, KIF1Bβ mutant PCC 

tumours are significantly enriched in genes related to amino acid metabolism, such as 

glutamate and glutamine, as well as in genes linked with oxidative stress response [110]. In 

addition, KIF1Bβ has also been found to facilitate the pro-apoptotic effect of PHD3, whose 

loss of function may therefore prevent apoptosis and promote PCC/PGL development [108]. 

Thus RET, NF1 and TMEM127 mutations are associated with hyper-phosphorylation 

of mTOR targets and the MYC-MAX signalling pathway is also linked to PI3K/AKT/ mTOR 
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signalling [120,138].  Hence the mTOR signalling pathway may be a point of convergence 

for all signalling pathways associated with PCC/PGL development [137]. 

 

2.4. Activation of neuronal precursor cells pathway 

Lee et al. has shown that the different susceptibility genes converge into a single 

common pathway, the neuronal precursor cells pathway, in PCC/PGLs [141].  VHL, NF1, 

SDHX (cluster 1 genes) and RET (cluster 2 gene) germline mutations in this pathway can 

cause a defect in the apoptosis of neuronal progenitor cells.   

Neuronal apoptosis is induced by a protein called c-Jun, which is in turn activated by 

loss of nerve growth factor [142].  The NF1 gene product, neurofibromin, can inhibit the 

nerve growth factor receptor and loss of neurofibromin promotes the survival of embryonic 

sympathetic neurons in the absence of nerve growth factor [143].   

Lee et al showed that elevated levels of the transcription factor JunB can block 

apoptosis in the PCC cell line, PC12, and suggested inhibition of c-Jun by JunB [141].  They 

proposed that the accumulation of succinate acts not through HIF-1 but via inhibition of 

PHD3 mediated apoptosis.  This study has also demonstrated that PHD3 induces neuronal 

apoptosis and that accumulation of succinate due to SDH inactivation inhibits PHD3 which in 

turn leads to survival of embryonic neurons leading to tumour formation in PCC/PGLs [141].   

Growth of c-Jun activity induced by the MEN1 gene product, menin, and blocking of 

c-Jun up regulation by MYC also suggest potential roles for MEN1 and MAX mutations in 

this pathway [132,144]. 
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2. 5. Other genes associated with PCC/PGL 

2.5.1. Glial Cell Line Derived Neurotrophic Factor (GDNF) 

Glial cell line-derived neurotrophic factor (GDNF) is a member of the transforming 

growth factor beta superfamily [145].  GDNF mutations have been associated with the 

pathogenesis of Hirschsprung disease [146] 

GDNF was shown to be the functional RET ligand [145] and it was suggested that 

point mutations in GDNF which alter GDNF function in terms of RET binding capacity could 

be involved in the genesis of PCC [147].  Woodward et al. identified a GDNF sequence 

variant (R93W) mutation in one patient with sporadic phaeochromocytoma out of 28 

tumours.  They suggested that the R93W mutation could function as a susceptibility mutation 

for PCC of low penetrance ([147].  On the other hand, Dahia et al. also investigated the role 

of GDNF mutation in 22 sporadic PCC tissues using semi quantitative PCR, but no disease 

causing somatic GDNF mutations or gross gene amplification were detected in these 

tumours.  The result indicated that GDNF plays a minor role in the origin of PCC [148].   

However, GDNF allelic variants may influence the susceptibility of a patient to PCC and 

only small cohorts of PCC have been interrogated for GDNF mutation at present [147].   

 

2.5.2. Ras genes  

Ras genes (H-ras, K-ras, N-ras, M-ras and R-ras) regulate signalling pathways that 

control many cellular responses such as proliferation, survival and differentiation [149].  Ras 

signalling is regarded as a major event in cancer pathogenesis and they are the most common 

targets for somatic gain-of-function mutations in human cancers [150,151].   Activating Ras 

mutations occur in ~30% of human cancers [151].  

Lin et al indicated that activation of Ras signalling pathways favours PCC formation 

in-vitro [152].  However, earlier studies by Moley et al. and Moul et al. found no evidence 
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for Ras mutations in primary human PCC [153,154].  In 1992, Yoshimoto et al. have 

screened 169 endocrine tumours for H-ras mutations and identified for the first time a 

mutation in one patient with PCC among 19 PCC cases by polymerase chain reaction-single 

strand conformation polymorphism detection [150].  

Among the ras family genes, only H-ras and K-ras mutations have been reported so 

far in PCC/PGLs.  The specific role of these genes and their mutations in the pathogenesis of 

PCC/PGLs are detailed below.      

 

2.5.2. 1. Harvey Rat Sarcoma Viral Oncogene (H-ras) 

Harvey Rat Sarcoma Viral Oncogene belongs to the Ras oncogene family.  Located 

on chromosome 11p15.5, the gene is involved in signal transduction pathways [155,156].   

Germline mutations in this gene cause Costello syndrome, a disease characterized by 

increased growth at the prenatal stage, growth deficiency at the postnatal stage, predisposition 

to tumour formation, mental retardation, skin and musculoskeletal abnormalities, distinctive 

facial appearance and cardiovascular abnormalities [157,157].  

Recently Crona et al. identified recurrent somatic H-ras mutations in PCC/PGL 

through exome sequencing.  H-ras mutations was noted in 6.9% (n = 4/58) of the tumours. 

The H-ras mutation positive tumours were 3 PCCs and 1 PGL [159].  PCC/PGL with H-ras 

mutations showed activation of the RAS/RAF/ERK signalling pathway [159] 

In 2014, Oudijk et al. by means of Sanger sequencing determined the prevalence of 

Ras mutations in a cohort of 271 PCC/PGLs.  H-ras mutations were detected in 5.2% 

(14/271) of cases and were confined to sporadic PCCs.  In this large series, H-ras mutations 

in PCCs lacked any significant correlation with pathological or basic clinical end-points 

[160]. 
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About 5% of sporadic tumours have somatic mutation in H-ras.  Mutations in H-ras 

occur mutually exclusively from upstream pathogenic activators and germline defects in Ras 

result in established syndrome-phenotypes [159,160].  Thus, the existence of H-ras mutations 

in otherwise healthy patients with PCC/PGLs is expected to be somatic.  The identification of 

H-ras mutations as a new pathogenetic driver in sporadic PCC opens up the possibility of 

new therapeutic approaches.          

 

2.5.2. 2. Kirsten Rat Sarcoma Viral Oncogene (K-ras) 

 Kirsten ras (K-ras) is a proto oncogene from the mammalian ras gene family located 

on chromosome 12p12.1 [161].  K-ras plays a vital role in normal tissue signalling, including 

proliferation, differentiation, and senility.  Also, K-ras is noted to be one of the most 

activated oncogenes, with 17 to 25% of all human tumours harbouring an activating K-ras 

mutation [161].  Similar to H-ras, germline mutations for K-ras mutations have only been 

reported in disease syndromes and they include Noonan syndromes and in cardio facio-

cutaneous syndromes [151].  

Hrasćan et al. reported point mutations of K-ras for the first time in 62% (8/13) of 

PCCs after paraffin embedded samples were analysed by the polymerase chain reaction using 

restriction fragment length polymorphism and dinucleotide repeat polymorphism methods 

[162].  Also, this study has noted that K-ras mutations were homogenous in PCC compared 

to insulinomas in which K-ras mutations were found to be heterogeneous [162].   

Future studies need to be focused on other, less-characterized Ras family members, 

such as M-ras and R-ras, in order to reveal novel insights in the role of Ras signalling 

pathways in PCC/PGLs.  
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2.5.3 Guanine Nucleotide Binding Protein (GNAS) 

GNAS is a complex imprinted locus that produces multiple transcripts through the use 

of alternative promoters and alternative splicing [163]. 

Somatic mutations of GNAS in PCC/PGL were first reported by Williamson et al. in 

1995 after examining tissues from patients having more than one organ affected by an 

endocrine disorder and patients having separate distinct endocrine diseases for G protein gene 

mutations [164]. 

Integrative epigenomic and genomic analysis of malignant phaeochromocytoma by 

Sandgren et al. also showed that GNAS is a potential candidate gene that can cause PCC/PGL 

[165].  Further studies are needed to establish this hypothesis.  

 

2.5.4. Cyclin Dependent Kinase Inhibitor (CDKN2A/p16) 

Cyclin-dependent kinase inhibitor (p16) encodes proteins that regulate two critical 

cell cycle regulatory pathways, the p53 and retinoblastoma1 pathway [166].  Neural system 

tumours and melanoma syndrome are some of the syndromes associated with mutation of p16 

[167]. 

Aguiar et al. used semi-quantitative multiplex PCR to search for p16 deletion in 26 

phaeochromocytomas but was not able to find any instances of p16 deletion.  They concluded 

that p16 does not play a role in the pathogenesis of PCC. [168].   Also, Dammann et al. 

studied the methylation status of the p16 gene in both hereditary and sporadic PCC by 

methylation-specific PCR, and noted hyper-methylation of the p16 gene in 24% (6/25) of the 

tested specimens [169]. 

Using tissue microarray and immunohistochemistry, Muscarella et al. evaluated the 

expression of p16 in 31 phaeochromocytoma tumour specimens and found that the p16 

protein expression was down regulated in 30 PCC specimens.  In contrast, high expression of 
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p16 protein was observed in the majority of non-tumour control specimens (5/7).  These 

findings suggested that down regulation of p16 protein could play an important role in the 

development of PCC.  The primary cause for such down regulation is inactivation of p16 

gene, with the results from Dammann et al, indicating that epigenetic deactivation rather than 

deletion may be the mechanism by which p16 influences PCC development [169,170].         

 

2.5.5. Transformation related protein 53 (p53) 

  Transformation related protein 53 (p53) translates a tumour suppressor protein 

containing transcriptional activation, DNA binding, and oligomerization domains [171].  p53 

mutation is the most common mutation in many human cancers [172-176].  In addition, 

germline mutations in this gene are associated with hereditary cancers such as Li-Fraumeni 

syndrome [177] and adrenocortical carcinoma in children [178] 

Lin et al. in 1994 performed mutation studies for p53 abnormalities in 23 cases with 

adrenal neoplasms [179].  The immunohistochemical study demonstrated overexpression of 

p53 protein in the tumour cells of adrenal neoplasms.  Five of six PCCs showed an apparent 

electrophoretic mobility shift between the tumour and its paired adjacent normal adrenal 

tissue.  The study was done using the polymerase chain reaction-single strand conformation 

polymorphism method.  Thus, p53 gene mutation may play a role in the tumorigenesis of 

benign and functional human adrenal tumours [179].  Lam and colleagues detected p53 

protein over-expression in 4 PCC/PGL (3 phaeochromocytomas and one paraganglioma) out 

of 65 (6%) patients with PCC/PGL [180].  Two of the p53 positive tumours were bilateral.  

However, Petri et al. showed no p53 mutations or protein over expression in PCC tumours 

from 48 patients (including 63 samples - 13 paraffin blocks and 50 frozen blocks) [181].  On 

the other hand,  Luchetti et al. demonstrated the presence of somatic TP53 missense gene 

mutation (c.1010G>A; p.R337H)  in 2.35% of  sporadic PCC/PGL (2/85) samples using next 
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generation sequencing followed by direct DNA sequencing [17].  Overall, the prevalence of 

p53 mutation is low in PCC/PGL 

 

2.5.6. Breast Cancer Associated Protein 1 (BAP1) 

Breast cancer associated protein 1(BAP1) is a tumour suppressor gene located on 

chromosome 3p21 and was initially identified as a protein that binds to BRCA1 [182].  BAP1 

helps in the regulation of key cellular pathways, including the cell cycle, cellular 

differentiation, cell death, gluconeogenesis and the DNA damage response [182].  Germline 

mutations in BAP1 are associated with tumour predisposition syndrome (TPDS), which 

involves increased risk of malignant mesothelioma, uveal and cutaneous melanoma [183].  

Somatic BAP1 mutations were reported in cutaneous melanocytic tumours (epithelioid 

atypical spitz tumours and melanoma), uveal melanoma, mesothelioma, clear cell renal cell 

carcinoma, and other tumours [184]. However, the complete tumour spectrum associated with 

germline BAP1 mutations is not yet known. 

Using whole exome sequencing, Wadt et al. reported a patient with paraganglioma 

carrying a germ line BAP1 mutation in a Danish family with multiple uveal malignant 

melanoma and suspected mesothelioma cases, as well as several other cancers including 

cutaneous malignant melanoma and breast cancer [185].  Also, somatic loss of BAP1 wild-

type allele was confirmed in the tumour tissues from this patient with uveal malignant 

melanoma and paraganglioma [185].  Thus, as a broad-spectrum tumour suppressor gene 

BAP1 may be involved in the formation of PCC/PGL [185] 

 

2.5.7. Breast Cancer 1 and Breast Cancer 2 (BRCA1 and BRCA2)  

BRCA1 and BRCA2 are tumour suppressor genes located on chromosome 17 and 

chromosome 13 respectively.  They play a critical role in DNA repair, cell cycle checkpoint 
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control, and maintenance of genomic stability [186]. Germline mutations 

in BRCA1 and BRCA2 are most commonly associated with familial breast and ovarian cancer 

and the clinical syndrome seen in BRCA mutation carriers is referred to as the hereditary 

breast‐ovarian cancer syndrome [187].  Mutations in BRCA1 and BRCA2  also increase the 

risk of several other cancers such as fallopian tube cancer, peritoneal cancer, prostate 

cancer and pancreatic cancer [188].  

Barak et al. reported an unusual association between BRCA1 and BRCA2 mutations in 

blood samples from two patients with PCC using restriction enzyme digest of amplified PCR 

product [189].  It is hard to draw conclusions from two cases, but they raise the possibility of 

an increased risk for developing PCCs in BRCA1 and BRCA2 mutation carriers. More studies 

are needed in larger series to reveal the exact role of BRCA1 and BRCA2 in the 

carcinogenesis of PCC/PGLs.  

 

2.5.8. Alpha Thalassemia/Mental Retardation Syndrome X-linked (ATRX) 

 ATRX is a member of the SWitch /sucrose non fermentable (SWI/SNF) family of 

chromatin remodelers, which play an important role in telomere maintenance and 

chromosome integrity [190].  It is a large gene of 300 kb on the X chromosome and germline 

mutation in ATRX leads to X-linked alpha thalassemia mental retardation syndrome whereas 

somatic mutations are associated with neuroblastomas and gliomas [191].   

 Fishbein and colleagues reported somatic mutations of ATRX in PCC/PGL using 

whole exome sequencing in 21 fresh frozen tumours/matched germline DNA samples and 

identified somatic ATRX mutations in 9.5% (2/21) of cases.  Both these tumours with positive 

ATRX mutations had inherited SDHB mutation.  Immunohistochemistry was done to confirm 

the effect of the mutations on the ATRX protein in the tumour tissue.  ATRX protein was 

found to be absent in the tumour cells [191].  To determine the frequency of somatic ATRX 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045687&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000386215&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000445079&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000445079&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044521&version=Patient&language=English
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mutations in PCC/PGL, the group sequenced the ATRX coding region in 2 validation sets of 

PCC/PGL using amplicon sequencing.  Validation set 1 included PCC/PGLs from 52 patients 

with known inherited mutation status whereas validation set 2 comprised tumours from 51 

patients without clinical genetic testing.  Overall, 12.6% (13/103) of PCC/PGL harboured 

ATRX somatic mutations.  Of these, 31% had truncating mutations and 69% had missense 

mutations [191].  

 Although PCC/PGL with ATRX variants is too small a sub-group to identify 

statistically significant associations, some of them had inherited SDHx mutations, suggesting 

an interaction between the somatic and inherited genomes in solid cancers.  This needs to be 

studied further and to identify other somatic alterations involved in PCC/PGL tumorigenesis 

[191]. 

 

2.5.9. Lysine (K)-Specific Methyltransferase 2D (KMT2D) 

KMT2D (Lysine (K)-Specific Methyltransferase 2D), also known as mixed-lineage 

leukaemia 2 (MLL2), is a protein coding gene located on 12q13.12 that regulates DNA 

accessibility.  Germline mutations in this gene have been associated with Kabuki syndrome, a 

developmental disorder characterized by postnatal dwarfism, specific facial features and 

intellectual disability. Somatic mutations of the gene are linked with medulloblastoma and 

lymphoma [192]. 

Whole exome sequencing identified two somatic mutations and one constitutional 

variant of KMT2D in a discovery cohort of 16 fresh frozen PCCs.  A validation cohort of 83 

fresh frozen PCCs revealed missense variants in 13% (11/83) of the PCCs studied [192].  The 

study also reported that tumours with KMT2D mutations were found to be significantly larger 

in size than tumours with other known PCC susceptibility gene mutations.   
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3. Application of immunohistochemistry 

 It is important that some of the mutated genes in PCC/PGL can be detected by 

immunohistochemistry.  This will allow an economical way of screening for mutations in 

PCC/PGL after surgical resection. Loss of SDHB protein expression is seen in PCC/PGL 

harbouring a mutation in SDHA, SDHB, SDHC or SDHD genes. SDHB is the most common 

stain being used for screening mutations in the group of SDH genes.  Also, loss of SHDA 

protein can be detected by immunohistochemistry.  SDHA immunostaining is negative in 

SDHA-mutated tumours only. The problems of interoperation variability of negative staining 

and inter-observers’ interpretation in immunohistochemical detection of SDHX have been 

tested by a multi-institional study from seven expert endocrine pathologists in Europe.  They 

have validated the use of SDHB/SDHA immunohistochemistry to identify patients with 

SDHX mutations in 15 centres with a 351 phaeochromocytoma/paraganglioma cohort [193].  

In addition, SDHD protein staining is also available [50]. 

 Negative immunohistochemical staining for MAX protein is observed in tumours 

harbouring only truncating MAX mutations [127]. 

 Positive immunohistochemical staining of 2 succinyl cysteine protein can be 

indirectly used to detect FH mutated PCC/PGL [194].   FH mutated tumours accumulate 

fumarate which favours the covalent alteration of cysteine to 2 succinyl cysteine.  

 ATRX protein in the tumour cells can be detected by immunohistochemistry [191].  

Merinoni et al. reported that tumours with somatic ATRX mutations showing negative 

immunohistochemical staining were associated with pooer prognosis than tumours without a 

mutation [195]. 

 Positive immunostaining using anti-KMT2D antibody can be used to detect the 

KMT2D mutation in PCCs.   Juhlin et al. demonstrated positive nuclear staining for KMT2D 

protein in all the cases of PCCs showing increased copy number of KMT2D [192]. 
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4. Utility of Next Generation Sequencing in PCC/PGL 

Genetic testing is important in patients with PCC/PGL because one-third of all 

patients with PCC/PGL have disease causing germline mutations and establishing a 

hereditary syndrome in the proband may effect in earlier diagnosis and treatment of 

PCC/PGL in families [196].  Hence genetic testing is recommended in those individuals who 

are at high risk for susceptibility, which includes positive family history, presence of 

syndromic features, multifocal tumours, malignancy, PCC/PGL location, or a combination of 

some of these characteristics [196].   Genetic testing has limited value in patients with 

unilateral phaeochromocytoma/paraganglioma, non-syndromic, no malignant features and 

negative family history [196].    

In the previous decades, genetic testing for germline mutations in genes predisposing 

to PCC/PGL involved testing single gene and prediction by clinical features [197].  This 

testing method is expensive and took a long time to get the results.  Advances in massive 

parallel sequencing technologies such as next-generation sequencing have transformed the 

practice of DNA sequencing.  The new technique allows simultaneous sequencing of multiple 

genes in a single run at a much lower cost than conventional DNA-sequencing techniques 

[197]   

The application of targeted next generation sequencing methods and whole exome 

sequencing methods has already been reported in PCC/PGL [18].  Laboratories in America 

have developed a phaeochromocytoma and paraganglioma panel where next generation 

sequencing technology is used to detect mutations in 13 PCC/PGL susceptibility genes 

(EGLN1, EPAS1, KIF1B, MEN1, MAX, NF1, RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, 

TMEM127, VHL) simultaneously.  
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The National Institutes of Health (NIH)-sponsored TCGA (The Cancer Genomic 

Atlas) includes whole genomic sequencing analysis of at least 500 samples of PCC/PGL.   

The data is certain to provide new insights into genomic alterations and will contribute to 

estimating the added value of whole genome sequencing for diagnostic purposes in PCC/PGL 

[197] 

Next-generation sequencing based on nanopore technology could be used in future for 

screening of PCC/PGL susceptibility genes. This technology promises affordable and fast 

genome sequencing by providing long read lengths and does not require additional DNA 

amplification or enzymatic incorporation of modified nucleotides.  This could help health 

care providers and researchers to decode a genome within hours at a low cost [198]. 

The implementation of these techniques is challenging as next generation sequencing 

technology generates large amount of sequence data.  Because of this, interpreting the results 

of next generation sequencing is more complex.  Also, addition of newly discovered genes in 

the targeted screen design can pose technical and economic challenges for implementation 

[197].  Furthermore, tests to detect mosaic epi-mutations may need to be developed as the 

current next generation sequencing platforms do not identify hyper methylated areas on target 

genes.   Importantly, these events are reported in the tumorigenesis of PCC/PGL [197]. 

The final report of a next generation sequencing test should be the result of careful 

analysis, discussion with geneticists, pathologists and extensive literature searches to 

determine the classification of variants [18].  Regardless of technical improvements in design 

of next generation sequencing, some variants still require confirmation by conventional 

sequencing due to poor coverage.   Positive tests should be validated by Sanger sequencing 

before results are reported to the patient.   Hence, no single platform currently fulfils the 

requirements of an ideal PCC/PGL screening test [197] 
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5.  Potential genetic markers for malignancy 

  PCC/PGL is usually benign, but about 10% of cases may be malignant.  There is a 

lack of reliable prognostic makers for PCC/PGL [199].  However, some molecular 

biomarkers such as the Ki67 labelling index, loss of cell adhesion molecules (CD44) and 

human telomerase reverse transcriptase expression have been proposed as useful markers in 

detecting malignancy in PCC/PGL [15] 

Thompson advocated the first scoring system for predicting malignancy in 

phaeochromocytoma, known as the PASS (Pheochromocytomas of Adrenal gland Scaled 

Score) system compiling histological findings to distinguish benign from malignant 

phaeochromocytoma [14].  The classification was controversial as it comprised of too many 

histological factors that covered the general features of malignancy rather than specific 

features of PHEO/PGL [15].  Kimura et al used a system known as GAPP (grading system 

for adrenal phaeochromocytoma and paraganglioma) to predict the clinical behaviour of 

PHEO/PGL.  The system used parameters of histology, proliferative index and biochemical 

profiles.  Also, GAPP could be used together with the SDHB marker for the prediction of 

metastasis in PHEO/PGL [15].  The group also demonstrated the ability of GAPP 

classification to differentiate low-grade malignancies from moderate to high-grade 

malignancies with different rates of metastasis [15].  Nevertheless, GAPP needed to be 

validated by pathologists in other centres.  

  DNA methylation and microRNA expression profiles have also revealed new 

prognostic markers in PCC/PGL.  DNA methylation profiling discovered that RDBP 

(negative elongation factor complex member E) is related to the presence of metastasis in 

PCC/PGL.  Thus, RDBP could be used for stratifying patients according to the risk of 

developing metastases [199].  Also, Patterson et al. analysed miRNA expression in benign 

and malignant phaeochromocytoma tumour samples using whole genome microarray 
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profiling and found that miR-483-5p, miR-183, and miR-101 had significantly higher 

expression in malignant tumours as compared to benign tumours.  In addition, these miRNAs 

could be detected in phaeochromocytoma patient serum [200].  Also, study by Castro et al. 

reported significant upregulation of the miRNA cluster 182/96/183 in metastatic PCC/PGL 

[201]. Overall, mi-RNAs may be useful for distinguishing malignant from benign 

phaeochromocytomas 

 

6.  Remarks and conclusions 

Phaeochromocytoma and paragangliomas are the result of a blend of genetic 

syndromes and epigenetic changes.  This study has for the first time reviewed the roles of all 

driver genes reported in the pathogenesis of PCC/PGLs.  The timelines of discovery of role of 

these genes in phaeochromocytoma/paraganglioma are summarized in Table 1.  The 

discovery of these genes leads to clarification of many syndromes [202].  Genetic mutations 

of PCC/PGLs are classified into two major clusters depending on their gene expression 

profile.  The pseudo-hypoxic pathway involving the PHD2, VHL, SDHX, IDH, HIF2A, 

MDH2 and FH gene mutations are attributed to cluster 1 genetic profiling in PCC/PGLs.  

Genetic pathways in cluster 2 are associated with abnormal activation of kinase signalling 

pathways and include mutations of RET, NF1, KIF1Bβ, MAX and TMEM127.  In addition, 

many other genes including GDNF, H-ras, K-ras, GNAS, CDKN2A, p53, ATRX, BAP1 and 

BRCA1&2 have also been reported in the development of PCC/PGLs.  Mutations in succinate 

dehydrogenase B (SDHB) have been emerging as the most clinically relevant mutation as 

PCCs and PGLs carrying them have relatively high rates of malignancy, as high as 50%, 

which has been validated in many studies.   

The identification of a germline mutation in patients with PCC/PGL could lead to the 

early diagnosis of multiple tumours in the settings of syndromic neoplasia.  Also, relatives at 
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risk could be screened for mutations.  The identification of a somatic mutation helps in 

avoiding familial screening and also helps in exploring the possibility of new therapeutic 

approaches if surgery is not curative [203].  Germline mutations are seen only in SDHA, 

SDHC, SDHAF2, FH, KIF1β and TMEM127 whereas somatic mutations are found only 

in HRAS.  Both germline and somatic mutations are found in SDHB, SDHD, NF1, RET, VHL 

or MAX.  Somatic mutation or somatic mosaicism is noted in EPAS1.  Mutations in other 

genes, such as MEN1, EGLN1, EGLN2, MDH2 and IDH1, BAP1 have been reported in single 

cases or families suggesting that their role in PCC/PGL is uncertain.  In addition, somatic 

mutations in ATRX, TP53 and KMT2D have been described, but their role is yet to be 

established. 

Advances in sequencing methods such as next generation sequencing as well as 

familiarity of these genetic mutations and syndromes can help in promoting correct diagnoses 

and effective genetic advice.  Thus, patients with PCC/PGL could be considered for offering 

genetic screening in appropriate clinical settings.  Other genetic changes, pathological 

parameters and biochemical markers are used for better prediction of the outcome of patients 

with this group of tumours.  Furthermore, this will further help in the development of 

novel/modified therapeutic approaches in the treatment of PCC/PGLs.  In future, knowledge 

of these genes and advances in gene sequencing method can ensure a more effective 

detection, prediction of malignant potential and treatment of PCC/PCLs.  
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Figure legends 

Figure 1 

Genetic pathways and interactions of cluster 1genes in phaeochromocytoma/ 

paragangliomas (PCC/PGLs):   

Cluster 1 genes are involved with pseudo-hypoxic pathways and are comprised of PHD2, 

VHL, SDHX, IDH, HIF2A and FH.  Inactivation of SDH, IDH, or FH are believed to cause a 

pseudo-hypoxic response due to accumulation of oncometabolites which in turn leads to the 

activation of HIF-1α target genes such as EPO, VEGF, GLUT1 and P21 ras resulting in the 

development of PCC/PGLs. Mutations within the VHL and PHD2 genes result in the absence 

of functional VHL protein and this can further activate HIF target genes.  

 

Figure 2 

Genetic pathways and interactions of cluster 2 genes in phaeochromocytoma/ 

paragangliomas (PCC/PGLs):   

Cluster 2 mutations are associated with abnormal activation of kinase signalling pathways 

such as the PI3Kinase/AKT, RAS/RAF/ERK and mTOR pathways.  Proteins that have been 

found to be altered by germline mutations (activating in the case of RET and inactivating in 

the others) in PCCs/PGLs include NF1, KIF1Bβ, MAX/MXD, RET, TMEM127.  Activation of 

mTOR may constitute a common mechanism for tumour development caused by mutations 

in RET, MAX, or TMEM127.  The role of p53 in the development of PCC/PGL is poorly 

understood and the most likely mechanism would be evasion of apoptosis.  
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Figure 3 

The subdivisions of cluster 1 and 2 molecular pathways of these genes in PCC/PGL 

In PCC/PCL, Cluster 1 genes could be divided into 2 groups. Cluster 1A contains PCC/PGL 

related to SDHx and FH while Cluster 1B contains tumours with HIF2A and VHL 

respectively.  Cluster 2 can be divided into subcluster 2A, 2B, 2C and 2D.  Subcluster 2A 

comprises RET, MAX, NF1 and TMEM127 mutated tumours whereas subcluster 2B and 2C 

are sporadic tumours.  Cluster 2D are tumours lacking known mutations related to PCC/PGL.  
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