
IEE
E P

ro
of

Diagnosis Code Assignment Using
Sparsity-Based Disease Correlation Embedding
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Abstract—With the latest developments in database technologies, it becomes easier to store the medical records of hospital patients

from their first day of admission than was previously possible. In Intensive Care Units (ICU), modern medical information systems can

record patient events in relational databases every second. Knowledge mining from these huge volumes of medical data is beneficial to

both caregivers and patients. Given a set of electronic patient records, a system that effectively assigns the disease labels can facilitate

medical database management and also benefit other researchers, e.g., pathologists. In this paper, we have proposed a framework to

achieve that goal. Medical chart and note data of a patient are used to extract distinctive features. To encode patient features, we apply

a Bag-of-Words encoding method for both chart and note data. We also propose a model that takes into account both global

information and local correlations between diseases. Correlated diseases are characterized by a graph structure that is embedded in

our sparsity-based framework. Our algorithm captures the disease relevance when labeling disease codes rather than making

individual decision with respect to a specific disease. At the same time, the global optimal values are guaranteed by our proposed

convex objective function. Extensive experiments have been conducted on a real-world large-scale ICU database. The evaluation

results demonstrate that our method improves multi-label classification results by successfully incorporating disease correlations.

Index Terms—ICD code labeling, multi-label learning, sparsity-based regularization, disease correlation embedding

Ç

1 INTRODUCTION

MODERN medical information systems, such as the Phi-
lips’ CareVue system, records all patient data and

stores them in relational databases for data management and
related research activities. Clinicians and physicians often
want to retrieve similar medical archives for a patient in ICU,
with the aim of making better decisions. The simplest way is
to input a group of disease codes that are diagnosed from the
patient, into a system that can provide similar cases according
to the codes. The most well-known and widely used disease
code system is the International Statistical Classification of
Diseases and Related Health Problems (commonly abbrevi-
ated as ICD) proposed and periodically revised by the World
Health Organization (WHO). The latest version is ICD-10,
which is applied with local clinical modifications in most of
regions, e.g., ICD-10-AM for Australia. The goal of ICD is to
provide a unique hierarchical classification system that is
designed to map health conditions to different categories. In

theUnited States, the ninth version of the International Classi-
fication ofDisease (ICD9) has been pervasively applied in var-
ious areas where disease classification is required. For
example, each patient in ICU will be associated with a list of
ICD9 codes in the medical records purposes such as disease
tracking, pathology, or medical record data management. By
investigating the returned historical data, caregivers are
expected to offer better treatments to the patient. Thus, com-
plete and accurate disease labeling is very important.

The assignment of ICD codes to patients in ICU is tradi-
tionally done by caregivers in a hospital (e.g., physicians,
nurses, and radiologists. This assignment may occur during
or after admission to ICU. In the former case, ICD codes are
separately labeled by multiple caregivers throughout a
patient’s stay in ICU as a result of different work shiftse
duration of a patient’s stay is usually much longer than the
employment time shift of the medical staff in a hospital thus,
different caregivers are prone to make judgments according
to the latest conditions. It is more desirable to assign a dis-
ease label to the patient by taking the entire patient record
into account. when assignment is conducted after admission
to ICU, the ICD codes are allocated by a professional who
examines and reviews all the records of a patient. However,
it is still impossible for an expert to remember the correla-
tions of diseases when labeling a list of disease codes, which
sometimes leads to missing code or inaccurate code categori-
zation. In fact, some diseases are highly correlated. Correla-
tions between diseases can improve the multi-label
classification results. For instance, Hypertensive disease (ICD9
401-405) correlates highly with Other forms of heart disease
(ICD9 420-429) and Other metabolic and immunity disorders
(ICD9 270-279). When considering the occurrence of the lat-
ter two disease labels in relation to the patient’s condition,
the possibility that a positive decision will be made will be
much increased if Hypertensive disease is found in the
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patient’s record. Therefore, it is desirable to produce a sys-
tem that can overcome the problemsmentioned above.

The focus in this work is to assign disease labels to
patients’ medical records. Rather than predicting the mortal-
ity risk of an ICU patient, as in some previous works [1], [2],
our work can be regarded as a multi-label prediction prob-
lem. In other words,mortality risk prediction is a binary clas-
sification problem inwhich the label indicates the probability
of survival. Class labels in amulti-label problem, on the other
hand, are not exclusive, which means the patient, according
to the medical records, is labeled as belonging to multiple
disease classes. The multi-label classification problem has
always been an open but challenging problem in themachine
learning and data mining communities. Some researchers
[3], [4], [5], [6] extract features from patients and use super-
vised learning models to recognize disease labels without
any consideration of disease correlations. In our model, we
pay great attention to both the medical chart and note data of
patients. Medical chart data is also termed structured data
because their structure is normally fixed. In the ICU, some
well-known health conditionmeasurement scores (i.e., SAPS
II) are manually determined by staff in the ICU, according to
the patient’s health condition. In contrast, medical chart data
are raw recordings extracted from the monitoring devices
attached to a patient. The chart data therefore reflect the
physiological conditions of a patient at a lower level. Note
data has no structure because it is derived from textual infor-
mation. Therefore, it is commonly termed free-text note data.
The advantages of these types of data are that they are
descriptive and informative since they are summarized
or determined by professionals. However, medical note
data are very difficult to handle by most of the existing
machine learning algorithms because none of the struc-
tures in the notes can be directly recognized as patterns.
Medical notes are quite noisy, and their quality is often
corrupted by misspellings or abbreviations. In addition,
the contents of medical notes are not always consistent
with the metrics. For example, different caregivers take
notes in different metrics when recording a parameter.

Some prefer to use English units while others use the
American system (e.g., patient’s temperature in Celsius
versus Fahrenheit). Thus, compared to structured data, it
is difficult to extract accurate and consistent features
from notes. It is consequently difficult for medical notes
to be utilized by machine learning algorithms.

To address the aforementioned problems, we propose a
framework that will assign disease labels automatically
while simultaneously considering correlations between dis-
eases.We first extract medical data from two different views,
structured and unstructured. Structured data can describe
patients’ raw health conditions from medical devices at a
lower level, while unstructured data consist of more seman-
tic information at a higher level which has proven to be help-
ful for characterizing features of patients for some prediction
tasks [1].We use a BoWmodel to convert features of different
lengths into a unique representation for each patient. In this
way, similarity comparison can be conducted by supervised
learning algorithms. To step further, we propose an algo-
rithm to classify disease labels with the help of the underly-
ing correlations between diseases. Our work incorporates a
graph structure which is derived from huge numbers of
medical records to improve multi-label prediction results.
The demonstration of the proposed framework is shown in
Fig. 1. The main contributions of this work can be summa-
rized as follows:

� We extract raw features from patients’ chart data to
characterize their conditions at a low level. A latent
variable model, i.e., LDA, is used in this work to
extract topic distributions in medical notes as
descriptive features. BoW is proposed to encode
both chart and note data for unique representation.

� Wepropose an algorithm to assign disease codeswith
joint consideration of disease correlations. This is
achieved by incorporating a graph structure that
reflects the correlations between diseases into a
sparsity-based objective function. We propose the
use of ‘2;1-norm to exploit the correlations. Due to the

Fig. 1. Workflow demonstration of the proposed framework. The green box on the left contains the data pre-processing, Latent Dirichlet Allocation
(LDA) topic modeling, and feature extractions. The blue central box mainly encodes the features using a Bag-of-Words model on both extracted chart
and note features. The purple box on the right shows the main contribution of this work. A multi-label classification algorithm is proposed to assign
patients’ disease codes by correctly incorporating a structural graph that reflects disease correlations into the sparsity-based framework.
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convexity of the objective function, the global optima
are guaranteed.

� Extensive experiments have been conducted on a
real-world ICU patient database. A large number of
patient records are applied on this database in the
evaluation. The experimental reports have shown
that our proposed method is more effective for per-
forming multi-label classification than the compared
approaches. Effectiveness and efficiency evaluations
have also been conducted.

The rest of this paper is organized as follows: Related
work will be reviewed in Section 2. We will elaborate our
method in detail in Section 3, followed by evaluation reports
in Section 4. We conclude the paper in Section 5.

2 RELATED WORK

2.1 Medical Feature Encoding

Most of the existing research works aim to mine interesting
patterns from medical records that are most frequently
stored in text and images. Due to the huge success of the
Bag-of-Words model in Natural Language Processing (NLP)
and computer vision, BoW and its variants have been perva-
sively utilized to encode features in medical applications to
accomplish various tasks such as classification and retrieval.
In [7], a method is proposed to convert the entire clinical text
data into UMLS codes using NLP techniques. The experi-
ments show that the encoding method is comparable to or
better than human experts. Ruch et al. [8] evaluate the effects
of corrupted medical records, i.e., misspelled words and
abbreviations, on an information retrieval system that uses a
classical BoW encoding method. To classify physiological
data with different lengths, modified multivariate BoW
models are used to encode patterns in [9]. In addition, the
1-Nearest Neighbour (1NN) classifier predicts acute hypo-
tensive episodes. Recently, Wang et al. [10] propose a Non-
negative Matrix Factorization based framework to discover
temporal patterns over large amounts of medical text data.
Similar to the BoW representation, each patient in that work
is represented by a fixed-length vector encoding the tempo-
ral patterns. The evaluation is conducted on a real-world
dataset that consists of 21K diabetes patients. Types of diabe-
tes diagnosis coded by ICD9 are treated as ground-truth.

2.2 Multi-Label Learning in Medical Applications

Multi-label classification has been well studied recent years
[11], [12], [13], [14], [15], [16], [17], [18], [19] in the machine
learning and data mining communities. Due to the omni-
presence of multi-label prediction tasks in the medical
domain, multi-label classification has attracted more and
more research attention to this domain in the past few years.
Perotte et al. [20] propose to use a hierarchy-based Support
Vector Machines (SVM) model on MIMIC II dataset to con-
duct automated diagnosis code classification. Zufferey et al.
[21] compare different multi-label classification algorithms
for chronic disease classification and point out the
hierarchy-based SVM model has achieved superior perfor-
mance than other methods when accuracy is important. In
[22], Ferrao et al. use Natural Language Processing to deal
with structured electronic health record, and apply Support
Vector Machines to separately learn each disease code for

each patient. Pakhomov et al. [23] propose an automated
coding system for diagnosis coding assignment powered by
example-based rules and naive Bayes classifier. Lita et al.
[4] assign diagnostic codes to patients using a Gaussian
process-based method. Even though the proposed method
is conducted over a large-scale medical database of 96,557
patients, the method does not consider the underlying rela-
tionships between diseases. Many theoretical studies on
multi-label classification have already pointed out that
effectively exploiting correlations between labels can benefit
the multi-label classification performance. In light of this,
Kong et al. [24] apply heterogeneous information networks
on a bioinformatic dataset to for two different multi-label
classification tasks (i.e., gene-disease association prediction
and drug-target binding prediction) by exploiting correla-
tions between different types of entities.

Prior-based knowledge incorporation by a regularization
term is an effective way to exploit correlations between clas-
ses. In a scenario of medical code classification, Yan et al. [25]
introduce a multi-label large margin classifier that automati-
cally uncovers the inter-code structural information. Prior
knowledge on disease relationships is also incorporated into
their framework. In the reported results, underlying disease
relationships are discovered and are beneficial to the multi-
label classification results. All the evaluations are conducted
over a quite small and clean dataset that consists of only 978
samples of patient visits. This approach is feasible for small
dataset but is questionable in a real-world dataset. The most
recent research on computational phenotyping in [26] tackles
a small multi-label classification problem on a real-world
ICU dataset by applying two novel modifications to a stan-
dard DCNN. Che et al. investigate two types of prior-based
regularizationmethods. In the firstmethod, they use the hier-
archical structure of ICD9 code classification at two levels,
and embed the hierarchical structure in an adjacency graph
into the framework; The secondmethod is to utilize the prior
information extracted from labels of training data. Che et al.
explore the label co-occurrence information with a co-
occurrencematrix, and embed thematrix into their deep neu-
ral network to improve the prediction performance. Similar
to the prior-based regularization methods, we also embed an
affinity graph derived from data labels in the framework to
exploit correlations between disease codes. However, we do
not directly apply the label correlation matrix, also called
label co-occurrence matrix in [26], to improve the perfor-
mance of multi-label classification. Instead, we further learn
and utilize the structural information among classes by a
sparsity-based model, which has been largely ignored by
most of the existing works on diagnosis code assignment. As
pointed out in [27], sparsity-based regularizers such as
‘1-norm and combination of ‘1-norm and ‘2-norm have vir-
tues on structure exploitation, which can extract useful infor-
mation from high-dimensional data. Moreover, many
existing works [28], [29], [30], [31], [32] beyond medical
domain have shown sparsity-based ‘2;1-norm on regulariza-
tion plays an important role when exploiting correlated
structures in different applications. To this end, we model
the correlations between diseases using the affinity graph,
and incorporate the topological constraints of the graph
using a novel graph structured sparsity-based model, which
can capture the hidden class structures in the graph.

WANG ET AL.: DIAGNOSIS CODE ASSIGNMENT USING SPARSITY-BASED DISEASE CORRELATION EMBEDDING 3
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In this section, we will first introduce the details of the data-
base and data pre-processing methods used in this paper.
Feature extractions from both chart and note data will be
elaborated, followed by a description of the encoding
method that is investigated in this paper. An algorithm that
is able to incorporate correlations between diseases is subse-
quently proposed to solve the aforementioned problems.

3.1 Database and Data Pre-Processing

Multiparameter Intelligent Monitoring in Intensive Care II
(MIMIC II) [33] is a real-world medical database that is pub-
licly available. Thanks to the efforts of academia, industry
and clinical medicine, the database has successfully col-
lected 32,535 ICU patients over seven years (from 2001 to
2007) at Boston’s Beth Israel Deaconess Medical Center. To
the best of our knowledge, MIMIC II is the largest ICU pub-
lished database with comprehensive types of patient data in
the world. Before releasing the database to the public, data
scientists completely removed all protected health informa-
tion (PHI) to protect the privacy of patients. A variety of
data sources have been recorded in this database: 1) patient
data recorded from bedside monitors, e.g., waveforms and
trends; 2) data from clinical information systems; 3) data
from hospital electronic archives; 4) mortality information.
In this paper, we have used two parts of the database: chart
event data and medical note data. Since chart data comes
from device recordings made by caregivers, it reflects the
health conditions of patients at a low level, whereas medical
note data comes from medical doctors, registered nurses,
and other professionals, and contains high-level semantic
information summarized by experts. [1] has proven that
extracting features based on topic modeling from note data
is able to predict the mortality risk of patients.

Because only adult patient data are considered in this
work, patients younger than 18 are excluded in the first
step. We need both charts and notes as the raw data of a
patient, so all those patients whose chart and note data are
either empty and nearly empty or corrupted for unknown
reasons, are ruled out. Patients without ICD9 records are
also removed since their ground-truth information is uncer-
tain. After patient filtering in three rounds, we obtain 23,379
adult patients out of 32,535. To train and test our algorithm,
we randomly split the dataset into two parts, training data
and testing data. Table 1 shows the data specifications. Note
that the numbers in the fourth column (#per patient) are
based on the total number of patients (11; 689þ 11; 690 ¼
23; 379). For example, the number of charts per patient is
calculated by 196; 156; 501=23; 379 � 8390:29.

The ICD9 codes for each patient are stored in a list in
the patient’s medical record. We utilize ICD9 codes as

ground-truth to train and test our models in experiments.
According to its hierarchical structure, there are 19 catego-
ries at the upper level for the most general classification and
129 categories at the lower level for more specific classifica-
tions. Fig. 2 represents the hierarchical structure of ICD9, of
which we use two levels, i.e., high level and low level. For
example, all codes ranging from 460 to 519 are classified as
diseases of the respiratory system, which is a general class label.
There are six subclasses in this general class group: acute
respiratory infections (460-466), other diseases of the upper respi-
ratory tract (470-478), pneumonia and influenza (480-488),
chronic obstructive pulmonary disease and allied conditions (490-
496), pneumoconioses and other lung diseases due to external
agents (500-508), and other diseases of respiratory system (510-
519). Since they are hierarchically organized in two levels,
we use them as label information in different two schemes.
We name two different classification schemes c0 and c1. c0 is
for the general groups of disease while c1 is the specific ver-
sion. We exclude one class and its corresponding subclasses
that are designed for neonates (certain conditions originating
in the perinatal period (760-779)) in c0 and c1. We use the top d-
classes that can be observed in the medical records of ICU
patients. We set d ¼ f5; 10; 15g for c0 and d ¼ f5; 10; 15;
20; 25g in c1. The reason for not including all classes is that
the majority rarely occur in the ICU database.

3.2 Feature Extractions and Encodings

Different parameters will be recorded by medical staff at
different time points for each patient, as mentioned above.
There are 4,832 parameters in total that can be recorded in
the chart, including textual and numerous properties. Only
a small set of parameters will be simultaneously recorded at
a certain time. 2,158 textual parameters are excluded since it
is difficult for most of them to reflect the health conditions

TABLE 1
Summarization of MIMIC II Database

Size Total #per patient Dim.

Charts 17 Gb 196,156,501 8390.29 500
Notes 618 Mb 599,128 25.63 500

Training Data 11,689
23,379 N.A.

500
Testing Data 11,790 500

Fig. 2. The hierarchical structure of ICD9. There are two levels, high
level and low level, to describe the disease codes. High level includes
more generic disease classification groups (19 groups) while low level
codes are more specific (129 groups). Note that we do not use the group
of certain conditions originating in the perinatal period (760-779) and its
related sub-codes because only adult patients are considered.
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of patients even if they are digitalized. The remaining 2,674
numerous parameters are extracted as attributes of the
structured data for patients. They can be viewed as the low-
level descriptors of the health conditions. Similar to the
ICD9 code, only a small number of these parameters are fre-
quently recorded by caregivers in ICU. Thus, we rank the
frequencies of parameter occurrences and select the top 500
most often recorded parameters to form the structured data
for patients. In this way, chart feature extraction of the ith
patient will produce a feature matrix CCi. Each row, cci is a
500-dimensional vector, i ¼ 1; . . . ; ni. ni is the number of
unique time points throughout the entire ICU stay of the ith
patient. cpq stores the qth parameter at the pth time point.
Note that CCi is often sparse.

Besides the low-level numerous parameters, there are
huge volumes of clinical notes for ICU patients in theMIMIC
II database. Generally, they are of four types: radiology
reports, nursing/other notes, medical doctor notes, and discharge
summary reports. We use a similar pipeline in [1] to construct
note features by using Latent Dirichlet Allocation (LDA)
[34]. However, discharge notes are not excluded from our
work, which is different to [1]. The reason for this is that
explicit mortality outcome does not exert much influence on
the ICD9 code classification. According to the pipeline set-
tings, stop words are removed at the beginning of note data
pre-processing, followed by a TF-IDF learning that picks out
the 500 most informative words from the notes of each
patient. The overall dictionary is built upon the amalgam-
ation of the informative words of all patients. The number of
topics is set as 50, resulting in a 50-dimensional vector for
each patient for each note. Given a note feature matrixNNi for
the ith patient, its entry npq is the proportion of topic q in the
pth note. Another difference from [1] is that we do not use
weights for each topic because the mortality information is
not taken into account in our scenario.

Once feature extractions have been done, two feature
matrices for the ith patient are obtained, CCi and NNi repre-
senting chart and note features respectively, since two arbi-
trary patients have different numbers of chart records and
medical notes. To make a similarity comparison between
two patients, e.g., CCi and CCj, a unique representation is
achieved by encoding the feature matrices into two vectors
of the same length. For simplicity and good performance,
the BoW model and its variants, e.g., spatial-temporal pyra-
mid BoW, are pervasively applied to represent text, image
and video data in the tasks of retrieval or classification.
BoW is a histogram-based statistical method that first
requires a dictionary to be created using a clustering algo-
rithm, often KMeans Clustering. The number of centers,
also known as the size of the dictionary, are usually set by
experiment. The BoW model will first compute a number of
distance pairs between each feature and each center. Each
feature will be assigned the label of the nearest center. The
occurrences of centers will then be counted to form a vector
as a unique representation. The size of the vector is the size
of the dictionary. A descriptive representation is required to
encode the numerous features in MIMIC II. In light of this,
we apply BoW as a representation model to encode the fea-
tures in this work. We have tested different sizes of dictio-
nary, including 50, 100, 200, 300, 500, 1,000, 2,000, and 5,000.
We find 500 is a trade-off between effectiveness and

efficiency for both chart and note features and fix the
dimensions of both chart and note data representations at
500 (shown in Table 1).

3.3 Proposed Algorithm

The notations used in this paper are first summarized to
give a better understanding of the proposed algorithm.
Matrices and vectors are written as boldface uppercase let-
ters and boldface lowercase letters, respectively. We use the
notational convention that defines each data as dþ 1 dimen-
sional, i.e., the intercept term x0 ¼ 1. Therefore, a training

dataset is denoted as xx ¼ ½xx1; . . . ; xxn� 2 Rðdþ1Þ�n, where n is
the number of training samples. Correspondingly the class

indicator matrix is represented as YY ¼ ½yy1; . . . ; yyn�T 2 Rn�c. c
is the number of classes. yyi 2 f0; 1gc is a c dimensional vec-
tor. If xxi belongs to the jth class, yij is 1, otherwise yij ¼ 0,
i 2 f1; . . . ; ng and j 2 f1; . . . ; cg. A structural incorporating
framework can be represented as

min
WW

LðXXTWW;YY Þ þ gVðWWÞ; (1)

where Lð�Þ is a loss function. Vð�Þ is a regularization term

while g � 0 is the regularization parameter. WW 2 Rðdþ1Þ�c is
a coefficient matrix and its ith row and jth column are

denoted as wwi and wwj, respectively. To capture intrinsic rela-
tionships between features and labels, a sparsity-based
norm is usually applied to the regularization term, VðWWÞ.
Thus, if we can properly incorporate a graph structure that
reflects the correlations between diseases, the multi-label
classification performance can be improved. With this
motivation, we need our objective function to have two
properties: First, the loss function Lð�Þ should be suitable for
multi-label learning and be easy to implement in a large-
scale scenario; Second, the sparsity-based norm on VðWW Þ
should be convex because of the computational issues and
global optima. To satisfy these requirements, we design our
objective function as follow:

min
wwi

1

n

Xc
i¼1

Xn
j¼1

log ð1þ expð�yijww
T
i xxjÞÞ

þg
Xc
i¼1

Xc
j¼1

aijk½wwi; wwj�k2;1;
(2)

The ‘2;1-norm of the matrix WW is defined as kWWk2;1 ¼Pd
i¼1 kwwik2. In Eq. (2), we use logistic loss because of its sim-

plicity and suitability for binary classification. Various loss
functions have been applied to multi-label learning prob-
lems in other works, e.g., least squared loss; however, dis-
cussion on the choice of loss function is beyond the scope of
this paper. aij is the entry of an affinity matrix AA 2 Rc�c

which reflects the relationships between two arbitrary clas-
ses (diseases). In the label space, we use cosine similarity to
represent the relationships between two arbitrary classes.
Recall that the class indicator matrix is defined as YY 2 Rn�c.
To define the cosine similarity between two classes, we
denote zzi 2 Rn as the ith column of YY . YY ¼ ½zz1; . . . ; zzc�. Note
that zzi indicates the distribution of the ith class over the
training data. Thus, the entry of the affine matrix is defined
as follows:

WANG ET AL.: DIAGNOSIS CODE ASSIGNMENT USING SPARSITY-BASED DISEASE CORRELATION EMBEDDING 5
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aij ¼ cos ðzzi; zzjÞ ¼ < zzi; zzj >

jzzij � jzzjj ; (3)

where i; j 2 f1; . . . ; cg. In the regularization term, aij can be
regarded as a weight. According to Eq. (3), the more corre-
lated the ith and the jth diseases are, the higher the value
of aij will be. In Eq. (2), a higher aij will lead to more pun-
ishment to ½wwi; wwj� with the ‘2;1 norm. Optimization will
make wwi and wwj become more similar in columns and
sparse in rows. To fully employ this constraint, the second
term in Eq. (2) goes over the entire affinity matrix of the
disease correlation. In this way, disease correlation is incor-
porated into the framework to improve the multi-label
classification. Similar ideas have been explored in [35],
[36]. Ma et al. characterize different degree of relevance
between concepts and events by minimizing k½wwi; wwj�k2;p.
They did not consider utilizing relational graph to improve
subsequent performance.

3.4 Optimization

In this section, we give an iterative approach to optimize the
objective function. First, we write the objective function
shown in Eq. (2) as follows:

min
wwi

1

n

Xc
i¼1

Xn
j¼1

log ð1þ expð�yijww
T
i xxjÞÞ

þ g
Xc
i¼1

Xc
j¼1

aijTrð½wwi; wwj�TDDij½wwi; wwj�Þ;
(4)

where DDij is a diagonal matrix with the dth diagonal ele-

ment as 1
2k½wwi;wwj�d�k2

. Trð�Þ is the trace operation of a matrix.

The second term in Eq. (4) can be simplified as follows:

Xc
i¼1

Xc
j¼1

aijTrð½wwi; wwj�TDDij½wwi; wwj�Þ

¼
Xc
i¼1

Xc
j¼1

ðaijwwT
i DD

ijwwi þ aijww
T
j DD

ijwwjÞ

¼
Xc
i¼1

wwT
i

 Xc
j¼1

aijDD
ij

!
wwi þ

Xc
j¼1

wwT
j

 Xc
i¼1

aijDD
ij

!
wwj

¼
Xc
i¼1

wwT
i

 Xc
j¼1

aijDD
ij

!
wwi þ

Xc
j¼1

wwT
j

 Xc
i¼1

aijDD
ji

!
wwj

Because of aij ¼ aji and DDij ¼ DDji, we rewrite the above
equation as:

Xc
i¼1

Xc
j¼1

aijTrð½wwi; wwj�TDDij½wwi; wwj�Þ

¼
Xc
i¼1

wwT
i

 
2
Xc
j¼1

aijDD
ij

!
wwi

(5)

By denoting QQi ¼ 2
Pc

j¼1 aijDD
ij, the problem in Eq. (4) will

arrive at:

min
wwi

1

n

Xc
i¼1

Xn
j¼1

log ð1þ expð�yijww
T
i xxjÞÞ þ g

Xc
i¼1

wwT
i QQ

iwwi (6)

From the above equation, we observe that the problem in
Eq. (6) is unrelated between different wwi. Hence, we decou-
ple it to solve the following problem for each wwi:

min
wwi

1

n

Xn
j¼1

log ð1þ expð�yijww
T
i xxjÞÞ þ gwwT

i QQ
iwwi (7)

We denote LðwwiÞ ¼ 1
n

Pn
j¼1 log ð1þ expð�yijww

T
i xxjÞÞ and

VðwwiÞ ¼ wwT
i QQ

iwwi. By using gradient descent, we can update
wwi as follows:

ww
ðtþ1Þ
i ¼ ww

ðtÞ
i þ h

n
rwwi

LðwwiÞ þ grwwi
VðwwiÞ

o
(8)

h > 0 is the learning rate. t is the step index. Because both
LðwwiÞ and VðwwiÞ are differentiable with respect to wwi, we
summarize the detailed algorithm to optimize the proposed
objective function in Algorithm 1.

Algorithm 1. Algorithm to Solve the Problem in Eq. (2)

Data: DataXX 2 Rðdþ1Þ�n, Parameter g, k, and label correlation
matrix AA 2 Rc�c

Result:WW 2 Rðdþ1Þ�c

1: Randomly initializeWW ;
2: repeat
3: For each i and j, calculate the diagonal matrixDDij,

where the dth diagonal element is 1

2k½wwi;wwj�dk2
;

4: For each i, calculate the diagonal matrix QQi by

QQi ¼ 2
P

j aijDD
ij;

5: For each i, update wwi in Eq. (8) using Gradient Descent;
6: until Convergence;

Because the logistic loss function and ‘2;1-norm are all con-
vex, the objective function in Eq. (2) converges to the global
optima by Algorithm 1. The related proof can be found in
Appendix, available in the supplemental material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2016.2605687.

4 EXPERIMENTS

In this section, descriptions of all the compared methods will
first be given, followed by an introduction to the experiment
settings. The experimental results will then be reported and
analyzed.

4.1 Experiment Settings

In the experiments, we compare our proposed algorithm
with the following approaches:

� Binary Relevance SVM (BR-SVM): Binary Relevance
(BR) is a transformation approach, which divides the
multi-label classification problem into many binary
classification problems. For the task of diagnosis
code assignment, BR-SVM has achieved the best per-
formance in terms of accuracy measured by Ham-
ming loss in [21].

� Hierarchy-based SVM (H-SVM): The hierarchy-based
SVM considers the class hierarchical structures in
learning processes and achieves comparable perfor-
mance in terms of Hamming loss in [20], [21]. The
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hierarchy of ICD9 codes is available from the NCBO
BioPortal [37].

� Label specIfic FeaTures (LIFT) [38]: In the multi-label
learning framework, LIFT will perform clustering on
features with respect to each class, after which train-
ing and testing will be conducted by querying the
clustering results. Using this method, label-specific
features belonging to a certain class will be exploited.

� Multi-Label kNN (MLkNN) [13]: ML-kNN is used to
learn multi-label k-nearest neighbor classifiers. We
tune values of k in the range of f8; 9; 10; 11; 12g
according to [13] and report the best result in the
experiment.

� RankSVM [39]: This algorithm is designed to handle
multi-label classification problems by using a large
margin ranking system. This system has a number of
common features with traditional SVMs.

� SubFeature Uncovering with Sparsity (SFUS) [40]: This
method considers both selecting the most distinctive
features in the original feature space and exploiting
shared structural information in a subspace. It has
been applied in a multi-label learning application
that automatically annotates multi-labels to web
images.

Since noise may exist in disease correlations, we set a fil-
ter parameter k that controls the sparsity of the affinity
matrix A. If aij < k, aij ¼ 0. All medical data are randomly
and evenly split into two parts for training and testing pro-
cedures. In the training phase, 5-fold cross validation and
grid search scheme are applied to select the best parameters
on training data. In our proposed algorithm, there are two
parameters, k and g. k is a filter parameter that controls the
sparsity of the affinity matrix A, while g is the regularization
parameter. In the experiment, k is tuned in {0.1, 0.15, 0.2,
0.25, 0.3, 0.35, 0.4, 0.45, 0.5}, while g is tuned in

f10�4; 10�3; 10�2; 10�1; 100; 101; 102; 103; 104g. The learning

rate, h, in Eq. (8) is set at 0.001 in all experiments. After the
parameter selection, we fit the model with the best parame-
ters on the testing dataset, and report the corresponding
results. The parameters of the compared methods are tuned

in the same range of f10�4; 10�3; 10�2; 10�1; 100; 101; 102; 103;

104g, e.g., regularization parameter for the SVM-basedmeth-
ods. Because of the hierarchical structures of ICD9 codes
mentioned before, we name c0 as the most general classifica-
tion label and c1 as the more specific label. For c0, there are 19
disease categories while there are 129 categorizations for c1.
Since only adult records are considered, we exclude the dis-
ease group that is designed for neonates at all levels, i.e., cer-
tain conditions originating in the perinatal period (769-779). As a
result, the full class setting at c0 level includes 18 classes. For
c1 level, we only consider top d disease codes because some
diseases are rarely diagnosed in ICU. We set d ¼ f5; 10;
15; 18g in c0 and d ¼ f5; 10; 15; 20; 25g in c1. The evaluations
are thus conducted in different label settings; for example,
the label setting c0d5 means the c0 with d ¼ 5 is in use.

Since there are two types of features that are extracted from
chart and note data respectively, we concatenate the chart and
note features to form the third fused features. All the algo-
rithms are evaluated using the three type of features, i.e., chart
features, note features, and their concatenated features. Note
that there have so far been many feature fusion strategies,
including: early fusion, late fusion and multi-stage fusion. In
this paper, we only consider early fusion, in which two types
of features, chart and note features, are concatenated. It is
worth considering the underlying correlations between two
features since the high-level note data are summarized and
inferred from low-level chart data. However, this is not the
focus of this paper and can be considered for futurework.

To evaluate the performance, we have adopted two crite-
ria that are widely used inmulti-label learning:Hamming loss
and Ranking loss. The former criterion is an example-based
metric that evaluates the errors from either the predictions of

Fig. 3. Performance variations with the different combinations of gs and ks. Top 10 classes (d ¼ 10) are used in different class settings, c0 and c1.
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wrong labels or from missing predictions. From the defini-
tion, we can see that error-free performance will have zero
Hamming loss, which means there is no difference between
the predicted labels and the ground truth. In other words,
the smaller the value of the Hamming loss is, the better the per-
formance will be. Ranking loss takes into account the average
fraction of label pairs that aremis-ordered for the object. Sim-
ilarly, a smaller Ranking loss indicates a better performance
result. More details of these two criteria can be found in [41].
We repeat the experiments five times and report the average
results with standard deviations under eight different label
settings for each hierarchy.

4.2 Evaluation Results

Since there are two parameters, i.e., k and g, in our frame-
work, we conduct an experiment to investigate performance
variations with respect to different parameter combinations.
Performance variations with different combinations of ks
and gs are drawn in Fig. 3. Due to page limitations, we only
select the top 10 classes (d ¼ 10) in each ICD9 hierarchy (c0
or c1) for two features and their fusion version. We only con-
sider Hamming loss as the metric in this experiment. k varies
in a range of f0:10; 0:15; 0:20; 0:25; 0:30; 0:35; 0:40; 0:45; 0:5g
while g 2 f10�4; 10�3; 10�2; 10�1; 1; 101; 102; 103; 104g. Note
that the smaller the Hamming loss value (the shorter bar in

TABLE 2
Performance Comparison Between Our Algorithm and All Compared Methods

Using Medical Chart Data Under Different Label Settings

Criteria Settings BR-SVM H-SVM LIFT MLkNN RankSVM SFUS Ours

Hamming loss #

c0

d5 .369 	 .002 .330 	 .003 .336 	 .002 .339 	 .003 .345 	 .002 .329 	 .002 .311 	 .001
d10 .333 	 .002 .311 	 .003 .317 	 .002 .317 	 .002 .328 	 .003 .302 	 .002 .289 	 .011
d15 .275 	 .002 .262 	 .002 .269 	 .002 .269 	 .002 .284 	 .001 .260 	 .002 .249 	 .001
d18 .237 	 .003 .229 	 .003 .232 	 .001 .224 	 .001 .246 	 .004 .229 	 .004 .218 	 .001

c1

d5 .392 	 .003 .376 	 .002 .375 	 .005 .378 	 .002 .434 	 .008 .405 	 .003 .367 	 .002
d10 .318 	 .001 .312 	 .002 .313 	 .003 .313 	 .001 .332 	 .004 .337 	 .003 .302 	 .001
d15 .276 	 .002 .269 	 .002 .271 	 .001 .271 	 .001 .288 	 .001 .302 	 .003 .264 	 .001
d20 .241 	 .001 .238 	 .002 .237 	 .002 .237 	 .001 .252 	 .001 .266 	 .002 .222 	 .001
d25 .209 	 .003 .202 	 .001 .210 	 .002 .209 	 .001 .221 	 .001 .239 	 .001 .195 	 .002

Ranking loss #

c0

d5 .266 	 .001 .244 	 .002 .245 	 .001 .257 	 .001 .282 	 .002 .301 	 .013 .236 	 .001
d10 .252 	 .001 .232 	 .001 .236 	 .001 .240 	 .001 .264 	 .004 .273 	 .002 .221 	 .001
d15 .230 	 .002 .218 	 .002 .227 	 .001 .229 	 .001 .253 	 .002 .243 	 .001 .204 	 .002
d18 .214 	 .001 .202 	 .003 .210 	 .001 .214 	 .003 .237 	 .003 .225 	 .001 .184 	 .001

c1

d5 .343 	 .001 .314 	 .005 .315 	 .003 .320 	 .002 .349 	 .001 .400 	 .002 .310 	 .003
d10 .303 	 .002 .277 	 .001 .269 	 .002 .272 	 .001 .330 	 .003 .325 	 .006 .269 	 .001
d15 .287 	 .001 .256 	 .001 .262 	 .002 .265 	 .002 .309 	 .004 .293 	 .001 .265 	 .003
d20 .275 	 .003 .248 	 .001 .246 	 .001 .249 	 .001 .294 	 .002 .279 	 .002 .249 	 .003
d25 .244 	 .001 .233 	 .002 .230 	 .001 .232 	 .001 .272 	 .002 .262 	 .001 .224 	 .003

Hamming loss and ranking loss are used as metric. The parameters k and g are fixed at 0.25 and 1, respectively.

TABLE 3
Performance Comparison Between Our Algorithm and All Compared Methods

Using Medical Note Data Under Different Label Settings

Criteria Settings BR-SVM H-SVM LIFT MLkNN RankSVM SFUS Ours

Hamming losss #

c0

d5 .339 	 .003 .312 	 .001 .305 	 .004 .315 	 .002 .317 	 .007 .303 	 .002 .295 	 .001
d10 .308 	 .001 .289 	 .002 .293 	 .001 .294 	 .002 .305 	 .002 .280 	 .002 .281 	 .002
d15 .267 	 .001 .250 	 .001 .251 	 .003 .253 	 .002 .264 	 .002 .243 	 .002 .247 	 .001
d18 .229 	 .002 .207 	 .002 .214 	 .002 .208 	 .003 .226 	 .003 .212 	 .001 .195 	 .002

c1

d5 .371 	 .002 .343 	 .002 .343 	 .001 .363 	 .002 .408 	 .004 .403 	 .001 .325 	 .001
d10 .304 	 .003 .290 	 .002 .288 	 .001 .297 	 .001 .314 	 .001 .316 	 .002 .285 	 .001
d15 .264 	 .002 .256 	 .001 .254 	 .001 .260 	 .001 .277 	 .001 .284 	 .001 .253 	 .001
d20 .236 	 .004 .234 	 .001 .224 	 .001 .228 	 .001 .245 	 .002 .249 	 .001 .223 	 .001
d25 .210 	 .007 .190 	 .002 .197 	 .001 .201 	 .001 .222 	 .001 .220 	 .001 .197 	 .001

Ranking loss #

c0

d5 .227 	 .001 .221 	 .002 .205 	 .003 .205 	 .002 .219 	 .001 .256 	 .003 .219 	 .002
d10 .238 	 .001 .212 	 .003 .218 	 .002 .216 	 .001 .237 	 .002 .220 	 .003 .221 	 .002
d15 .219 	 .002 .206 	 .003 .198 	 .001 .197 	 .001 .221 	 .002 .212 	 .001 .189 	 .001
d18 .197 	 .002 .190 	 .001 .181 	 .003 .182 	 .001 .205 	 .001 .194 	 .002 .169 	 .002

c1

d5 .324 	 .002 .309 	 .002 .302 	 .003 .302 	 .002 .313 	 .002 .406 	 .007 .291 	 .004
d10 .276 	 .003 .249 	 .003 .251 	 .002 .250 	 .001 .278 	 .004 .260 	 .001 .267 	 .002
d15 .265 	 .001 .240 	 .002 .244 	 .001 .243 	 .001 .284 	 .006 .248 	 .002 .231 	 .004
d20 .246 	 .001 .225 	 .003 .227 	 .001 .227 	 .001 .265 	 .002 .250 	 .001 .216 	 .003
d25 .223 	 .003 .203 	 .002 .207 	 .001 .206 	 .001 .239 	 .002 .233 	 .001 .200 	 .004

Hamming loss and ranking loss are used as metric. The parameters k and g are fixed at 0.25 and 1, respectively.
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Fig. 3), the better performance. From all the Figs. 3a, 3b, 3c,
3d, 3e, 3f, we can observe that highest and lowest values of g

(e.g., 10�4; 10�3; 103; 104) are detrimental to the performance.

Medium values of g, such as 10�1; 1; 101 usually yield good
performance results. On the contrary, there is not an obvi-
ous pattern for the filter parameterk. However, the best per-
formance result (the shortest bar) is usually identified when
g ¼ 1 and k ¼ 0:25. We have observed similar trends and
results for the other class settings. As a result, we fix g ¼ 1
and k ¼ 0:25 as the best parameter combination in the rest
of experiments. To consider the effectiveness of our algo-
rithm, we compare all the algorithms detailed above and

report the results of the different types of features in
Tables 2, 3, and 4. Note that the parameters are fixed (g ¼ 1
and k ¼ 0:25). Average results with standard deviations are
represented in the tables. From the tables, we make the fol-
lowing observations: Irrespective of the type of features
used, our proposed algorithm performs better than all
others in terms of Hamming loss and Ranking loss in most of
the different class settings. In each classification hierarchy
(c0 and c1), it is interesting to find that both criteria mostly
decrease for all algorithms with the increase of number of
classes (e.g., d varies from 5 to 18 in c0). For example, the
Hamming loss of the proposed method is 0.311 when d ¼ 5 in

TABLE 4
Performance Comparison Between Our Algorithm and All Compared Methods
Using Fused Medical Data (Chart and Note) Under Different Label Settings

Criteria Settings BR-SVM H-SVM LIFT MLkNN RankSVM SFUS Ours

Hamming loss #

c0

d5 .329 	 .002 .292 	 .001 .311 	 .004 .328 	 .002 .349 	 .004 .301 	 .002 .282 	 .001
d10 .303 	 .002 .270 	 .002 .298 	 .002 .306 	 .002 .295 	 .003 .275 	 .002 .261 	 .001
d15 .257 	 .002 .234 	 .001 .256 	 .002 .262 	 .002 .261 	 .001 .238 	 .002 .231 	 .001
d18 .213 	 .003 .203 	 .001 .219 	 .002 .217 	 .001 .223 	 .003 .207 	 .004 .200 	 .003

c1

d5 .362 	 .003 .332 	 .001 .344 	 .003 .369 	 .004 .424 	 .007 .388 	 .002 .318 	 .001
d10 .300 	 .002 .297 	 .002 .290 	 .002 .305 	 .003 .337 	 .009 .307 	 .003 .278 	 .001
d15 .259 	 .001 .251 	 .003 .254 	 .001 .265 	 .002 .269 	 .002 .278 	 .002 .247 	 .002
d20 .235 	 .002 .230 	 .001 .225 	 .001 .232 	 .002 .239 	 .001 .244 	 .001 .219 	 .002
d25 .202 	 .002 .198 	 .002 .199 	 .002 .205 	 .002 .211 	 .001 .216 	 .001 .194 	 .001

Ranking loss #

c0

d5 .226 	 .002 .203 	 .001 .199 	 .002 .200 	 .002 .226 	 .001 .265 	 .006 .214 	 .002
d10 .238 	 .001 .209 	 .002 .211 	 .001 .210 	 .001 .246 	 .003 .223 	 .005 .215 	 .001
d15 .219 	 .001 .182 	 .002 .194 	 .001 .193 	 .001 .230 	 .002 .217 	 .002 .188 	 .002
d18 .202 	 .003 .171 	 .002 .177 	 .001 .178 	 .002 .214 	 .003 .199 	 .002 .168 	 .001

c1

d5 .315 	 .002 .268 	 .002 .288 	 .002 .288 	 .002 .311 	 .002 .354 	 .006 .274 	 .002
d10 .273 	 .002 .242 	 .002 .240 	 .002 .238 	 .002 .285 	 .006 .328 	 .019 .228 	 .001
d15 .264 	 .003 .231 	 .001 .232 	 .002 .231 	 .002 .281 	 .005 .268 	 .005 .223 	 .003
d20 .248 	 .003 .217 	 .002 .218 	 .001 .217 	 .001 .263 	 .002 .258 	 .003 .201 	 .003
d25 .227 	 .002 .193 	 .001 .199 	 .001 .198 	 .001 .243 	 .002 .240 	 .004 .189 	 .003

Hamming loss and ranking loss are used as metric. The parameters k and g are fixed at 0.25 and 1, respectively.

Fig. 4. Performance variations with respect to different gs. We test chart, note, and fused data under all class setting. Due to the page limit, we only
show the results under class setting c0d10 and c1d10. k is fixed at 0.25. Performance results of all compared methods are also drawn in each figure.
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c0. However, the value decreases to 0.249 and 0.218 when
d ¼ 15 and d ¼ 18, respectively. Exceptions can be observed
for note and fused features (d ¼ 10 in c0) measured by Rank-
ing loss. In most cases, note features have better results than
chart features. This may because the note data contain
descriptive and predictive information from medical
experts. On the other hand, our method achieves better per-
formance by using fused features than by using each of
them separately. For instance, the biggest margin is
observed at Ranking loss when d ¼ 10 in chart or note fea-
tures have higher values (i.e., 0.2690 for the chart data and
0.2665 for the note data, respectively). However, the
improvement achieved by feature fusion in all settings is
sometimes limited, which is the result of the simple early
fusion strategy (the concatenation of two features). From
the results in Tables 2, 3, and 4, we can observe that our
algorithm performs much better than BR-SVM, which does
not consider the correlation between diseases. Compared to
the other methods, which take correlation into account, it is
worth noting that our proposed algorithm still yield better
performance results in the most cases. To validate the effec-
tiveness of the disease correlation embedding via a graph
structure, we fix k as 0.25 and add g ¼ 0 as in the previously
tested range. When g ¼ 0, there is no contribution from dis-
ease correlation mining in the objective function in Eq. (2).
The entire work is then equivalent to a standard logistic
regression model for a multi-label classification problem. In
Fig. 4, the classification performance of all the methods is
drawn in each sub-figure to give a better understanding of
how and when our method achieves superior performance
than its counterparts. Note that none of the other compared
algorithms change their performance with the variation of
g. They are shown as horizontal dashed lines in the figures.
In all the sub-figures, our proposed method has a higher
Hamming loss when g ¼ 0. With the changes to g, the value
is minimized at a certain g (usually g ¼ 1). However,

dramatic increases are observed when much bigger gs are
engaged. This experiment validates that a proper fraction of
disease correlation embedding is indeed beneficial to multi-
label learning. With this graph structure, our framework
stands out against all other algorithms in most cases.

Lastly, we conduct empirical experiments to demonstrate
the convergence of our proposed algorithm. We first test the
number of iterations of our algorithm and report the results in
Fig. 5. Due to page limitations, we only select the top 10 clas-
ses (d ¼ 10) in each ICD9 hierarchy (c0 or c1) for two features
and their fusion version. From the experiments, we see that
the objective function value converges within a few steps
(approximately 12 iterations in most cases). To test the effi-
ciency of the proposed algorithm, we fix two parameters
(k ¼ 0:25 and g ¼ 1) under the full class setting (c0d18). We

Fig. 5. The convergence curves of the objective function values in (2) using algorithm 1 on MIMIC II. We test chart, note, and fused data under all
class setting. Due to the page limit, we only show the results under class setting c0d10 and c1d10. k is fixed at 0.25.

Fig. 6. Averaged runtime records with the increase in the number of
patient data. X-axis is the number of data, while Y-axis denotes the cor-
responding runtime of our algorithm in second.
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record the corresponding running time of the algorithm. In
each run, the max iteration number is set to 20. We repeat the
test 10 times and report the averaged result in Fig. 6. To empir-
ically demonstrate that our algorithm converges to a global
optima,we design an experimentwhich tests different initiali-
zations of WW in Algorithm 1. We initialize W in different
seven ways: setting all the diagonal elements ofW to 0.5, 1, 2
(0 for other elements), and setting all the elements ofW to 0.5,
1, 2, and random values. All the class settings are tested. From
Table 5, we can see the objective function values of different
seven initialization ways are the same for each class setting. It
can be seen that our algorithm always converges to the global
optimum regardless of the different initializations.

5 CONCLUSIONS

The aim of this paper has been to learn ICU patient diagnosis
labels and automatically conduct annotation according to the
patient data. We extracted medical chart and note data from
a publicly available large-scale Intensive Care Unit database,
i.e., MIMIC II. The Bag-of-words model was applied to
encode both chart and note features. With the goal of achiev-
ing acceptablemulti-label classification performance,we pro-
posed an algorithm based on sparsity regularization to
exploit and utilize disease correlations via a graph structure.
The entire framework is convex and leads to a guaranteed
global optima. Our algorithm improvesmulti-label classifica-
tion performance by capturing the disease correlations.
Extensive experiments demonstrate that the proposed
method, with the help of successful disease correlation
embedding, learns the diagnostic codes of patients more
effectively than all other compared approaches.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council
Discovery Project under Grant No. DP 140100104. Any
opinions, findings, and conclusions or recommendations exp-
ressed in thismaterial are those of the authors and do not nec-
essarily reflect the views of the Australian ResearchCouncil.

REFERENCES

[1] M. Ghassemi, et al., “Unfolding physiological state: Mortality
modelling in intensive care units,” in Proc. ACM SIGKDD Conf.
Knowl. Discovery Data Min., 2014, pp. 75–84.

[2] A. E. Johnson, A. A. Kramer, and G. D. Clifford, “A new severity
of illness scale using a subset of acute physiology and chronic
health evaluation data elements shows comparable predictive
accuracy,” Critical Care Med., vol. 41, no. 7, pp. 1711–1718, 2013.

[3] C. K. Loo and M. Rao, “Accurate and reliable diagnosis and clas-
sification using probabilistic ensemble simplified fuzzy
ARTMAP,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 11,
pp. 1589–1593, Nov. 2005.

[4] L. V. Lita, S. Yu, R. S. Niculescu, and J. Bi, “Large scale diagnostic
code classification for medical patient records.” in Proc. Int. Joint
Conf. Natural Lang. Process., 2008, pp. 877–882.

[5] O. Frunza, D. Inkpen, and T. Tran, “A machine learning approach
for identifying disease-treatment relations in short texts,” IEEE
Trans. Knowl. Data Eng., vol. 23, no. 6, pp. 801–814, Jun. 2011.

[6] Y. Park and J. Ghosh, “Ensembles of a-trees for imbalanced classi-
fication problems,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 1,
pp. 131–143, Jan. 2014.

[7] C. Friedman, L. Shagina, Y. Lussier, and G. Hripcsak,
“Automated encoding of clinical documents based on natural
language processing,” J. Amer. Med. Informat. Assoc., vol. 11,
no. 5, pp. 392–402, 2004.

[8] P. Ruch, R. Baud, and A. Geissbhler, “Evaluating and reducing
the effect of data corruption when applying bag of words
approaches to medical records,” Int. J. Med. Informat., vol. 67,
no. 13, pp. 75–83, 2002.

[9] P. Ordonez, T. Armstrong, T. Oates, and J. Fackler, “Using modi-
fied multivariate bag-of-words models to classify physiological
data,” in Proc. IEEE Int. Conf. Data Min. Workshop, Dec. 2011,
pp. 534–539.

[10] F. Wang, N. Lee, J. Hu, J. Sun, and S. Ebadollahi, “Towards hetero-
geneous temporal clinical event pattern discovery: A convolu-
tional approach,” in Proc. ACM SIGKDD Conf. Knowl. Discovery
Data Min., 2012, pp. 453–461.

[11] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-
label scene classification,” Pattern Recognit., vol. 37, no. 9,
pp. 1757–1771, 2004.

[12] N. Ghamrawi and A. McCallum, “Collective multi-label classi-
fication,” in Proc. 14th ACM Int. Conf. Inf. Knowl. Manage., 2005,
pp. 195–200.

[13] M.-L. Zhang and Z.-H. Zhou, “ML-kNN: A lazy learning
approach to multi-label learning,” Pattern Recognit., vol. 40, no. 7,
pp. 2038–2048, 2007.

[14] M.-L. Zhang, “Ml-rbf: RBF neural networks for multi-label
learning,” Neural Process. Lett., vol. 29, no. 2, pp. 61–74, 2009.

[15] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Mach. Learning, vol. 85, no. 3,
pp. 333–359, 2011.

[16] G. Tsoumakas, I. Katakis, and L. Vlahavas, “Random k-labelsets
for multilabel classification,” IEEE Trans. Knowl. Data Eng., vol. 23,
no. 7, pp. 1079–1089, Jul. 2011.

[17] Y. Yang, Z. Ma, A. G. Hauptmann, and N. Sebe, “Feature selection
for multimedia analysis by sharing information among multiple
tasks,” IEEE Trans. Multimedia, vol. 15, no. 3, pp. 661–669,
Apr. 2013.

[18] X. Chang, H. Shen, S. Wang, J. Liu, and X. Li, “Semi-supervised
feature analysis for multimedia annotation by mining label
correlation,” in Proc. 18th Pacific-Asia Conf. Advances. Knowl.
Discovery Data Min., 2014, pp. 74–85.

[19] X. Zhu, X. Li, and S. Zhang, “Block-row sparse multiview multila-
bel learning for image classification,” IEEE Trans. Cybern., vol. 46,
no. 2, pp. 450–461, Feb. 2016.

[20] A. Perotte, R. Pivovarov, K. Natarajan, N. Weiskopf, F. Wood, and
N. Elhadad, “Diagnosis code assignment: Models and evaluation
metrics,” J. Amer.Med. Informat. Assoc., vol. 21, no. 2, pp. 231–237, 2014.

TABLE 5
Objective Function Value Variance w.r.t. Different Initializations ofW Under All Class Settings: Setting Diagonal Elements ofW to

0.5, 1, 2 (0 for Other Elements), and Setting All the Elements ofW to 0.5, 1, 2, and Random Values

c0d5 c0d10 c0d15 c0d18 c1d5 c1d10 c1d15 c1d20 c1d25

1st init. 3260.7 6455.7 8524.4 9078.7 3590.1 6407.6 8691.4 10580.3 11773.9
2nd init. 3260.7 6455.7 8524.4 9078.7 3590.1 6407.6 8691.4 10580.3 11773.9
3rd init. 3260.7 6455.7 8524.4 9078.7 3590.1 6407.6 8691.4 10580.3 11773.9
4th init. 3260.7 6455.7 8524.4 9078.7 3590.1 6407.6 8691.4 10580.3 11773.9
5th init. 3260.7 6455.7 8524.4 9078.7 3590.1 6407.6 8691.4 10580.3 11773.9
6th init. 3260.7 6455.7 8524.4 9078.7 3590.1 6407.6 8691.4 10580.3 11773.9
7th init. 3260.7 6455.7 8524.4 9078.7 3590.1 6407.6 8691.4 10580.3 11773.9

In this experiment, all the class settings are tested.

WANG ET AL.: DIAGNOSIS CODE ASSIGNMENT USING SPARSITY-BASED DISEASE CORRELATION EMBEDDING 11



IEE
E P

ro
of

[21] D. Zufferey, T. Hofer, J. Hennebert, M. Schumacher, R. Ingold,
and S. Bromuri, “Performance comparison of multi-label learning
algorithms on clinical data for chronic diseases,” Comput. Biol.
Med., vol. 65, pp. 34–43, 2015.

[22] J. C. Ferrao, F. Janela, M. D. Oliveira, and H. M. Martins, “Using
structured EHR data and SVM to support ICD-9-CM coding,” in
Proc. IEEE Int. Conf. Healthcare Informat., 2013, pp. 511–516.

[23] S. V. Pakhomov, J. D. Buntrock, and C. G. Chute, “Automating the
assignment of diagnosis codes to patient encounters using exam-
ple-based and machine learning techniques,” J. Amer. Med. Infor-
mat. Assoc., vol. 13, no. 5, pp. 516–525, 2006.

[24] X. Kong, B. Cao, and P. S. Yu, “Multi-label classification by mining
label and instance correlations from heterogeneous information
networks,” in Proc. ACM SIGKDD Conf. Knowl. Discovery Data
Min., 2013, pp. 614–622.

[25] Y. Yan, G. Fung, J. G. Dy, and R. Rosales, “Medical coding classifi-
cation by leveraging inter-code relationships,” in Proc. ACM
SIGKDD Conf. Knowl. Discovery Data Min., 2010, pp. 193–202.

[26] Z. Che, D. Kale, W. Li, M. T. Bahadori, and Y. Liu, “Deep compu-
tational phenotyping,” in Proc. 21th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Min., 2015, pp. 507–516.

[27] P. Zhao, G. Rocha, and B. Yu, “The composite absolute penalties
family for grouped and hierarchical variable selection,” Ann. Stat-
ist., pp. 3468–3497, 2009.

[28] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust
feature selection via joint l2,1-norms minimization,” in Proc.
Advances Neural Inf. Process. Syst., 2010, pp. 1813–1821.

[29] S. Wang, Y. Yang, Z. Ma, X. Li, C. Pang, and A. G. Hauptmann,
“Action recognition by exploring data distribution and feature
correlation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2012, pp. 1370–1377.

[30] Y. Yang, F. Nie, D. Xu, J. Luo, Y. Zhuang, and Y. Pan, “A multime-
dia retrieval framework based on semi-supervised ranking and
relevance feedback,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 34, no. 4, pp. 723–742, Apr. 2012.

[31] Y. Yang, J. Song, Z. Huang, Z. Ma, N. Sebe, and A. G.
Hauptmann, “Multi-feature fusion via hierarchical regression for
multimedia analysis,” IEEE Trans. Multimedia, vol. 15, no. 3,
pp. 572–581, Apr. 2013.

[32] X. Chang, F. Nie, Y. Yang, and H. Huang, “A convex formulation
for semi-supervised multi-label feature selection,” in Proc. 28th
AAAI Conf. Artif. Intell., 2014, pp. 1171–1177.

[33] M. Saeed, et al., “Multiparameter intelligent monitoring in inten-
sive care II (mimic-II): A public-access intensive care unit data-
base,” Critical Care Med., vol. 39, no. 5, 2011, Art. no. 952.

[34] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” J. Mach. Learning Res., vol. 3, pp. 993–1022, 2003.

[35] Z. Ma, Y. Yang, N. Sebe, and A. G. Hauptmann, “Knowledge
adaptation with partially shared features for event detection using
few exemplars,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 9, pp. 1789–1802, Sep. 2014.

[36] X. Cai, F. Nie, W. Cai, and H. Huang, “New graph structured
sparsity model for multi-label image annotations,” in Proc. IEEE
Int. Conf. Comput. Vis. Australia, 2013, pp. 801–808.

[37] P. L. Whetzel, et al., “Bioportal: Enhanced functionality via new
web services from the national center for biomedical ontology to
access and use ontologies in software applications,” Nucleic Acids
Res., vol. 39, no. suppl. 2, pp. W541–W545, 2011.

[38] M.-L. Zhang and L. Wu, “Lift: Multi-label learning with label-
specific features,” in Proc. Int. Joint Conf. Artif. Intell., 2011,
pp. 1609–1614.

[39] A. Elisseeff and J. Weston, “A kernel method for multi-labelled
classification,” in Proc. Advances Neural Inf. Process. Syst., 2001,
pp. 681–687.

[40] Z. Ma, F. Nie, Y. Yang, J. R. Uijlings, and N. Sebe, “Web image
annotation via subspace-sparsity collaborated feature selection,”
IEEE Trans. Multimedia, vol. 14, no. 4, pp. 1021–1030, Aug. 2012.

[41] M. S. Sorower, “A literature survey on algorithms for multi-label
learning,” Tech. rep., Oregon State University, Corvallis, OR, 2010.

Sen Wang received the ME degree in computer
science from Jilin University, China, and the PhD
degree from The University of Queensland, in
2014. He is currently a lecturer in the School of
Information and Communication Technology,
Griffith University. His research interests include
machine learning, data mining, biomedical appli-
cation, and social media mining.

Xiaojun Chang is working toward the PhD
degree in the Centre for Quantum Computation
and Intelligent Systems, University of Technology
Sydney, Australia. He has been working as a vis-
iting student in the Language Technologies Insti-
tute, Carnegie Mellon University, since March,
2014. His research interests include machine
learning, data mining, and computer vision.

Xue Li received the MSc and PhD degrees from
The University of Queensland (UQ) and the
Queensland University of Technology, in 1990
and 1997 respectively. He is currently a full profes-
sor in the School of Information Technology and
Electrical Engineering, UQ, Brisbane, Queens-
land, Australia. His major areas of research
interests and expertise include data mining, multi-
media data security, database systems, and intel-
ligent web information systems. He is a member
of the ACM, the IEEE, and the SIGKDD.

Guodong Long received the BS and MS
degrees in computer science from the National
University of Defence Technology, Changsha,
China, in 2002 and 2008, respectively, and the
PhD degree in information technology from the
University of Technology, Sydney (UTS), in
2014. He is currently a research lecturer in the
Research Centre for Quantum Computing and
Intelligence Systems (QCIS), UTS. His research
interests include data mining, machine learning,
and database and cloud computing.

Lina Yao received the BE degree from Shandong
University and the MSc and PhD degrees in com-
puter science from the University of Adelaide.
She is currently a lecturer in the School of Com-
puter Science and Engineering, University of
New South Wales. Her research interests include
data mining, Internet of Things, ubiquitous and
pervasive computing, and service computing.

Quan Z. Sheng received the PhD degree in com-
puter science from the University of New South
Wales, in 2006. He is a full professor in the
School of Computer Science, University of Ade-
laide, and head of the Advanced Web Technolo-
gies Research Group. His research interests
include big data analytics, distributed computing,
Internet computing, and Web of Things. He
received the Australian Research Council Future
Fellowship in 2014, Chris Wallace Award for out-
standing research contribution in 2012, and

Microsoft Research Fellowship in 2003. He is the author of more than
210 publications.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. X, XXXXX 2016


