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Abstract
QuantumKeyDistribution is a quantum communication technique inwhich randomnumbers are
encoded on quantum systems, usually photons, and sent fromone party, Alice, to another, Bob.Using
the data sent via the quantum signals, supplemented by classical communication, it is possible for
Alice and Bob to share an unconditionally secure secret key. This is not possible if only classical signals
are sent.While this last statement is a long standing result fromquantum information theory it turns
out only to be true in a non-relativistic setting. If relativistic quantumfield theory is consideredwe
show it is possible to distribute an unconditionally secure secret keywithout sending a quantum
signal, instead harnessing the intrinsic entanglement between different regions of space–time. The
protocol is practical in free space given horizon technology andmight be testable in principle in the
near termusingmicrowave technology.

1. Introduction

When information is carried by quantum systems then the abstract rules of information science developed for
classical systems aremodified [1]. If we now consider information carried on relativistic quantum systems then
the rules aremodified further [2, 3]. One aimof this newfield of relativistic quantum information is to
understandwhether new,more powerful information protocols emerge in this new setting. Herewe describe a
specific protocol of this type.While quantum communication protocols that rely on the impossibility of
superluminal signalling have been described recently [4] this is the first time a fundamentally different protocol
has been described that relies on the fullmachinery of relativistic quantumfield theory.

The key physics wewill rely on here are quantum correlations of space–timewhich arise in relativistic
quantumfield theory. It is well known that the restriction of quantumfieldmodes to the left and right Rindler
wedges (see figure 1) leads observers of thesemodes tofind that the ground state as defined in terms of the
normalMinkowskimodes, appears as an entangled state between the twowedges [5, 6]. Physically, the Rindler
modes couple to detectors travelling on uniformly accelerating trajectories (see figure 1).However, the required
accelerations are extreme—well beyond foreseeable experimental capabilities. Alternatively one can restrict the
modes to the future and past light cones (see figure 1). It has been shown that formassless fields observers again
couple to theRindlermodes [7, 8]. Physically, in this case, themodes couple to time-like separated inertial
detectors with time dependent energy level separations such that their ‘clocks’ follow conformal time. In this
case the experimental requirements aremuch closer to current technology.

Coupling to the Rindlermodes by inertial detectors that are space-like separated has also been studied [9].
Extraction of entanglement from the Rindlermodes has traditionally been studied in terms ofUnruh–DeWitt
detectors [5], single two-level systems coupled isotropically to the field and placed into: acceleratedmotion [5];
switched rapidly [9]; or given a time dependent resonant frequency [7].More recently coupling to single
harmonic oscillators has been considered [11]. The extraction of entanglement from the vacuumfield has been
referred to as havesting of entanglement [10].However, the rapid decay of the entanglement with distance [9]
means that these techniques are not directly useful for quantum communication protocols.
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In this paperwewill describe how entanglement of the electromagnetic vacuumcan be observed using
inertialmacroscopic field detectors, i.e. homodyne detection. The particular novelty of this approach comes
from the directionality and efficiency of homodyne detectionwhich allows highly pure entanglement to be
detected over far greater distances. Even though the vacuum entanglement is not transferred to an independent
quantum system it is still useful for quantum information protocols. In particular we describe an entanglement-
based quantumkey distribution protocol inwhich no quantum signals are exchanged by the participants and the
security arises purely from the intrinsic entanglement of space–time.

2. Rindler and light cone coordinates

Weconsider a D(3 1)+ massless scalarfield description.Minkowski co-ordinates, x x x t( , , , )1 2 3 , are the
standard ones for describing inertial observers. Rindler co-ordinates, x x( , , , )2 3ξ η , describe trajectories that are
restricted either to the left or right Rindler wedges. TheMinkowski andRindler coordinate systems are related
via [12]:

t
a

a x
a

a
1

e sinh( );
1

e cosh( ); (1)a a
1η η= = ±ξ ξ

where + (−) corresponds to the right (left) wedge. A stationary observer in Rindler co-ordinates, sufficiently well
localized around 0ξ = , follows a uniformly accelerated trajectory inMinkowski co-ordinates. The rate of
acceleration is given by the parameter a. Throughout this paperwework in units for which c=1. An important
feature of the Rindler transformations is that the fields continue to satisfy thewave equation in the new
coordinates.

Alternatively we can consider transforming intomodes restricted to the past and future light cones. The
future–past (F–P) co-ordinates, x x( , , , )2 3ϵ τ , describe trajectories that are restricted either to the future or past
light cones. TheMinkowski and F–P coordinate systems are related via [7]:

t
a

a x
a

a
1

e cosh( );
1

e sinh( ); (2)a a
1ϵ ϵ= ± = ±τ τ

where + (−) corresponds to the future (past) light-cone. A stationary observer in light-cone co-ordinates,
sufficiently well localized around 0ϵ = , is stationary inMinkowski co-ordinates but follows a conformal time τ
with a parametrizing the difference between conformal andMinkowski time. A key observation from [7] is that
detectors described by coordinate transformations of the form equations (1) or (2) couple to the sameRindler
modes.

Figure 1. Space–time diagram showing the left and right Rindler wedges and the past and future light cones. Detectors following
uniformly accelerated trajectories (e.g. the trajectories shown in blue) are restricted to the left and right Rindler wedges and couple to
the Rindlermodes. Alternatively, stationary detectors at the originwhose clocks follow conformal time τ (trajectories shown in red,
where a at(1 )ln[ ]τ = for the future light cone and a at(1 )ln[ ]τ = − for the past light cone) are restricted to the past and future light
cones and also couple to the Rindlermodes.
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Furthermore, by observing the behaviour of the Schrödinger equation [7]:

H
t

i
d

d
i
d

d
, (3)o

H

at
oΦ

τ
Φ Φ Φ= → = ±

where the right-hand side shows the equivalent of the conformal time expression inMinkowski time, with + (−)
for the future (past) coordinates, we can observe that a physical detector that follows the conformal time of
equation (2) (with 0ϵ = ) corresponds to a detector with time dependent energy-level spacings (

H

at
o± ). This

observationwas confirmed in [7] and [8] via the explicit calculation of the excitation rates and correlation
properties ofUnruh–DeWitt detectors, coupled to theMinkowski vacuumand given time dependent resonant
frequencies according to equation (3). This demonstrated that inertial, energy scaled detectors of this type could
indeed couple to the Rindlermodes as expected and hence observe the intrinsic entanglement in the quantum
vacuum.

3.Homodyne detection of rindler entanglement

Wewish to consider two localized observers, Alice and Bob, whose detectors are stationary at the origin in the
light cone coordinates defined by equation (2), with + (−) corresponding toAlice (Bob), who detect the
quadrature amplitudes of theMinkowski vacuum.Weuse here the approach of [13] (note also the alternate
approach described in [14] and [15]). They performhomodyne detection on the vacuum, as seen in their
reference frames, each using, as a local oscillatormode, a state with coherent amplitude β, where β is real and

1β > > . Each homodyne detector is formed from two identical photo-detectors, that detect distinctmodes
after they have beenmixed on a beamsplitter. The photocurrents from the photo-detectors are subtracted to give
the output signal. The purpose of the local oscillator is to provide a shared classical phase reference, andwe can
regard the local oscillator beams as being locally generated byAlice and Bob using a combination of shared
precision clocks and classical communication [16].

To be consistent with the coordinates of equation (2), and hence to couple to the Rindlermodes, we need the
energy levels of all the absorbers in ourmacroscopic detectors to scale according to the Schrödinger equation,
equation (3). In additionwe need the centre frequency of the local oscillator to also scale in this way (see the
appendix formore details). The output of such an energy scaled homodyne detector, at some conformal time, τ,
is represented by the following operator [17]:

O b b b bˆ ( , ) ˆ ( ) ˆ ( )e ˆ ( ) ˆ ( )e , (4)J J S J L J S J L, ,
† i

,
†

,
iτ ϕ τ τ τ τ= +ϕ ϕ−

where b̂ J K, (b̂ J K,
†
) are boson annihilation (creation) field operators with J F P,= for Rindlermodes in the future

or past light cones respectively. The subscripts K S L,= refers to the signal and local-oscillatormodes
respectively. The relative phaseϕ determines the quadrature angle detected (see the appendix formore details).
Creation of a local oscillatormode can bemodelled as a unitary displacement of the vacuum. Physically, this is an
excellent approximation to the state produced by awell-stabilized laser. Once each local oscillatormode has
been locally created by displacing theMinkowski vacuum, it is then ‘chirped’ (i.e. a rapid scanning of the
instantaneous frequency) according to the scaling in equation (3) such that it effectively beats with the Future or
Pastmodes. Alice’s (Bob’s) displacement operator can bewritten: D b bˆ ( ) exp[ ( )]F F D F D,

†
,β β= −

(D b bˆ ( ) exp[ ( )]P P D P D,
†

,β β= − ) where the subscriptD labels themode towhich the displacement is perfectly
matched.

Generically, themode operators can be spectrally decomposed as:

b k f k bˆ d ( )e ˆ , (5)J d J d J k
i

,
d

d∫= Ω τ−

where k k k k( , , )d d d d1 2 3= refers to Alice or Bob’s detector wave-vector with theRindler frequency given by

k k kd d d d1
2

2
2

3
2Ω = + + . The integral kd d∫ is over thewholewave-vector space. The operators b̂kd

are single
frequency Rindler operators, obeying the boson commutation relation

b b k k k kˆ , ˆ ( ) ( ) ( ). (6)k k d d d d d d
†

2 2 3 3d d

⎡
⎣⎢

⎤
⎦⎥ δ Ω Ω δ δ= − ′ − ′ − ′′

The functions f k( )K d localize thesemodes in some region of space–time and hence themode operators b̂K can
describemodes detected or generated by a local observer. Alice andBobwill integrate the photocurrent from
their detectors over a time long compared to the inverse of the frequency being analyzed (aswill be determined
by the frequency of their local oscillators). If the local oscillator amplitude satisfies 1β > > then it can be treated
as a classical field and the average value of the signal quadrature will be given by the expectation value:
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=
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+

ϕ
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where fL ( fJ D, ) are the detector (displacement)mode functions and 0∣ 〉 is theMinkowski vacuumand Jτ refers to
the conformal time aroundwhich the local oscillator pulse is centredwhere J= F for Alice and J=P for Bob. The
detectormode functions are assumed identical for Alice and Bob. Equation (7) can be significantly simplified if
we assume our detectors are broadband and are placed close to the focus of the local oscillator such that the
paraxial approximation can bemade.We obtain [13]

)
(X k f k b

f k b

( ) 0 d e ( ) ˆ

e ( ) ˆ 0 , (8)

J S d D d k J

D d k J

, 1
i

1 ,

i * 1 ,
†

d

d

1

1

∫ϕ ≅

+

ϕ

ϕ−

wherewe have defined new boson annihilation operators:

( )b k g k bˆ d ˆ , (9)k J d S d k J, ,d d1 ∫≡ ⃗ ⃗

where the transversemode function of the detectors is given by g k g k h k( ) ( ) ( )S d S d S d2 3
⃗ = (see the appendix for

more details).
In order to calculate the expectation value of equation (8) against theMinkowski vacuumweneed to rewrite

themeasurement operators in terms ofMinkowskimodes. It was shown in [7] that the transformation relations
between the Future andMinkowski spectralmodes, appropriate for Alice, are identical to those between the
right Rindler andMinkowski spectralmodes, and can bewritten [18, 19]

(
)

( )
( )

b k A k k a

B k k a

ˆ d ˆ

ˆ , (10)

F k s k k d s k

k k d s k

,

†

d d s s

d s s

∫ δ

δ

= ⃗ − ⃗

+ ⃗ + ⃗

where the operators âks are the planewaveMinkowski operators, obeying the usual boson commutation relation

a a k k k k k kˆ , ˆ ( ) ( ) ( ), (11)k k s s s s s s
†

1 1 2 2 3 3s s

⎡⎣ ⎤⎦ δ δ δ= − ′ − ′ − ′′

k k k k k k( , ), ( , )d d d s s s2 3 2 3
⃗ = ⃗ = , sω is the signal frequency k k ks s s s1

2
2
2

3
2ω = + + , and the Bogolyubov

coefficients are given by
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πω
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For Bob the appropriate transformation is that between the Past andMinkowskimodeswhich can bewritten

(
)

( )
( )

b k A k k a

B k k a

ˆ d ˆ

ˆ . (15)

P k s k k d s k

k k d s k

, *

* †

d d s s

d s s

∫ δ

δ

= ⃗ − ⃗

+ ⃗ + ⃗

Given that the transformations of equations (10) and (15) are linear in the creation and annihilation operators
and that, by definition, theMinkowski annihilation operator annihilates theMinkowski vacuum, i.e.

â 0 0, (16)ks =

it follows that b b0 ˆ 0 0 ˆ 0 0k S k S, ,
†

d d1 1
〈 ∣ ∣ 〉 = 〈 ∣ ∣ 〉 = , and hence X X( ) ( ) 0R S A S, ,ϕ ϕ〈 〉 = 〈 〉 = , i.e. the average values

of the homodyne signals are zero.
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More interesting is to calculate the variances and correlation variances of the signals. The variances of the
individual signals (given that the first order expectation values are zero) are given by

( )V O( )
1

d ˆ ( , ) . (17)J J2

2

∫ϕ
β

τ τ ϕ=

Wenow transform toMinkowskimodes. For Alice, using equation (10)wefind
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δ

δ
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=
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+
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where k k¯
d d s1

2 2
Ω = + ⃗ . Similarly for Bob (equation (15))wefind
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Substituting this into equation (17), using the properties of theMinkowskimodes, equations (11) and (16), the
identity

k
k

k
x xd
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2
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andmaking a change of variables to ¯
dΩ , wefind for bothAlice and Bob

( ) ( )

V k

f k g k

( ) d d ¯
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2 2
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Ω
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andK is a normalization constant satisfying

( ) ( )k f k g kd d ¯ ¯ ¯ , 1. (23)s
k
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2

s

∫ ∫ Ω Ω⃗ ⃗ ⃗ =
−∞

∞

⃗

∞

Wecan obtain an approximate solution to equation (21) by assuming that Alice’s or Bob’s longitudinal local
oscillatormode function

f k
d

( )
1

e e (24)J D d

k k
d

k
, 1

( )
2

i
d do

J d
1

2

1

π
= ϵ−

−

is aGaussian, strongly peaked around the frequency kdowith respect to their conformal time, Jτ , wherewe have
assumed 1Jϵ∣ ∣ < < , and that its transverse function

( )
( )

g k
s

1
e (25)J S s

k

s, 2

s
2

π
⃗ = −

⃗
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is also aGaussian, strongly peaked around zero frequency, such that we canmake the approximations
f k k k( ) ( )J D d d do, 1

2
1δ∣ ∣ ≈ − and g k( )J S k s, ( )

2
s

δ∣ ∣ ≈ ⃗⃗ and hence obtain the approximate expression for the

variance of the signalmode

V
e 1

e 1
(26)J

a

a

2

2

do

do
≈ +

−

πΩ

πΩ

where kdo doΩ = ∣ ∣. This expression is identical to that obtained for homodyne detection, by an inertial observer,
of a thermal bath at temperatureT a k(2 ) π= , with kBoltzmann’s constant, as expected from theUnruh effect.
The correlation and anti-correlation variances of the signalmodes betweenAlice and Bob are given by

( )

( )

( ) ( )

( ) ( )

X O O

V V

O O

( ) d ˆ ( , ) ˆ ( , ) 2

2 d ˆ ( , ) ˆ ( , ) 2 . (27)
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2 2 2

2

∫

∫

Δ ϕ τ τ ϕ τ ϕ β

τ τ ϕ τ ϕ β

= ±

= +

±

±

The variance in the correlations gives us a sufficient condition for entanglement in thefield [17]. In particular if

X X( )
2

1 (28)S S
2

2
⎜ ⎟
⎛
⎝

⎞
⎠Δ ϕ Δ ϕ π+ <+ −

for some choice ofϕ then the joint state observed by Bob andAlice was entangled. Furthermore if in additionwe
have

X X

X X

( )
2

( )
2

1 (29)

S S
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2
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⎜ ⎟

⎜ ⎟
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+
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then the state detectedwas pure. Evaluating the cross-correlation term for 0ϕ = gives:
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⃗
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and for 2ϕ π=

(
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∫ ∫
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× − ⃗ ⃗
−

τ τ

τ τ
πΩ

πΩ

−∞

∞

⃗

∞

− −

−

Tomaximize the observed entanglement we should impose a number of anti-symmetry conditions on the local

oscillatormode functions of Alice and Bob. In particular we require f k f k¯ ( ¯ , ) ¯ ( ¯ , )D F d s D P d s, ,
*Ω Ω⃗ = ⃗ and

g k g k( ) ( )F S s P S s,
*

,− ⃗ = ⃗ . Notice that themode functions introduced in equations (24), and (25) satisfy these
conditions provided F Pϵ ϵ= − .With this condition, plus having F Pτ τ= − and assuming as in the previous
section that Alice and Bob’s local oscillatormode functions are strongly peakedwe obtain
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X X(0)
2

e 1

e 1
(32)S S

a

a
2

2 do

do

⎜ ⎟
⎛
⎝

⎞
⎠Δ Δ π= ≈ −

+

πΩ

πΩ
− +

thus fulfilling the condition of equation (28) that the detected fields are entangled for 0ϕ = and all a 0> . In
addition it is straightforward to show that

X X X X(0)
2

(0)
2

1. (33)S S S S
2

2
2

2
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠Δ Δ π Δ Δ π= ≈− − + +

Infigure 2(a) we plot the approximate solutions equations (32) and (29) and numerical evaluations of
equation (27) using equations (30) and (31)—this shows that there are parameters for which the approximate
solutions agreewell with the exact ones. Thus under the described conditions it is in principle possible to observe
very pure entanglement from the quantum vacuumvia scaled homodyne detection.We have so far developed
this theory in conformal time co-ordinates. After explaining ourQKDprotocol wewill investigate the
relationship between conformal and laboratory parameters,making explicit the connection to laboratory time
and discussing the feasibility of the necessary parameters.

4.QKDwithout sending a quantum signal

Wenowwish to show that, using themeasurement techniques described above, it is possible to exchange a secret
quantumkey [20]without sending a quantum signal. It is well known that entanglement based versions ofQKD
are possible [21].We are particularly interested in the entanglement based version of continuous variableQKD
[22]. The important point is that entanglement based continuous variableQKD relies on the distribution of a
two-mode squeezed vacuum state. However, the correlations observed by the Future/Past detectors of Alice and
Bob above are exactly of the formof a two-mode squeezed vacuum state. The question then is whether it is
possible to observe these correlations at a large spatial separation as required for aQKDprotocol. In the
followingwe answer this question in the affirmative.

Figure 2. Squeezing correlation (blue line) and uncertainty product (red line) predicted for observation of the space–time vacuum
with energy-scaled homodyne detection. The system is entangled if the squeezing correlation is less than 1. The system is pure if the
uncertainty product is equal to 1. The blue line (red line) is the approximate solutionwhile the dots are corresponding numerical
solutions of the exact expressions. The parameters are: (a) s 0.25 10 s9 1= × − , d 2.0 10 s9 1= × − , a 60 10 s9 1= × − ; and (b)
s 0.5 10 s9 1= × − , d 5.0 10 s9 1= × − , a 14 10 s9 1= × − .
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Consider the entanglement based continuous variableQKDprotocol depicted infigure 3(a). A two-mode
squeezed state is produced by the Einstein Podolsky–Rosen (EPR) source as a pair of counter-propagating
pulses. By reflecting one of the pulses they can be arranged to arrive at the spatial origin at t± (pointsA andC).
Assuming the EPR source is lossless, the correlations between an ensemble of such pulses will be given by [17]

X X G G(0)
2

( 1 ) , (34)S S
2

2
2⎜ ⎟

⎛
⎝

⎞
⎠Δ Δ π= = − −− +

where G 1⩾ is the gain of the EPR source. The correlations also satisfy equation (29). The source is thus
entangled and pure for G 1> . In order to performQKDAlice only detects the EPR state at pointA and allows
the other beam to propagate to Bobwho detects it at point B. As wemove along the geodesic fromAlice to
Bob the transversemode will expand. Assuming aGaussianmodewith its focus atC, then atB, a long distance
fromC, the wave fronts will be approximately spherical and centred onC. However, if we assume Bob’s
detector has the same radius as Alice’s then the wave-front curvature across Bob’s detector is negligible and
the paraxial approximation can still bemade. Thismeans the longitudinal part of the wave function is
unchanged. On the other hand the intensity of the field on axis has dropped by a factor of z z( )o

2, where zo is
the Rayleigh length and z is the distance between the pointsC and B [17]. Putting this all together one
concludes that Bobwill detect a field at Bwith the same longitudinal spectral structure as that atC but with
attenuated correlations given by

X X G G(0)
2

( 1 ) 1 , (35)S S
2

2
2⎜ ⎟

⎛
⎝

⎞
⎠Δ Δ π η η= = − − + −− +

where z z( )o
2η = . It is well known that such correlations betweenmeasurementsmade byAlice and Bob are

sufficient to allow them to implementQKD [22, 28]. The protocol is: (i) Alice generates a large ensemble of pairs
of pulses from an EPR source, sending one of each pair to Bob; (ii) Alice and Bob randomly, and independently

Figure 3. Space–time diagram representation of (a) standard continuous variable quantumkey distribution and (b) quantumkey
distributionwithout sending a quantum signal. The pointsA andC lie in Alice’s stationwhile pointB lies in Bob’s station. In both
cases nomeasurement ismade at pointCwhen theQKDprotocol is being enacted. The unequally spaced clocks in (b) represent the
energy scaled homodyne detection.
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choose tomeasure either X (0)S
− or X ( 2)S π− on each of the pulses; (iii) they sift their results to identify occasions

uponwhich they bothmeasured the same quadrature angles; (iv) they release a subset of their data in order to
characterize the channel (betweenC andB); and (v) if the channel is of sufficiently high quality such as to give
them an information advantage over any possible eavesdropper they proceed to extract a secret key from the
remaining data using a reconcilliation procedure. In principle such a protocol, with correlations of the formof
equation (35), allows secret key to be distributed over arbitrarily long distances [23]. Under realistic conditions,
ηʼs as low as a few percent still allow key to be distributed [24].Now consider figure 3(b) depicting the detection
of vacuumentanglement at positionsA andC as described in the previous section.A comparisonof equation (32)
and (34) shows that the correlations observed from the EPR source are the same as those predicted for conformal
time detection of the vacuumprovided

G e ( e 1). (36)a a2 2do do= −πΩ πΩ

Now considermoving the second detector to point B.We can calculate the new correlations betweenA and
B by translating the coordinates in equation (19) along the geodesic fromC to B. Given that equation (19) is
expressed in terms ofMinkowskimodes, the translation behaves in the sameway as for the EPR source, i.e.
preserving the longitudinal mode function along the geodesic but expanding transversally1. Hence the
correlations between pointsA and B are given by equation (35) withG given by equation (36). Thus Alice and
Bob can observe the same correlations from the vacuum entanglement at pointsA and B as they would have
from distributing an EPR state between these points. As a result they can implement a QKDprotocol based
on those correlations without having to send a quantum signal between them. In particular the new protocol
is: (i) Alice and Bob agree on a sequence of time intervals in which they will observe the vacuum at their local
positions using their conformal detectors tuned tomaximize the observed correlations; (ii) Alice and Bob
randomly, and independently choose tomeasure either X (0)S

− or X ( 2)S π− in each time window; the rest of
the protocol then follows (iii)–(v) above.

We can now seewhy the directionality of the detection is key to observing the vacuumentanglement at large
separations. According to [7], the entanglement at pointsA andC infigure 3(b) is isotropic, i.e. it ismaximized
for both left and right propagating fields. However, whenwemove along the null-geodesic to pointB, this
symmetry is broken—nowonly the left propagating fields are entangled (the corresponding point ofmaximal
entanglement for the rightmovers is themirror image of pointB on the right-side offigure 3(b)).Without the
directionality of the detection the entanglement would rapidly disappear as wemoved along the null-geodesic.

5.More realistic parameters

Wehave shown that in principleQKD can be carried out without exchanging a quantum signal by exploiting the
intrinsic entanglement of the space–time vacuum. This result relies on the equivalence between the approximate
solution of equation (32) and the exact numerical solution of equation (27) as demonstrated infigure 2(a).
However, the value of aused to obtainfigure 2(a) is impractically large.We now explore the effect of using a
more realistic scaling parameter in the protocol. In particular wewould like the required energy scaling not to
exceed approximately an order ofmagnitude and the rate of change not to be too extreme. A key relationship is
that between time intervals in the lab frame, tΔ and those in conformal time, Δτ . Consider first Alice’s future
mode.We have:

t
a

e
( e 1), (37)

a
a

o

Δ = −
τ

Δτ

where oτ is the initial conformal time. The total time interval overwhich the conformal detectors should
integrate is determined by the temporal width of the pulse in conformal time: d1TΔτ > . This in turn
determines the ratio between the initial and final frequencies in the lab frame:

e . (38)
f

i

a T
ω
ω

= Δτ−

Another useful relationship is that between the conformal frequency and the initial lab frequency:

e (39)do

i

a o
Ω
ω

= τ

1
Aminor complication is that the Rayleigh length is inversely proportional to the wavelength. As a result, assuming that the local oscillator is

designed in such away that thewaist of itsmode has a constant size for Alice, the spot size observed byBob at a distant point will expand as
the local oscillator frequency is scanned.When analyzing the secret key ratewe assume theworst case scenario that the attenuation rate is
given by the Rayleigh length calculated from thefinal frequency fω . This strategy thus uses an upper bound on the attenuation rate of the
channel. The average attenuation rate will always be less than this amount.
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which leads to a time dependent frequency given by

t
a t

( )
e

. (40)do

a o
ω Δ

Ω
Δ

=
+τ

Here t t t ,iΔ = − where the initial lab time is t a ei
a1 o= τ− . Equation (40) can also describe the time dependency

of Bob’s pastmode detector but now t t tfΔ = − where the final lab time is t a ef
a1 o= − τ− . Notice that t=0 in

the lab frame correspond to τ →−∞ in conformal time.Hence substituting oτ →−∞ in equation (40) recovers
the at1 scaling of theHamiltonian in the Schrödinger equation (equation (3)).

The strength of the vacuum entanglement depends on adoΩ (see equation (36)) with values less than 1 (2 )π
leading to non-negligible entanglement. Putting these conditions together leads to various compromises in
order to simultaneously obtain strong entanglementwith reasonable parameters. One possibility is the choice:
a 14 10 s9 1= × − (parameterization of the difference betweenMinkowski and proper time); d 5 10 s9 1= × −

(width in frequency of the longitudinal local oscillatormode function); and s 0.5 10 s9 1= × − (width in
frequency of the transverse local oscillatormode function). Table 1 shows the resulting lab frame parameters for
a detector strongly peaked around a frequency 10 10 rad sdo

9 1Ω = × − and various different initial times oτ . The
final column labeledTmax estimates the highest allowable background temperature such that, given a particular

fω , it is still a good approximation to take the surrounding space–time to be in the vacuum state.
The behaviour of the correlations as a function of conformal frequency for this choice of parameters is

shown infigure 2(b). Observe that there are now regions inwhich the observed correlations are no longer pure.
This occurs because the restrictions in choosing parameters leads to some smearing in frequency of the
correlations. The reduction in purity should be attributed to a possible eavesdropper and somust be taken into
account when calculating the secret key rates by attributing additional imperfections to the channel.We
calculate the key rate in the long key-length limit against arbitrary attacks [25–27]. From the effective covariance
matrix defined by the observed correlations, and using the straightforward secret key formulas provided in [28],
plots of secret key rates for conformal frequency 40 10 rad sdo

9 1Ω = × − ( 10 10 rad sdo
9 1Ω = × − ) and

a 60 10 s9 1= × − (a 14 10 s9 1= × − ) are given infigure 4. The plots show that secret key can still be distributed
over significant distances using themore realistic parameters offigure 2(b) and table 1. It should be noted that
we are assuming free-space transmission through vacuumwith ideal classical processing. Loss scales

Table 1.Values of the lab frame parameters given particular choices of

oτ with a 14 10 s9 1= × − and 10 10 rad sdo
9 1Ω = × − .Tmax is an

approximate indication of themaximumbackground temperature con-
sistent with the chosen parameters.

(ns)oτ (rad s )i
1ω − (rad s )f

1ω −
tΔ Tmax

−0.98 9.40 × 1015 6.28 × 1014 10 fs 300 K

−0.47 7.48 × 1012 5.0 × 1011 12.6 ps 3 K

−0.14 7.48 × 1010 5.0 × 109 1.26 ns 10−3 K

Figure 4. Secret key rate normalized to the raw key rate,K, plotted against distance betweenAlice and Bob inmetres. The value of the
Rayleigh length is calculated using z W ,0

2π λ= wherewe assume awaist size of W 19.25 cm= and awavelength of 3 mλ μ=
(corresponding to 6.28 10 rad sf

14 1ω = × − (see footnote 1)). The two graphs correspond to different values of a. The blue line is for
a 60 10 s9 1= × − (as per figure 2(a)), while the red line is for themore realistic value of a 14 10 s9 1= × − (as perfigure 2(b) and
table 1). The plot shows that evenwith themore realistic value for a absolutely secure key can in principle be shared over distances of
thousands of kilometres.
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quadratically with distance in free space as opposed to exponentially with distance infibre. Under these
conditions the standard protocol would essentially have infinite range.

6.Discussion

Wehave shown that by employing energy-scaled homodyne detection it is possible for two observers, separated
by non-trivial distances, tomeasure the correlations of entangled space–time vacuummodes with sufficient
quality so as to be able to implement aQKDprotocol. The energy levels of the detectorsmust changewith lab
time according toHamiltonians obeying equation (3). The local oscillators should also follow this scaling. The
more realistic parameters identified in the previous section are still extremely challenging, requiring the energy
levels to scale over an order ofmagnitude in frequency. At room temperaturewe are required towork at optical
to near infra-red frequencies and the scalingmust happen over femto-second time scales (top line of table 1). In
spacewemight work in the far infra-red, with scaling on pico-second time-scales (middle line of table 1).
Though not practical for communications, perhaps themost realistic near termprospects for demonstrating the
basic principles of this effect would be towork atmicrowave frequencies in a dilution refrigerator (bottom line
of table 1). Strictly, the theory presented here only applies in vacuum. The effects of birefringence or
atmospheric absorption lineswould need to be included for earthbound communication. Variousmethods
might be employed to induce the required detector energy scaling—see the appendix for a brief discussion of
some possibilities.

The techniques discussed here are expected to generalize to various other quantum communication
protocols that rely on the distribution of EPR type entanglement such as continuous variable teleportation and
continuous variable dense coding—also enabling such protocols to be carried out in a relativistic scenario
without requiring the sending of any, or asmany, quantum signals.
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Appendix

Intensity detection: the homodyne detector is constructed from twomacroscopic intensity detectors. It is well
known that the excitation probability of anUnruh–DeWitt detector with resonant frequency ω, weakly coupled
to a scalarfield, is approximately proportional to the expectation value of theHermitian operator a aˆ ˆk k

† , where
âk is a single frequency (k ω= ∣ ∣)Minkowski annihilation operator for the field and the expectation value is
taken over the state of the field. The approximationwill be good if the rotatingwave approximation can bemade.
In quantumoptics themeasurement operator for amacroscopic intensity detector can be accuratelymodelled
byHermitian operators constructed from coherent superpositions of âk of different frequencies and their
conjugates. For example, a broad-band intensity detector with a sharp time resolution can bemodelled by the

operator a t a tˆ ( ) ˆ ( ),† where a t k aˆ ( )
1

2
d e ˆt

k
i∫

π
= ω− . Thismodel will be accurate provided the envelope of the

wave-packet of the detected pulse is slowly varying compared to the temporal resolution of the detector.
Typically the the photo-current of the detector will be integrated over the pulse length giving themeasurement
operator t a t a td ˆ ( ) ˆ ( )†∫ .

In [7] and [8] it was shown that the excitation probability of anUnruh–DeWitt detector with a time
dependent resonant frequency corresponding to the Schrödinger equation (3) is proportional to the expectation

value of b bˆ ˆ
k k
†

d d, where b̂kd
is a single frequency Rindler annihilation operatorwhose relationship to the

Minkowski operators is given by equations (10) (for futuremodes) and (15) (for pastmodes). Thus a
macroscopic, broad-band intensity detector whose constituent atomic absorbers have resonant frequencies

which follow equation (3)will bewell approximated by themeasurement operator b bˆ ( ) ˆ ( ),
† τ τ where

b k bˆ ( )
1

2
d e ˆ . (41)d k

i d
d∫τ

π
= Ω τ−

HomodyneDetection: the homodyne detection ismodelled by the standard setup shown infigure 5, except
that the intensity detectors are the energy scaled ones described in the previous paragraphs and the displacement
is by a chirped coherent fieldwhose centre frequency scales in the sameway as the detectors. The photo-currents
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from the two intensity detectors are subtracted to give a photo-current represented by the operator:

b b b bˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ). (42)1
†

1 2
†

2τ τ τ τ−

The signalmode b̂ J S, and local oscillatormode bJ L, are interfered on a balanced beamsplitter before detection.
Themixing on the beamsplitter ismodelled by the operator transformations:

b
b b

b
b bˆ

ˆ ˆ

2
, ˆ

ˆ ˆ

2
. (43)

J S J L J S J L
1

, ,
2

, ,=
+

=
−

Substituting the transformations of equation (43) into (42) and integrating over time gives equation (4).
The local oscillatormode is displaced by an amplitude β relative to amode characterized by the function

f k( , )D d τ . Given this classical characterization of themode and amplitude the displacement can be carried out
via localmanipulations [17]. The operator transformation representing the displacement is:

D b D b k f k f kˆ ( ) ˆ ˆ ( ) ˆ d ( , ) ( , ). (44)J J L J J L d J L d D d
†

, , ,
*∫β β β τ τ= +

Making this transformation to equation (4) and using the assumption that 1β > > to neglect terms not
multiplied by β leads to equation (7). Notice that all terms depending on quantum features of the local oscillator
mode are neglected at this point, showing that the local oscillator only plays the role of a classical phase reference.
As such itmay also be produced locally by either Alice or Bob and distributed via a classical optical channel as
part of Alice andBob’s classical communication. Also notice that we express themode function of the local
oscillator in terms of Future or Past co-ordinates, anticipating that wewill ultimately choose this function to
represent an approximate single frequencymode in these co-ordinates (and hence a chirping pulse in the lab
frame). Finally we choose the detectormode functions to be given according to equation (41). Integrating over
time then leads to equation (8).

Scanning Frequencies: the scheme requires the resonant frequencies of the absorbers forming the detectors to
change rapidly in time according to the recipe of equation (40). At optical frequencies, atomic resonances can be
scanned by the application of an electric field through the Stark effect, though the changes in frequency usually
induced are far smaller than required here. Artificial absorbers, such as quantumdots, can also be scanned via
the application of an electric field, but again probably not over the ranges required here. The resonant
frequencies of quantumdots can be changed over broader frequency ranges bymodifying their physical
characteristics, though how this could be achieved rapidly is unclear. Perhaps one possibilitymight be to
engineer a non-homogeneous detector inwhich therewas a spatial gradient in the resonant frequencies. By
rapidly sweeping the incoming pulse over the spatial gradient an effective, time varying detection frequency
might be achieved.

The creation of the local oscillators at fixed conformal frequencies can be described as follows:

(1)Alice and Bob make local unitary displacements of the Minkowski vacuum so as to each make phase-locked
(Minkowksi) coherent states with amplitudes β.

Figure 5. Schematic of a homodyne detection tomake a quadraturemeasurement. The signalmode b̂ J S, is combinedwith the local
oscillatormode b̂ J L, and then an intensitymeasurement is performed. Taking the difference of the twomeasurements gives an output
that is directly proportional to the desired quadrature.
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(2)They independently chirp their local oscillators. Alice introduces a chirp with a descending frequency in time
that approximately corresponds to a single frequency in Future conformal time. Bob introduces a chirpwith
a rising frequency in time that approximately corresponds to a single frequency in Past conformal time. The
specific dependence of frequency on elapsed lab time is given by equation (40).

This chirping of the local oscillator pulses would also be challenging to achieve as again standard techniques
such as electro-optic or acousto-opticmodulationwould probably not cover sufficient frequency range at
optical frequencies.

Atmicro-wave frequencies the technical challenges are perhaps less dauntingwith broader tuning ranges
available with artificial absorbers such as super-conducting qubits [29, 30] and the slower rate at which the
scanningmust be carried out (see table 1). Broad and rapid frequency tuning of coherent sources ofmicro-waves
are also available.
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