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Comentfromtiswork Abstract
may be used under the Quantum Key Distribution is a quantum communication technique in which random numbers are
terms of the Creative . .
Commons Attribution 3.0 €ncoded on quantum systems, usually photons, and sent from one party, Alice, to another, Bob. Using
cence the data sent via the quantum signals, supplemented by classical communication, it is possible for
Any further distribution of . o, .. . . . .
thisworkmustmaintain  Alice and Bob to share an unconditionally secure secret key. This is not possible if only classical signals
attribution to the are sent. While this last statement is a long standing result from quantum information theory it turns
author(s) and the title of . . . T . .
thework, journalcitation  out only to be true in a non-relativistic setting. If relativistic quantum field theory is considered we
and DOL. . . . . o . .

show it is possible to distribute an unconditionally secure secret key without sending a quantum
signal, instead harnessing the intrinsic entanglement between different regions of space—time. The

protocol is practical in free space given horizon technology and might be testable in principle in the
near term using microwave technology.

1. Introduction

When information is carried by quantum systems then the abstract rules of information science developed for
classical systems are modified [1]. If we now consider information carried on relativistic quantum systems then
the rules are modified further [2, 3]. One aim of this new field of relativistic quantum information is to
understand whether new, more powerful information protocols emerge in this new setting. Here we describe a
specific protocol of this type. While quantum communication protocols that rely on the impossibility of
superluminal signalling have been described recently [4] this is the first time a fundamentally different protocol
has been described that relies on the full machinery of relativistic quantum field theory.

The key physics we will rely on here are quantum correlations of space—time which arise in relativistic
quantum field theory. It is well known that the restriction of quantum field modes to the left and right Rindler
wedges (see figure 1) leads observers of these modes to find that the ground state as defined in terms of the
normal Minkowski modes, appears as an entangled state between the two wedges [5, 6]. Physically, the Rindler
modes couple to detectors travelling on uniformly accelerating trajectories (see figure 1). However, the required
accelerations are extreme—well beyond foreseeable experimental capabilities. Alternatively one can restrict the
modes to the future and past light cones (see figure 1). It has been shown that for massless fields observers again
couple to the Rindler modes [7, 8]. Physically, in this case, the modes couple to time-like separated inertial
detectors with time dependent energy level separations such that their ‘clocks’ follow conformal time. In this
case the experimental requirements are much closer to current technology.

Coupling to the Rindler modes by inertial detectors that are space-like separated has also been studied [9].
Extraction of entanglement from the Rindler modes has traditionally been studied in terms of Unruh—-DeWitt
detectors [5], single two-level systems coupled isotropically to the field and placed into: accelerated motion [5];
switched rapidly [9]; or given a time dependent resonant frequency [7]. More recently coupling to single
harmonic oscillators has been considered [11]. The extraction of entanglement from the vacuum field has been
referred to as havesting of entanglement [10]. However, the rapid decay of the entanglement with distance [9]
means that these techniques are not directly useful for quantum communication protocols.
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Figure 1. Space—time diagram showing the left and right Rindler wedges and the past and future light cones. Detectors following
uniformly accelerated trajectories (e.g. the trajectories shown in blue) are restricted to the left and right Rindler wedges and couple to
the Rindler modes. Alternatively, stationary detectors at the origin whose clocks follow conformal time 7 (trajectories shown in red,
where 7 = (1/a)In[at] for the future light cone and = = (1/a)In[—at] for the past light cone) are restricted to the past and future light
cones and also couple to the Rindler modes.

In this paper we will describe how entanglement of the electromagnetic vacuum can be observed using
inertial macroscopic field detectors, i.e. homodyne detection. The particular novelty of this approach comes
from the directionality and efficiency of homodyne detection which allows highly pure entanglement to be
detected over far greater distances. Even though the vacuum entanglement is not transferred to an independent
quantum system it is still useful for quantum information protocols. In particular we describe an entanglement-
based quantum key distribution protocol in which no quantum signals are exchanged by the participants and the
security arises purely from the intrinsic entanglement of space—time.

2. Rindler and light cone coordinates

We considera (3 + 1) D massless scalar field description. Minkowski co-ordinates, (x;, x,, X3, t), are the
standard ones for describing inertial observers. Rindler co-ordinates, (£, x,, x3, 77), describe trajectories that are
restricted either to the left or right Rindler wedges. The Minkowski and Rindler coordinate systems are related
via[12]:

1 1
t = —e“sinh(an); x = +—e® cosh(an); (1)
a a

where + (—) corresponds to the right (left) wedge. A stationary observer in Rindler co-ordinates, sufficiently well
localized around & = 0, follows a uniformly accelerated trajectory in Minkowski co-ordinates. The rate of
acceleration is given by the parameter a. Throughout this paper we work in units for which ¢ = 1. An important
feature of the Rindler transformations is that the fields continue to satisfy the wave equation in the new
coordinates.

Alternatively we can consider transforming into modes restricted to the past and future light cones. The
future—past (F-P) co-ordinates, (¢, x;, X3, 7), describe trajectories that are restricted either to the future or past
light cones. The Minkowski and F-P coordinate systems are related via [7]:

1 1 )
t = +—e" cosh(ae); x; = +—e" sinh(ac); 2)
a a

where + (—) corresponds to the future (past) light-cone. A stationary observer in light-cone co-ordinates,
sufficiently well localized around e = 0, is stationary in Minkowski co-ordinates but follows a conformal time z
with a parametrizing the difference between conformal and Minkowski time. A key observation from [7] is that
detectors described by coordinate transformations of the form equations (1) or (2) couple to the same Rindler
modes.
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Furthermore, by observing the behaviour of the Schrédinger equation [7]:

idﬁ =H¢ - id_<15 =+@, (3)
dz dt at

where the right-hand side shows the equivalent of the conformal time expression in Minkowski time, with + (—)
for the future (past) coordinates, we can observe that a physical detector that follows the conformal time of
equation (2) (with € = 0) corresponds to a detector with time dependent energy-level spacings (i%). This
observation was confirmed in [7] and [8] via the explicit calculation of the excitation rates and correlation
properties of Unruh—DeWitt detectors, coupled to the Minkowski vacuum and given time dependent resonant
frequencies according to equation (3). This demonstrated that inertial, energy scaled detectors of this type could
indeed couple to the Rindler modes as expected and hence observe the intrinsic entanglement in the quantum
vacuum.

3. Homodyne detection of rindler entanglement

We wish to consider two localized observers, Alice and Bob, whose detectors are stationary at the origin in the
light cone coordinates defined by equation (2), with + (=) corresponding to Alice (Bob), who detect the
quadrature amplitudes of the Minkowski vacuum. We use here the approach of [ 13] (note also the alternate
approach described in [14] and [15]). They perform homodyne detection on the vacuum, as seen in their
reference frames, each using, as alocal oscillator mode, a state with coherent amplitude /3, where S is real and

B > > 1.Eachhomodyne detector is formed from two identical photo-detectors, that detect distinct modes
after they have been mixed on a beamsplitter. The photocurrents from the photo-detectors are subtracted to give
the output signal. The purpose of the local oscillator is to provide a shared classical phase reference, and we can
regard the local oscillator beams as being locally generated by Alice and Bob using a combination of shared
precision clocks and classical communication [16].

To be consistent with the coordinates of equation (2), and hence to couple to the Rindler modes, we need the
energy levels of all the absorbers in our macroscopic detectors to scale according to the Schrédinger equation,
equation (3). In addition we need the centre frequency of the local oscillator to also scale in this way (see the
appendix for more details). The output of such an energy scaled homodyne detector, at some conformal time, 7,
is represented by the following operator [17]:

A A A F . A F A .
Oy (1, ) = bys(0) by (D) + b5 () by ()e™, (4)

where b 1K (Z; ]T,K) are boson annihilation (creation) field operators with J = F, P for Rindler modes in the future
or past light cones respectively. The subscripts K = S, L refers to the signal and local-oscillator modes
respectively. The relative phase ¢ determines the quadrature angle detected (see the appendix for more details).
Creation of alocal oscillator mode can be modelled as a unitary displacement of the vacuum. Physically, thisis an
excellent approximation to the state produced by a well-stabilized laser. Once each local oscillator mode has
been locally created by displacing the Minkowski vacuum, it is then ‘chirped’ (i.e. a rapid scanning of the
instantaneous frequency) according to the scaling in equation (3) such that it effectively beats with the Future or
Past modes. Alice’s (Bob’s) displacement operator can be written: Dr(p) = exp[f (b ; p—bep)]
(Dp (p) =exp[p(b ;’D — bp,p)]) where the subscript D labels the mode to which the displacement is perfectly
matched.

Generically, the mode operators can be spectrally decomposed as:

by = f dkaf, (ka)e %h, (5)

where k; = (kg1 kg, kas) refers to Alice or Bob’s detector wave-vector with the Rindler frequency given by

Qg = ki + ki, + kj;. The integral / dk, is over the whole wave-vector space. The operators by ,aresingle
frequency Rindler operators, obeying the boson commutation relation

N AT ’ ! !’
[bkd, bk‘;] 5 ( Q= Q)6 (ks — K1) (s — k). 6)

The functions f (k) localize these modes in some region of space—time and hence the mode operators by can
describe modes detected or generated by alocal observer. Alice and Bob will integrate the photocurrent from
their detectors over a time long compared to the inverse of the frequency being analyzed (as will be determined
by the frequency of their local oscillators). If the local oscillator amplitude satisfies # > > 1then it can be treated
as a classical field and the average value of the signal quadrature will be given by the expectation value:

3
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(X)5(4)) = %< [ &0, )
= de<0| fdkd(e—ifﬁz;zst(kd, T)f;)D(kd, r,))

+ ey sf; (kas Of; p (ki 77) ) 10), (7)

where f; (f; ,) are the detector (displacement) mode functions and |0) is the Minkowski vacuum and z; refers to
the conformal time around which the local oscillator pulse is centred where J = F for Alice and ] = P for Bob. The
detector mode functions are assumed identical for Alice and Bob. Equation (7) can be significantly simplified if
we assume our detectors are broadband and are placed close to the focus of the local oscillator such that the
paraxial approximation can be made. We obtain [13]

(X1.5@)) = 01 [ dkar (e (ki) by

+ e—wf];(kdl)z;k*dh,) 10), (8)
where we have defined new boson annihilation operators:
bras = [ dka go(Ka) brus, (9)
where the transverse mode function of the detectors is given by g¢ (Ed ) = g5 (kaz) hs(kg3) (see the appendix for

more details).

In order to calculate the expectation value of equation (8) against the Minkowski vacuum we need to rewrite
the measurement operators in terms of Minkowski modes. It was shown in [7] that the transformation relations
between the Future and Minkowski spectral modes, appropriate for Alice, are identical to those between the
right Rindler and Minkowski spectral modes, and can be written [18, 19]

brvi= [ dk(Axed (ko= K)an,
+ By, 6 (K + Ko)af ). (10)
where the operators dy, are the plane wave Minkowski operators, obeying the usual boson commutation relation
[ﬁks» 511:;] =06 (ka — k)0 (ko — k3)d (ks — k3), (11)

kg = (kan kas), ks = (ke k3), o, is the signal frequency w, = /k2 + k2 + k2, and the Bogolyubov
coefficients are given by

Aggk, = el (kN 2ilaN (Qy)
! 27w
Bigk, = e AL g (12)
where
1
IN(L24)| = ——= (13)
1 — e—ZnQd/a
and
1 ;s + ksl
kg)=— In| ———|. 14
¢( sl) 2 (G)S—ksl) ( )
For Bob the appropriate transformation is that between the Past and Minkowski modes which can be written
bosi= [ dk( Ak d(Ri= R ),
+B,§dk55(1?d+1?s>ﬁ,js). (15)

Given that the transformations of equations (10) and (15) are linear in the creation and annihilation operators
and that, by definition, the Minkowski annihilation operator annihilates the Minkowski vacuum, i.e.

ax, 0) =0, (16)

it follows that (0| I;km,s [0) = (0] bAdebS [0) = 0,and hence (Xps(¢h)) = (Xas(¢h)) = 0,1.e. the average values
of the homodyne signals are zero.
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More interesting is to calculate the variances and correlation variances of the signals. The variances of the
individual signals (given that the first order expectation values are zero) are given by

V(@) = <( J 40, ¢>)> (17)

We now transform to Minkowski modes. For Alice, using equation (10) we find
ékd},F = /dEd gS kd ‘/'ClkS (Akdks&ksé(kd - i(;)

+Bkdk ak (kd+k ))

_ / dk, (ws + kq )iiﬂd/ ‘
\/ e2nla _ 1) ws — kq

X ( ”Qd/“akg (k ) + &,ng<—lz5>), (18)

where 2, = ki, + I_c;z. Similarly for Bob (equation (15)) we find

Z;kdl)P= ded gs(]?d) fdks(AI:dkS&ksa(lzd - ]Zs)

+ B,;dksd,fﬁ(lzd +k))

_ilo
w; + ksl) g d/a

/ dk, (
\/271'0) 27r.Qd/a _ 1) s — ksl

X < nQd/“akg (ks) +(i,1gs(—lzs)). (19)
Substituting this into equation (17), using the properties of the Minkowski modes, equations (11) and (16), the
identity
ik (x—x")
s kS :
fdksl (“’ + 1] = 5(x— %) (20)
27ws \ w5 — kg

and making a change of variables to £, we find for both Alice and Bob

V= [ d [ a2,

2 eZﬂQd/u +1

x|fD(Qd,I?)g,S(l}') T (21)
where
fo(2a k) = J%(fmkmwﬁ (~Ikan1) (22)
and K is a normalization constant satisfying
Sk [ [f, (20 R)so(R)[ =1 (23)

We can obtain an approximate solution to equation (21) by assuming that Alice’s or Bob’s longitudinal local
oscillator mode function

(kar—kao)? .
" 2q  erka (24)

fro(Ka) = |—
p\Kd1) =

] Ndr
is a Gaussian, strongly peaked around the frequency k, with respect to their conformal time, z;, where we have
assumed |¢;| < < 1,and thatits transverse function

gs(k) = ,/%e‘(i) (25)
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is also a Gaussian, strongly peaked around zero frequency, such that we can make the approximations
|f]’D (ka) > = 6 (kay — kgo) and |g],5(1?5) |> ~ & (k) and hence obtain the approximate expression for the
variance of the signal mode

eZﬂan/u +1

V)~ (26)

eZTf-Qdu/ﬂ -1

where Q,, = |kg, |- This expression is identical to that obtained for homodyne detection, by an inertial observer,
of a thermal bath at temperature T = a/%/(2xk), with k Boltzmann’s constant, as expected from the Unruh effect.
The correlation and anti-correlation variances of the signal modes between Alice and Bob are given by

(axE @)) <(/dr Or (2, ) £ Op(t, )| >>/(2ﬂ2)

=VF+VP

2< ( [ de(0r e HOw(x, ¢)))>/(zﬁl). (27)

The variance in the correlations gives us a sufficient condition for entanglement in the field [17]. In particular if
7\2
@x; @y axs(o+ 2] ) <1 @8)

for some choice of ¢ then the joint state observed by Bob and Alice was entangled. Furthermore if in addition we
have

2
(AX5 (PP <AX5(¢ N g) >
2
— (AXS () <Axs+(¢ n %) > -1 (29)

then the state detected was pure. Evaluating the cross-correlation term for ¢ = 0 gives:

<( /df(ép(r, 0)Op (1, 0)))>/<2ﬂ2)
=f_°; dk, /|:°| de{fD,F(Qd, ES)fD,P<-Qda ,;5)
X &s,F ( lzs)gs p ( —I:s)e—i(fF—rp)
+For (Lo K )Ty p Qs K)
odla

x g5 (R )sip (B) et o — (30)

and for ¢ = n/2

< ( /dr(ép(r, 7/2) Op (1, 77.'/2)))>/( 25
= [ d, f|:°| 404{Fo (90 K)o (@0 K

-

X &s,F ( ES)gs,P ( _kS) eTimm)
+For (Lo K )Ty p Qs K)
7Qa4la

X gS*F< —l_c's)gs*’P<l¥S)}ei(”_“’)e,—. (31)

eZn’.Qd/u -1

To maximize the observed entanglement we should impose a number of anti-symmetry conditions on the local
oscillator mode functions of Alice and Bob. In particular we require fD, 5 Q4 k) = fg » (24, k) and

S (—ES ) = 8ps (ES )- Notice that the mode functions introduced in equations (24), and (25) satisfy these
conditions provided e = —ep. With this condition, plus having 7z = —7p and assuming as in the previous
section that Alice and Bob’s local oscillator mode functions are strongly peaked we obtain

6
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Figure 2. Squeezing correlation (blue line) and uncertainty product (red line) predicted for observation of the space—time vacuum
with energy-scaled homodyne detection. The system is entangled if the squeezing correlation is less than 1. The system is pure if the
uncertainty product is equal to 1. The blue line (red line) is the approximate solution while the dots are corresponding numerical
solutions of the exact expressions. The parameters are: (a) s = 0.25 X 10°s™,,d = 2.0 x 10°s™}, a = 60 x 10° s™};and (b)
s=05%x10°s7,d=50x%x10"s",a =14 x 10°s7".

e/erg/a +1

2 nQu/a _
(AX5 (0)2) = <Ax;(§) > JE 1 (32)

thus fulfilling the condition of equation (28) that the detected fields are entangled for ¢ = Oandalla > 0.In
addition it is straightforward to show that

(4X5 (0)%) <AX§(§)2> = (4X{ (0)%) <AX§(%)2> ~ 1. (33)

In figure 2(a) we plot the approximate solutions equations (32) and (29) and numerical evaluations of

equation (27) using equations (30) and (31)—this shows that there are parameters for which the approximate
solutions agree well with the exact ones. Thus under the described conditions it is in principle possible to observe
very pure entanglement from the quantum vacuum via scaled homodyne detection. We have so far developed
this theory in conformal time co-ordinates. After explaining our QKD protocol we will investigate the
relationship between conformal and laboratory parameters, making explicit the connection to laboratory time
and discussing the feasibility of the necessary parameters.

4. QKD without sending a quantum signal

We now wish to show that, using the measurement techniques described above, it is possible to exchange a secret
quantum key [20] without sending a quantum signal. It is well known that entanglement based versions of QKD
are possible [21]. We are particularly interested in the entanglement based version of continuous variable QKD
[22]. The important point is that entanglement based continuous variable QKD relies on the distribution ofa
two-mode squeezed vacuum state. However, the correlations observed by the Future/Past detectors of Alice and
Bob above are exactly of the form of a two-mode squeezed vacuum state. The question then is whether it is
possible to observe these correlations at a large spatial separation as required for a QKD protocol. In the
following we answer this question in the affirmative.

7



10P Publishing

NewJ. Phys. 17 (2015) 063008 T CRalph and N Walk

Figure 3. Space—time diagram representation of (a) standard continuous variable quantum key distribution and (b) quantum key
distribution without sending a quantum signal. The points A and Clie in Alice’s station while point B lies in Bob’s station. In both
cases no measurement is made at point C when the QKD protocol is being enacted. The unequally spaced clocks in (b) represent the
energy scaled homodyne detection.

Consider the entanglement based continuous variable QKD protocol depicted in figure 3(a). A two-mode
squeezed state is produced by the Einstein Podolsky—Rosen (EPR) source as a pair of counter-propagating
pulses. By reflecting one of the pulses they can be arranged to arrive at the spatial origin at +¢ (points A and C).
Assuming the EPR source is lossless, the correlations between an ensemble of such pulses will be given by [17]

2
(4X5(0?) = <AXS+(§) > = (VG - JG-T1Y, (34)

where G > 1is the gain of the EPR source. The correlations also satisfy equation (29). The source is thus
entangled and pure for G > 1.In order to perform QKD Alice only detects the EPR state at point A and allows
the other beam to propagate to Bob who detects it at point B. As we move along the geodesic from Alice to
Bob the transverse mode will expand. Assuming a Gaussian mode with its focus at C, then at B, along distance
from C, the wave fronts will be approximately spherical and centred on C. However, if we assume Bob’s
detector has the same radius as Alice’s then the wave-front curvature across Bob’s detector is negligible and
the paraxial approximation can still be made. This means the longitudinal part of the wave function is
unchanged. On the other hand the intensity of the field on axis has dropped by a factor of (z,/z)?, where z, is
the Rayleigh length and zis the distance between the points Cand B [17]. Putting this all together one
concludes that Bob will detect a field at B with the same longitudinal spectral structure as that at Cbut with
attenuated correlations given by

2
(AX5 (07) = <AXS+(§) > =n(JG -G -1y +1-y, (35)

where 7 = (z,/2)?. Itis well known that such correlations between measurements made by Alice and Bob are
sufficient to allow them to implement QKD [22, 28]. The protocol is: (i) Alice generates a large ensemble of pairs
of pulses from an EPR source, sending one of each pair to Bob; (ii) Alice and Bob randomly, and independently

8



10P Publishing

NewJ. Phys. 17 (2015) 063008 T CRalph and N Walk

choose to measure either X (0) or Xg (7/2) on each of the pulses; (iii) they sift their results to identify occasions
upon which they both measured the same quadrature angles; (iv) they release a subset of their data in order to
characterize the channel (between Cand B); and (v) if the channel is of sufficiently high quality such as to give
them an information advantage over any possible eavesdropper they proceed to extract a secret key from the
remaining data using a reconcilliation procedure. In principle such a protocol, with correlations of the form of
equation (35), allows secret key to be distributed over arbitrarily long distances [23]. Under realistic conditions,
n’saslow as a few percent still allow key to be distributed [24]. Now consider figure 3(b) depicting the detection
of vacuum entanglement at positions A and C as described in the previous section. A comparison of equation (32)
and (34) shows that the correlations observed from the EPR source are the same as those predicted for conformal
time detection of the vacuum provided

G= eZHQdo/ﬂ/(eZ”-Qdﬂ/a _ 1) (36)

Now consider moving the second detector to point B. We can calculate the new correlations between A and
Bby translating the coordinates in equation (19) along the geodesic from Cto B. Given that equation (19) is
expressed in terms of Minkowski modes, the translation behaves in the same way as for the EPR source, i.e.
preserving the longitudinal mode function along the geodesic but expanding transversally'. Hence the
correlations between points A and B are given by equation (35) with G given by equation (36). Thus Alice and
Bob can observe the same correlations from the vacuum entanglement at points A and B as they would have
from distributing an EPR state between these points. As a result they can implement a QKD protocol based
on those correlations without having to send a quantum signal between them. In particular the new protocol
is: (i) Alice and Bob agree on a sequence of time intervals in which they will observe the vacuum at their local
positions using their conformal detectors tuned to maximize the observed correlations; (ii) Alice and Bob
randomly, and independently choose to measure either Xg (0) or Xg (#/2) in each time window; the rest of
the protocol then follows (iii)—(v) above.

We can now see why the directionality of the detection is key to observing the vacuum entanglement at large
separations. According to [7], the entanglement at points A and Cin figure 3(b) is isotropic, i.e. it is maximized
for both left and right propagating fields. However, when we move along the null-geodesic to point B, this
symmetry is broken—now only the left propagating fields are entangled (the corresponding point of maximal
entanglement for the right movers is the mirror image of point B on the right-side of figure 3(b)). Without the
directionality of the detection the entanglement would rapidly disappear as we moved along the null-geodesic.

5. More realistic parameters

We have shown that in principle QKD can be carried out without exchanging a quantum signal by exploiting the
intrinsic entanglement of the space—time vacuum. This result relies on the equivalence between the approximate
solution of equation (32) and the exact numerical solution of equation (27) as demonstrated in figure 2(a).
However, the value of a used to obtain figure 2(a) is impractically large. We now explore the effect of using a
more realistic scaling parameter in the protocol. In particular we would like the required energy scaling not to
exceed approximately an order of magnitude and the rate of change not to be too extreme. A key relationship is
that between time intervals in the lab frame, At and those in conformal time, Az. Consider first Alice’s future
mode. We have:

At =S (et oy, (37)
a

where 7, is the initial conformal time. The total time interval over which the conformal detectors should
integrate is determined by the temporal width of the pulse in conformal time: Az; > 1/+/d. This in turn
determines the ratio between the initial and final frequencies in the lab frame:

)

=L o et (38)

Wi
Another useful relationship is that between the conformal frequency and the initial lab frequency:

Q4

Wi

= e (39)

! Aminor complication is that the Rayleigh length is inversely proportional to the wavelength. As a result, assuming that the local oscillator is
designed in such a way that the waist of its mode has a constant size for Alice, the spot size observed by Bob at a distant point will expand as
the local oscillator frequency is scanned. When analyzing the secret key rate we assume the worst case scenario that the attenuation rate is
given by the Rayleigh length calculated from the final frequency @ ¢. This strategy thus uses an upper bound on the attenuation rate of the
channel. The average attenuation rate will always be less than this amount.
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Table 1. Values of the lab frame parameters given particular choices of
7, with a = 14 X 10° s 'and 24, = 10 X 10° rad s7. T is an
approximate indication of the maximum background temperature con-
sistent with the chosen parameters.

7, (ns) w; (rads™) wy (rads™) At Tinax
—0.98 9.40 x 10" 6.28 x 10" 10 fs 300 K
-0.47 7.48 x 102 5.0 x 10" 12.6 ps 3K
—0.14 7.48 x 10" 5.0 x 10° 1.26 ns 107°K
0.01}¢ J
S 104 1
IS
=
£
2 106l J
3 10
X
1078} 1
0 2x10° 4x106 6x10° 8x10° 1x107
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Figure 4. Secret key rate normalized to the raw key rate, K, plotted against distance between Alice and Bob in metres. The value of the
Rayleigh length is calculated using zg = 7W?2/4, where we assume a waist size of W = 19.25 cm and awavelength of 1 = 3 ym
(correspondingto wy = 6.28 X 10" rad s (see footnote 1)). The two graphs correspond to different values of a. The blue line is for
a = 60 x 10° s7! (as per figure 2(a)), while the red line is for the more realistic value of a = 14 x 10° s™! (as per figure 2(b) and
table 1). The plot shows that even with the more realistic value for a absolutely secure key can in principle be shared over distances of
thousands of kilometres.

which leads to a time dependent frequency given by

Q do

w(At) = ———.
e + aAt

(40)
Here At = t — t;, where the initial lab time is t; = a~'e“%. Equation (40) can also describe the time dependency
of Bob’s past mode detector but now At = t; — ¢ where the finallab time is t; = —a~'e“". Notice that =0 in
thelab frame correspond to 7 ——o0 in conformal time. Hence substituting 7, ——oc in equation (40) recovers
the 1/at scaling of the Hamiltonian in the Schrédinger equation (equation (3)).

The strength of the vacuum entanglement depends on £2,,/a (see equation (36)) with values less than 1/(27)
leading to non-negligible entanglement. Putting these conditions together leads to various compromises in
order to simultaneously obtain strong entanglement with reasonable parameters. One possibility is the choice:

a = 14 x 10° s7! (parameterization of the difference between Minkowski and proper time); d = 5 x 10° s
(width in frequency of the longitudinal local oscillator mode function); and s = 0.5 x 10° s™! (width in
frequency of the transverse local oscillator mode function). Table 1 shows the resulting lab frame parameters for
a detector strongly peaked around a frequency €2, = 10 x 10° rad s™! and various different initial times z,. The
final column labeled T, estimates the highest allowable background temperature such that, given a particular
wy, itisstilla good approximation to take the surrounding space—time to be in the vacuum state.

The behaviour of the correlations as a function of conformal frequency for this choice of parameters is
shown in figure 2(b). Observe that there are now regions in which the observed correlations are no longer pure.
This occurs because the restrictions in choosing parameters leads to some smearing in frequency of the
correlations. The reduction in purity should be attributed to a possible eavesdropper and so must be taken into
account when calculating the secret key rates by attributing additional imperfections to the channel. We
calculate the key rate in the long key-length limit against arbitrary attacks [25-27]. From the effective covariance
matrix defined by the observed correlations, and using the straightforward secret key formulas provided in [28],
plots of secret key rates for conformal frequency £, = 40 x 10° rad s™! (24, = 10 X 10’ rad s™!) and
a=60x 10°s7! (a = 14 x 10? s7!) are given in figure 4. The plots show that secret key can still be distributed
over significant distances using the more realistic parameters of figure 2(b) and table 1. It should be noted that
we are assuming free-space transmission through vacuum with ideal classical processing. Loss scales
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quadratically with distance in free space as opposed to exponentially with distance in fibre. Under these
conditions the standard protocol would essentially have infinite range.

6. Discussion

We have shown that by employing energy-scaled homodyne detection it is possible for two observers, separated
by non-trivial distances, to measure the correlations of entangled space—time vacuum modes with sufficient
quality so as to be able to implement a QKD protocol. The energy levels of the detectors must change with lab
time according to Hamiltonians obeying equation (3). The local oscillators should also follow this scaling. The
more realistic parameters identified in the previous section are still extremely challenging, requiring the energy
levels to scale over an order of magnitude in frequency. At room temperature we are required to work at optical
to near infra-red frequencies and the scaling must happen over femto-second time scales (top line of table 1). In
space we might work in the far infra-red, with scaling on pico-second time-scales (middle line of table 1).
Though not practical for communications, perhaps the most realistic near term prospects for demonstrating the
basic principles of this effect would be to work at microwave frequencies in a dilution refrigerator (bottom line
of table 1). Strictly, the theory presented here only applies in vacuum. The effects of birefringence or
atmospheric absorption lines would need to be included for earthbound communication. Various methods
might be employed to induce the required detector energy scaling—see the appendix for a brief discussion of
some possibilities.

The techniques discussed here are expected to generalize to various other quantum communication
protocols that rely on the distribution of EPR type entanglement such as continuous variable teleportation and
continuous variable dense coding—also enabling such protocols to be carried out in a relativistic scenario
without requiring the sending of any, or as many, quantum signals.
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Appendix

Intensity detection: the homodyne detector is constructed from two macroscopic intensity detectors. It is well
known that the excitation probability of an Unruh—DeWitt detector with resonant frequency @, weakly coupled
to a scalar field, is approximately proportional to the expectation value of the Hermitian operator @, dx, where

ay is asingle frequency (k = |w|) Minkowski annihilation operator for the field and the expectation value is
taken over the state of the field. The approximation will be good if the rotating wave approximation can be made.
In quantum optics the measurement operator for a macroscopic intensity detector can be accurately modelled
by Hermitian operators constructed from coherent superpositions of dy. of different frequencies and their

conjugates. For example, a broad-band intensity detector with a sharp time resolution can be modelled by the

operator d' (t)d (t), where d (t) = ~iot g, . This model will be accurate provided the envelope of the

1
T [dke
wave-packet of the detected pulse is slowly varying compared to the temporal resolution of the detector.
Typically the the photo-current of the detector will be integrated over the pulse length giving the measurement
operator /dt at(a).
In [7] and [8] it was shown that the excitation probability of an Unruh—DeWitt detector with a time
dependent resonant frequency corresponding to the Schrodinger equation (3) is proportional to the expectation

AT N . . e . .
value of by, by, where by, is a single frequency Rindler annihilation operator whose relationship to the
Minkowski operators is given by equations (10) (for future modes) and (15) (for past modes). Thus a
macroscopic, broad-band intensity detector whose constituent atomic absorbers have resonant frequencies

which follow equation (3) will be well approximated by the measurement operator b’ (2)b (), where
R 1 s
b() == [dkae by, 11
(7) N d ka (41)

Homodyne Detection: the homodyne detection is modelled by the standard setup shown in figure 5, except
that the intensity detectors are the energy scaled ones described in the previous paragraphs and the displacement
is by a chirped coherent field whose centre frequency scales in the same way as the detectors. The photo-currents
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b,

E’.] S 'Z B; 132
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a
Figure 5. Schematic of a homodyne detection to make a quadrature measurement. The signal mode b 7,5 is combined with the local

oscillator mode b; ; and then an intensity measurement is performed. Taking the difference of the two measurements gives an output
that is directly proportional to the desired quadrature.

from the two intensity detectors are subtracted to give a photo-current represented by the operator:
At A At N
by (1) bi(7) — by (7)ba (7). (42)

The signal mode b 7, and local oscillator mode b; | are interfered on a balanced beamsplitter before detection.
The mixing on the beamsplitter is modelled by the operator transformations:

(43)

Substituting the transformations of equation (43) into (42) and integrating over time gives equation (4).

The local oscillator mode is displaced by an amplitude f relative to a mode characterized by the function
fp (ka, 7). Given this classical characterization of the mode and amplitude the displacement can be carried out
vialocal manipulations [17]. The operator transformation representing the displacement is:

D]T ()b, Dy () = byp + ﬂ/dkdf],L(kda ) fp, (ka> 7). (44)

Making this transformation to equation (4) and using the assumption that § > > 1to neglect terms not
multiplied by ffleads to equation (7). Notice that all terms depending on quantum features of the local oscillator
mode are neglected at this point, showing that the local oscillator only plays the role of a classical phase reference.
As such it may also be produced locally by either Alice or Bob and distributed via a classical optical channel as
part of Alice and Bob’s classical communication. Also notice that we express the mode function of the local
oscillator in terms of Future or Past co-ordinates, anticipating that we will ultimately choose this function to
represent an approximate single frequency mode in these co-ordinates (and hence a chirping pulse in the lab
frame). Finally we choose the detector mode functions to be given according to equation (41). Integrating over
time then leads to equation (8).

Scanning Frequencies: the scheme requires the resonant frequencies of the absorbers forming the detectors to
change rapidly in time according to the recipe of equation (40). At optical frequencies, atomic resonances can be
scanned by the application of an electric field through the Stark effect, though the changes in frequency usually
induced are far smaller than required here. Artificial absorbers, such as quantum dots, can also be scanned via
the application of an electric field, but again probably not over the ranges required here. The resonant
frequencies of quantum dots can be changed over broader frequency ranges by modifying their physical
characteristics, though how this could be achieved rapidly is unclear. Perhaps one possibility might be to
engineer a non-homogeneous detector in which there was a spatial gradient in the resonant frequencies. By
rapidly sweeping the incoming pulse over the spatial gradient an effective, time varying detection frequency
might be achieved.

The creation of the local oscillators at fixed conformal frequencies can be described as follows:

(1) Alice and Bob make local unitary displacements of the Minkowski vacuum so as to each make phase-locked
(Minkowksi) coherent states with amplitudes /3.
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(2) They independently chirp their local oscillators. Alice introduces a chirp with a descending frequency in time
that approximately corresponds to a single frequency in Future conformal time. Bob introduces a chirp with
arising frequency in time that approximately corresponds to a single frequency in Past conformal time. The
specific dependence of frequency on elapsed lab time is given by equation (40).

This chirping of the local oscillator pulses would also be challenging to achieve as again standard techniques
such as electro-optic or acousto-optic modulation would probably not cover sufficient frequency range at
optical frequencies.

At micro-wave frequencies the technical challenges are perhaps less daunting with broader tuning ranges
available with artificial absorbers such as super-conducting qubits [29, 30] and the slower rate at which the
scanning must be carried out (see table 1). Broad and rapid frequency tuning of coherent sources of micro-waves
are also available.
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