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Optimal quantum cloning is the process of making one or more copies of an arbitrary unknown
input quantum state with the highest possible fidelity. All reported demonstrations of quantum
cloning have so far been limited to copying two-dimensional quantum states, or qubits. We report
the experimental realization of the optimal quantum cloning of four-dimensional quantum states, or
ququarts, encoded in the polarization and orbital angular momentum degrees of freedom of photons.
Our procedure, based on the symmetrization method, is also shown to be generally applicable to
quantum states of arbitrarily high dimension – or qudits – and to be scalable to an arbitrary number
of copies, in all cases remaining optimal. Furthermore, we report the bosonic coalescence of two
single-particle entangled states.

Classical information can be freely measured, perfectly
copied on demand, and broadcast without fundamen-
tal limitations. The handling of quantum information,
which is encoded in the quantum states of physical sys-
tems, is instead subject to several fundamental restric-
tions. For example, an unknown quantum state of an
individual system cannot be measured completely, un-
less we have infinite identical copies at our disposal. For
a finite number of copies N , the state estimation can
only be partial, and it can be characterized by an aver-
age “fidelity” lower than one (where one corresponds to
perfect state identification). It has been proven that the
optimal value of such state estimation fidelity is given by
F d
est(N) = (N + 1)/(N + d), where d is the dimension

of the quantum space [1]. A similar restriction is posed
by the quantum no-cloning theorem, stating that an un-
known quantum state cannot be copied perfectly [2]. It
is however possible to make imperfect copies, character-
ized by a cloning fidelity lower than one [3]. Starting
with N identical copies of the input state and generat-
ing M > N output optimal copies, the optimal copying

fidelity is given by F d
clon(N,M) = M−N+N(M+d)

M(N+d) , for the

case of “symmetric” cloning, that is for a uniform fidelity
of all copies [4]. It is important to note that, for a given
input, the optimal cloning fidelity is always higher than
the corresponding optimal state-estimation fidelity, re-
ducing to the latter in the limit M → ∞ [5]. Therefore,
the optimal quantum cloning process is useful whenever
one needs to broadcast quantum information among sev-
eral parties without measuring it in the process. Quan-
tum cloning thus represents an important multipurpose
tool of the emerging quantum information technology.
Let us stress that the advantage of quantum cloning over
state estimation grows for an increasing dimension d of
the quantum state. More specific applications of quan-
tum cloning are found in the security assessment of quan-
tum cryptography, the realization of minimal disturbance
measurements, the enhancement of the transmission fi-

delity over a lossy quantum channel, and the separation
of classical and quantum information [6, 7].

It is well known that all tasks of quantum information
can be performed using only two-dimensional quantum
states, or qubits. However, it has been recently rec-
ognized that significant fundamental and practical ad-
vantages can be gained by employing higher dimensional
quantum states instead, or qudits. For example, quan-
tum cryptographic protocols based on qudits may achieve
improved security, entangled qudits can show increased
resistance to noise, a qudit-based quantum computation
may require less resources for its implementation, and
the use of quantum computing as physics simulators can
be facilitated by using qudits [8–14].

Light quantum states can be used for implementing
qudits, either by exploiting many-photon systems [15–
17] or by combining different degrees of freedom of the
same photon (“hybrid” states) such as linear momentum,
arrival time, and orbital angular momentum (OAM) or
other transverse modes [18–21]. In particular, we have
recently reported the first experimental generation and
tomography of hybrid qudits with dimension d = 4, also
dubbed ququarts, that were encoded in the polarization
and OAM of single photons [22].

In this paper, we report the realization of the opti-
mal quantum cloning 1 → 2 (i.e., N = 1,M = 2) of
ququarts (d = 4) encoded in the polarization and OAM
of single photons. The cloning process is based on the
symmetrization technique [23–25], that has been recently
proven theoretically to be optimal for arbitrary dimen-
sion d [26]. The simultaneous control of polarization and
OAM was made possible thanks to the q-plate, a pho-
tonic device introducing a spin-orbit angular momentum
coupling [27, 28].

Let us recall the working principle of the symmetriza-
tion method for 1 → 2 quantum cloning, in the case
of a generic d-dimensional quantum state (qudit) [23–
26]. The input qudit |ϕ〉s is sent into one input port
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FIG. 1: Experimental apparatus for implementing the 1 →
2 optimal quantum cloning of polarization-OAM photon
ququarts. See main text for a definition of all symbols.

(mode ks) of a balanced beam splitter (BS). In the
other BS input port (mode ka) we send an ancilla pho-
ton in the fully mixed random d-dimensional state ρa =
Id
d

= 1
d

∑
n |n〉a〈n|. The basis is here chosen such that

|1〉 ≡ |ϕ〉. After the interaction in the BS, we consider
only the case of the two photons emerging in the same
output mode. The cloning fidelity is defined as the av-
erage overlap between the quantum state of each output
photon emerging from the BS and the input photon state
|ϕ〉. Hence, we can distinguish two cases, depending on
the ancilla state: (i) the input state is |1〉s|1〉a or (ii) it
is any of the other d − 1 states |1〉s|n〉a with n 6= 1. In
the first case, Hong-Ou-Mandel (HOM) quantum inter-
ference due to the bosonic symmetry leads to a doubled
probability of having the two photons emerging in a com-
mon output BS mode, as compared to the second case.
So, once given that the two photons emerge in the same
mode (i.e., successful cloning occurs), then the first case
has a relative probability of 2/(d + 1) while the second
case has a total probability (d − 1)/(d + 1). Since the
first case corresponds to a fidelity of 1 (both photons are
identical to the input one) and the second of 0.5 (one
photon is identical, the other is orthogonal), we obtain
the following average cloning fidelity F = 1

2 + 1
d+1 , that

corresponds just to the upper bound for the cloning fi-
delity F d

clon(N,M) given above, for N = 1 and M = 2.

This cloning procedure has been previously demon-
strated experimentally only for photonic qubits, either
encoded in the polarization space π [24] or in the bidi-
mensional OAM subspace o2 spanned by m = ±2
[26], where m is the OAM eigenvalue per photon along
the beam axis in units of h̄. We now consider pho-
tonic ququarts encoded in the four-dimensional “spin-
orbit” space π ⊗ o2, i.e. obtained as tensor product

of the polarization space and the OAM subspace with
m = ±2. A generic separable state in this space will
be indicated as |ϕ, ℓ〉 = |ϕ〉π|ℓ〉o2 , where |·〉π and |·〉o2
stand for the polarization and OAM quantum states,
respectively. We introduce in this space a first basis
{|1I〉, |2I〉, |3I〉, |4I〉}, hereafter called “logic” basis, corre-
sponding to {|R,+2〉, |R,−2〉, |L,+2〉, |L,−2〉}, where R
(L) refers to right (left) circular polarization and the ±2
integers refer to the OAM eigenvalue. Given this first ba-
sis, we may introduce four other bases such that they are
allmutually unbiased to each other [29]. In our spin-orbit
space π ⊗ o2, all the states belonging to the five mutu-
ally unbiased basis can be generated and detected by an
appropriate combination of birefringent wave plates, po-
larizing beam-splitters, q-plates and single mode fibers,
as described in Ref. [22]. Three of these bases (bases I,
II, and III) are formed of separable states of polariza-
tion and OAM of the photon (e.g., basis I is the logical
one defined above), while the remaining two (bases IV
and V) are formed of entangled states of these two de-
grees of freedom (see [22] for the complete list of states).
In particular, the IV basis, which will be utilized in the
present work, is composed of the following four states:
(|R,+2〉 ± |L,−2〉)/

√
2 and (|L,+2〉 ± |R,−2〉)/

√
2.

We now consider the optimal quantum cloning of a
photonic ququart in the spin-orbit space π ⊗ o2. Being
d = 4, we expect an optimal cloning fidelity F = 7/10.
If |ϕ〉 = |1〉 is the input state, each output cloned pho-
ton (tracing out the state of the other photon) is hence
expected to be found in the mixed state:

ρ1 = ρ2 =
1

10
(7|1〉〈1|+ |2〉〈2|+ |3〉〈3|+ |4〉〈4|), (1)

where the set {|1〉, |2〉, |3〉, |4〉} forms a basis in the space
π ⊗ o2 (not necessarily the logical one). In particular,
we will experimentally test the outcome of the quantum
cloning procedure for all the four states of the logical
basis I and for all the four states of the IV basis, corre-
sponding to entangled spin-orbit states.
The experimental layout is schematically reported in

Fig. 1. A β-barium borate crystal (BBO) cut for type-II
phase matching, pumped by the second harmonic of a
Ti:Sapphire mode-locked laser beam, generates via spon-
taneous parametric fluorescence photon pairs on modes
kA and kB with linear polarization, wavelength λ = 795
nm, and pulse bandwidth ∆λ = 4.5 nm, as determined
by two interference filters (IF). The coincidence rate of
the source is equal to 18 kHz. Photons generated on
mode kA and kB are delivered to the setup via single
mode fibers, thus defining their transverse spatial modes
to a pure TEM00, corresponding to OAM m = 0. Af-
ter the fiber output, two wave plates (C) compensate the
polarization rotation introduced by the fibers and a po-
larizing beam-splitter (PBS) projects the polarization on
the horizontal state |H〉π . Then on mode ks the ququart
to be cloned is encoded in the single photon polarization
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and OAM through a ququart preparation stage, based on
a combination of wave plates, a q-plate, a PBS (only for
bases I, II, III), and additional wave plates (see Ref. [22]
for details). On mode ka, for quantum cloning the ancilla
photon is prepared in a fully mixed state ρa = Iπ

2
Io2
2 , i.e.

fully randomized both in polarization and in OAM. This
is obtained by randomly rotating, during each experi-
mental run, a half-wave plate inserted before the q-plate
QP2 and by randomly inserting or removing another half-
wave plate located after the same q-plate. The time delay
between photons on mode ks and ka was set to zero by
an adjustable delay line (Z), in order to ensure the in-
terference condition necessary for the optimal quantum
cloning process within the balanced beam splitter BS1.
A second beam splitter (BS2) is then used to separate the
two photons emerging from the same output port of BS1,
allowing post-selection of this outcome by coincidence de-
tection. On both output modes k1 and k2 of BS2 we per-
form a full ququart state measurement, by combining a
standard polarization analysis set and an OAM analysis
set, the latter based on the quantum transferrer o2 → π
[28]. Depending on the specific ququart basis being used,
the detailed setting of this ququart measurement stage
varies slightly, as discussed in [22]. Finally, the output
photons are coupled into single mode fibers and detected
by single-photon counters (D1 and D2) connected to the
coincidence box (C-BOX) recording the time-coincident
photon detections.
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State Fidelity

|1I〉 (0.740 ± 0.016)

|2I〉 (0.677 ± 0.012)

|3I〉 (0.707 ± 0.012)

|4I〉 (0.708 ± 0.017)

FIG. 2: Experimental results of the cloning process for the
ququart states belonging to the I basis a) Hong-Ou-Mandel
coalescence for two input photons prepared in state |L,−2〉.
The enhancement peak is of R = (1.90 ± 0.13). b) Proba-
bility p(i|ϕ) of detecting a clone in any output state |i〉 of
the basis, for any given input state |ϕ〉 of the same basis. c)
Experimental cloning fidelities for the four input states.

As a first step, we have verified the occurrence of the
HOM interference between the two photon ququarts im-
pinging on modes ks and ka of BS1. The ancillary pho-
ton was prepared in the same quantum state as the signal
photon, in order for the interference to occur. The two-
photon coincidence counts were measured as a function
of the optical path delay between ks and ka. In Fig. 2-
a we report an example of the results we obtained for
the case of an input state belonging to the logical basis.
The HOM peak is observed with a measured coincidence
enhancement R = (1.89± 0.05), consistent with the the-
oretical value Rth = 2. Once ensured a good interfer-
ence condition between the two photons, we moved on
to testing the quantum cloning for each of the four input
states of the logical basis. Being |ϕ〉 the input state to
be cloned, the measurement stage on mode k1 has been
set so as to filter only outcoming photons in state |ϕ〉
while on mode k2 all four possible outcomes |i〉 of the
logical basis have been detected. We have thus recorded
the corresponding coincidence counts Nϕ,i. These co-
incidence counts give us an estimate of the probability
p(i|ϕ) of each photon clone to be found in any specific
state |i〉 of the basis, with i = 1, 2, 3, 4, as a function
of the input state |ϕ〉, regardless of the state of the
other photon. In particular, we have p(i|ϕ) = Nϕ,i/N
for i 6= ϕ and p(ϕ|ϕ) = (Nϕ,ϕ +

∑
i6=ϕ Nϕ,i)/N , where

N = Nϕ,ϕ + 2
∑

i6=ϕ Nϕ,i. The factor 2 appearing in the
expression of N takes into account the additional coinci-
dences that would be detected by swapping the measure-
ments performed on modes k1 and k2, for i 6= ϕ, that of
course are equal to Nϕ,i in the average. The theoretical
values for these probabilities are given by the correspond-
ing coefficients in the clone density matrix in Eq. (1).
The cloning fidelity is F = p(ϕ|ϕ). The experimental re-
sults obtained when cloning all states of the logical basis
are reported in Fig. 2-b,c. The measured values of the fi-
delity, as well as their average value F I = (0.708±0.007),
are all in good agreement with the theoretical prediction
F = 0.7.

Cloning only states belonging to the logical basis is
clearly not enough to demonstrate the generality of
our cloning procedure. We have therefore repeated the
cloning experiment for all ququart states belonging to the
IV basis, that includes spin-orbit entangled states. These
states can be generated and analyzed by exploiting the
q-plate capability of entangling and disentagling the po-
larization and the OAM degree of freedom of a photon.
This required removing the first PBS on modes k1 and
k2 and properly setting the orientation of all wave plates
[22]. In Fig. 3 we report the experimental results of the
HOM peak for one of the states and of the cloning of
all states belonging to the IV basis. Fig.3-a, in particu-
lar, demonstrates interference between two single-particle
entangled states. As expected, this measurement under-
lines how the bosonic coalescence of two particles is not
tied to the indistinguishability of each individual degree
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|1IV〉 (0.726 ± 0.010)

|2IV〉 (0.582 ± 0.004)

|3IV〉 (0.580 ± 0.005)

|4IV〉 (0.662 ± 0.008)

FIG. 3: Experimental results of the cloning process for all
ququart states belonging to the IV basis, made of entangled
spin-orbit states. a) Hong-Ou-Mandel coalescence for two

input photons prepared in state 2−1/2(|R,+2〉+|L,−2〉). The
enhancement peak is of R = (1.84 ± 0.05). b) Probability
p(i|ϕ) of detecting a clone in an output state |i〉 of the IV
basis, for any given input state |ϕ〉 of the same IV basis.c)
Experimental cloning fidelities for all four input states.

of freedom, but rather that of the whole quantum state
(whether each of such states is entangled, as is the case in
our experiment, or separable). As can be inferred from
the table in Fig. 3c, the cloning fidelities are again in
reasonable agreement with the expected one, and the av-
erage fidelity value reads F IV = (0.638 ± 0.004). The
small discrepancy with respect to the theoretical expec-
tations is quantitatively well explained by the imperfect
randomization of the ancilla photon (which is found to be
somewhat unbalanced), the slightly lower HOM enhance-
ment achieved (R = 1.84), and the non-unitary prepara-
tion and analysis fidelities (∼ 0.9) [32]. We stress that
the setup alignment has not been re-optimized for cloning
states of basis IV, in order to properly test the universal-
ity of our cloning apparatus. We notice that the average
value of the quantum cloning fidelity is much larger than
the one expected for the quantum state estimation on a
single copy, equal to 0.4 [5].

Finally, we note that the symmetrization procedure for
the cloning of photonic qudits, that we have experimen-
tally demonstrated here for the 1 → 2 case, can be scaled
up to the general N → M cloning [33], that is starting
with N identical input photons and generating M > N
copies. The main idea, illustrated in Fig. 4, is that of
using a cascaded configuration of M −N beam splitters
and M −N ancilla photons in fully mixed states: Fig.4.

FIG. 4: Schematic representation of the 1 → M quantum
cloning process of a qudit state by cascading the symmetriza-
tion technique.

A more exhaustive demonstration of this result will be
presented in a forthcoming paper.

In summary, we have implemented the optimal quan-
tum cloning 1 → 2 of ququart states encoded in the
polarization and OAM degrees of freedom of a single
photon. This work was supported by project HYTEQ
- FIRB, Finanziamento Ateneo 2009 of Sapienza Univer-
sità di Roma, and european project PHORBITECH of
the FET program (grant 255914).
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