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Quantum communication employs the counter-intuitive features of quantum physics for  
tasks that are impossible in the classical world. It is crucial for testing the foundations of 
quantum theory and promises to revolutionize information and communication technologies. 
However, to execute even the simplest quantum transmission, one must establish, and  
maintain, a shared reference frame. This introduces a considerable overhead in resources, 
particularly if the parties are in motion or rotating relative to each other. Here we experimentally 
show how to circumvent this problem with the transmission of quantum information encoded  
in rotationally invariant states of single photons. By developing a complete toolbox for 
the efficient encoding and decoding of quantum information in such photonic qubits, we 
demonstrate the feasibility of alignment-free quantum key-distribution, and perform proof-
of-principle demonstrations of alignment-free entanglement distribution and Bell-inequality 
violation. The scheme should find applications in fundamental tests of quantum mechanics and 
satellite-based quantum communication. 
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Current implementations of quantum communication (QC) 
use photons as the carriers of qubits (quantum bits), the basic 
units of quantum information. This is due to the fact that 

photons, known as so-called ‘flying qubits’, are easy to transport from 
one location to another1. Photonic free-space QC has been dem-
onstrated for distances of hundreds of kilometers2, a progress that 
could soon lead to satellite-based long-distance QC3–6. However, 
standard approaches to QC, for example, the one based on encoding 
qubits into the polarization of photons, require that all users involved 
have knowledge of a shared reference frame. For instance, in the 
bipartite scenario, the emitter and receiver, conventionally called 
Alice and Bob, must initially align their local horizontal (H) and 
vertical (V) transverse axes, and then keep them aligned throughout 
the transmission (Fig. 1a). This, in turn, requires the exchange of 
a large (strictly speaking, infinite) amount of classical information. 
This represents, in general, an extra technical overhead, which can 
impose serious obstacles in the particular situations where the users 
are very far apart from each other, the misalignment between their 
frames varies in time, or the number of users is large, for example7,8. 
In general, the lack of a shared reference frame inhibits faithful QC, 
because it is equivalent to an unknown relative rotation, therefore 
introducing noise into the quantum channel8.

A possible solution to this problem is to exploit multi-qubit 
entangled states that are invariant under single-qubit rotations 
acting collectively on all the qubits (see refs 9–13 and references 
therein). These constitute particular instances of decoherence-free 
subspaces, originally introduced in the context of fault-tolerant 
quantum computing14–17. The idea is thus to encode logical qubits 
into rotationally invariant states of multiple physical qubits. These 
can, in principle, be realized with multiple photons10–12. However, 
the efficient production and detection of multi-photon states is a 
technological challenge, they are more susceptible to losses, and the 
requirement that multiple photons are subject to exactly the same 
rotation is very seldom perfectly satisfied.

A more efficient way to circumvent misalignments is provided 
by exploiting multiple degrees of freedom of single photons18. In 
particular, the polarization and transverse spatial modes stand out 
for this purpose (Fig. 1b). Just as the circular polarization states 
are eigenstates of the spin angular momentum (SAM) of light, the 
helical-wavefront Laguerre-Gaussian modes are eigenmodes of its 
orbital angular momentum (OAM). The OAM degree of freedom 
is attracting a growing interest for applications in both classical 
and quantum photonics19–22. The peculiarity of the SAM and (first 
order) OAM eigenstates together is that, as they are defined with 
respect to the same reference frame, they suffer exactly the same 
transformation under coordinate rotation. Therefore, they satisfy 
the collective rotation requirement exactly, constituting an ideal 
pair to carry rotationally invariant hybrid qubits (see Fig. 1c).

Here we experimentally demonstrate a complete toolbox for the 
efficient encoding and decoding of quantum information in such 
photonic qubits, suitable for alignment-free QC. The core of our 
toolbox is a liquid crystal device, named ‘q-plate’22,23, that maps 
polarization-encoded qubits into qubits encoded in hybrid polari-
zation-OAM states of the same photon that are invariant under 
arbitrary rotations around the propagation direction, and vice versa. 
In other words, the q-plate acts as a universal encoder/decoder, 
where ‘universal’ refers to the fact that it works for any qubit state. 
The q-plate used in the present work is the result of a very recent 
technological advance allowing for the manufacture of electrically 
tunable devices with topological charge q = 1/2 (ref. 24). This is the 
first time such devices are exploited in the quantum regime. In addi-
tion, the toolbox requires no interferometric stability as in previ-
ous proposals18,25, and can be set entirely in a robust and compact 
unit that could easily be mounted in a small satellite, for instance. 
Furthermore, our universal-decoder set-up features a built-in filter-
ing mechanism that maps a wide class of physical errors into losses 

instead of logical errors. We show that, owing to this mechanism, the 
scheme is robust also against misalignments around axes other than 
the propagation direction, as well as against other spatial perturba-
tions. We demonstrate the potential of our method by performing 
a proof-of-principle misalignment-immune implementation of the 
single-photon Bennett–Brassard (BB84) quantum key-distribution 
(QKD) protocol26, entanglement distribution, and the violation of 
the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality27.

Results
Hybrid logical qubit encoding. Our logical qubit basis is defined 
by the hybrid polarization-OAM single-photon states
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Subscript ‘p’ denotes the polarization Hilbert space, spanned by 
the left- and right-handed circular polarization states |L〉p and |R〉p, 
respectively, which are eigenstates of the SAM operator Sz
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Figure 1 | Misalignment-immune single-photon qubits. (a) Alice and Bob, 
here depicted as satellites, need to carefully control the relative orientation 
between their horizontal (H) and vertical (V) axes to faithfully implement 
QC in free-space. unknown misalignments around the propagation axis 
manifest as rotations of the transmitted qubits by unknown angles θ in the 
H − V plane. (b) Qubits can be equivalently encoded in both polarization  
and transverse modes: H/V denote horizontal/vertical linear polarizations, 
L/R left/right circular polarizations, h/v horizontal/vertical first-order 
Hermite-Gauss modes, and l/r left- and right-handed first-order Laguerre-
Gauss modes. The L/R polarizations are eigenstates with eigenvalues 
±h¬ of the sAm, whereas the l/r modes are the equivalent eigenstates 
of the oAm. (c) By combining sAm and oAm eigenstates of opposite 
handedness, two null-eigenvalue eigenstates of the total angular 
momentum arise. Both these hybrid states are invariant under rotations 
around the propagation axis, and can therefore encode misalignment-
immune logical qubit states, called 0L and 1L.
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to the logical subspace of zero total angular momentum along z. 
The latter is spanned by the two hybrid states (1), null-eigenvalue 
eigenstates of the total SAM + OAM operator S Sz z

p o+ . Because the 
total angular momentum operator is the generator of state rotations, 
states (1) are both invariant under arbitrary rotations around  
the z axis (on this issue, see also ref. 28). More specifically, in a  
physical rotation about the z axis by any angle θ, the circular 
polarization states and OAM eigenmodes acquire equivalent phase 
factors on their own: | / | /L R e L Ri〉 → 〉p p

∓ q  and | / | /l r e l ri〉 → 〉o o
∓ q .  

However, for tensor-product combinations with opposite 
handedness as (1), the individual phases cancel each other and 
the composite states remain intact. As a consequence, because of 
linearity, any coherent superposition (or incoherent mixture) of the 
two logical states, that is, the entire logical subspace, is also immune 
to all possible reference-frame misalignments during the entire  
QC session.

Universal encoder/decoder. The experimental set-up used to 
encode and decode arbitrary hybrid qubit states in the logical basis 
(1) is shown in Fig. 2. The q-plates are liquid crystal devices that 
produce a spin-orbit coupling of the polarization and OAM con-
tributions to the total angular momentum of photons23,22. The 
q-plate is a birefringent slab having a uniform optical retardation 
δ and a suitably patterned transverse optical axis, with a topologi-
cal singularity of charge q at its centre. A ‘tuned’ q-plate with δ = π 
transfers quanta of angular momentum between the SAM and 
the OAM. Specifically, each photon suffers a variation in its OAM  
by an amount ∆ = 2s qz

p  determined by the charge q and the SAM 
sz

p  of the input polarization. q-plates with q = 1 have been recently 
used to demonstrate interesting spin-OAM quantum information 
manipulations29–33.

A tuned q-plate with topological charge q = 1/2 gives rise to the 
following transformations:
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where |0〉o denotes a zero-OAM state, such as the fundamental Gaus-
sian mode (TEM00). We note that the radial profile of the |l〉o and 
|r〉o states generated by the q-plate is not exactly Laguerre-Gauss (see 
Methods for more details), but this does not affect their pure OAM-
eigenstate rotational behaviour22. Indeed, the q-plate is ideally a 
unitary device (our q-plate was uncoated and had a transmission 
efficiency of about 85%), but the induced radial-mode effects (see 
Methods) may introduce about 40% of total additional losses in the 
final recoupling to the single-mode fibre before detection. Consider 
then a generic polarization-encoded qubit | = | |y a b〉 〉 + 〉p p pR L  
prepared in the TEM00 spatial mode. From transformations (2), 
sending the qubit through the q-plate yields

| |0 |0 |1 =| .y a b y〉 〉 → 〉 + 〉 〉
−

p o
plate

L L L
q

That is, the qubit is now encoded into the desired rotationally 
invariant space spanned by logical basis (1). Remarkably, the same 
q-plate device works also as a universal decoder, transferring generic 
rotationally invariant qubits to their polarization-encoded counter-
parts. Explicitly, by injecting |ψ〉L into the q-plate, one obtains

| ( | | ) |0 =| |0 ,y a b y〉 → 〉 + 〉 〉 〉 〉
−

L
plate

p p o p o
q

R L

that can then be coupled into a single-mode fibre and analysed in 
polarization using standard methods. The measurement device is 
sketched in Fig. 2d. Again from the linearity of quantum mechanics, 
the encoding and decoding transformations (3) and (4) hold, even 
if the polarization state is part of some larger entangled state. In 
addition, an outstanding feature of the q-plate is that it realizes the 
polarization-transverse-mode coupling in a single compact device 
that requires no interferometric stability, therefore providing the 
scheme with a built-in robustness.

Our first step was to experimentally verify that the encoding/
decoding apparatus works properly in the case of stationary 
aligned reference frames. We prepared the input photon in one of 
the polarization states |H〉, |V〉, |R〉, |L〉, or | = (| | )/ 2±〉 〉± 〉H V .  
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Figure 2 | Toolbox for experimental alignment-free quantum communication. (a, b) The liquid crystal q-plate with topological charge q = 1/2 works as  
a universal logical-qubit encoder/decoder. Panel (a) shows the q-plate optical axis pattern, whereas panel (b) is a photo of the device seen through 
crossed polarizers, under oblique illumination; different colours result from different optical axis orientations. The q-plate birefringent retardation 
is electrically tuned. (c) Experimental set-up, in the configuration used to generate entangled rotationally invariant photon pairs and to perform a 
misalignment-immune demonstration of non-locality. Reference-frame misalignments are implemented by physically rotating Alice’s entire measurement 
station around the optical axis by an angle θ. For the alignment-free BB84 QKD test, the entangled-photon source, together with Bob’s measurement 
station, is taken as the transmitting party, and Bob’s photon is used to herald the transmission of the other photon to Alice. The communication  
distance was 60 cm. (d) schematics of the rotating device for measuring rotationally invariant qubits in arbitrary reference frames. (e) Photo of the  
actual measurement device. QP, q-plate; C, walk-off compensation crystals; sm, single-mode fibres; D, single photon detectors; HWP, half-wave plate; 
QWP, quarter-wave plate.
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The qubit was then mapped by a first q-plate into the rotationally 
invariant encoding, transmitted through free space to the measure-
ment stage, then decoded back to polarization by a second q-plate, 
and finally analysed in polarization using a set of wave plates and 
a polarizing beam splitter (PBS). The full experimental apparatus 
is described in the Methods. The average measured fidelity with 
the input states was F = (98 ± 1)%, indicating that the devices work 
nearly perfectly.

Alignment-free quantum key distribution. To experimentally 
demonstrate that the present QC set-up works well for arbitrary 
relative alignment of Alice and Bob’s transverse reference frames, 
we mounted the q-plate, waveplates, PBS and optical fibre cou-
plers in a compact and robust detection stage that can be freely 
rotated by any angle θ around the light propagation axis, as shown 
in Fig. 2d,e. Then, using heralded single photons, and for different 
angles θ, we encoded, transmitted and decoded, the four hybrid-
qubit states required for the BB84 QKD protocol26: |0〉L,|1〉L, and 
| = (|0 |1 )/ 2±〉 〉 ± 〉L L L . We quantified the potential of our set-up for 
QKD by measuring the fidelities of the states prepared and meas-
ured with the ideal ones, as well as the qubit-error rates34 e0 /1L L and 
e+ −L L/  for the logical bases {|0 ,|1 }〉 〉L L  and {| ,| }+〉 −〉L L , respectively. 
The experimental results are reported in Fig. 3a,b.

Figure 3a shows the average fidelity FQKD over the four states, 
as a function of θ. FQKD is constantly above the value FT = 89%, 
which corresponds to the well-known Shor-Preskill security proof 
threshold35. Above this, under the usual assumptions that Alice’s 
source emits (logical) qubits, Bob’s detectors perform (logical) qubit 
measurements, and there is no basis-dependent flaw in Alice’s and 
Bob’s systems36, unconditional security can be guaranteed. In con-
trast, the fidelity attained using polarization-encoded qubits falls 
below the security bound for angles θ > 20°, even in the ideal noise-
less case (blue dashed line). Figure 3b, in turn, shows the fidelity  

for each state, obtained by uniformly mixing the data over all meas-
ured angles θ. Again, all the individual-state fidelities are consist-
ently larger than the security threshold. Indeed, the measured 
qubit-error rates, estimated as 1 − F, were e0 /1 = (0.65 0.09)%L L ±  
and e+ − ±L L/ = (4.1 0.2)%, from which we expect a high secret-key 
fraction r = (70 ± 1)% (ref. 34).

Alignment-free entanglement distribution. To test entanglement  
distribution, the photon pair is prepared in the polarization 
entangled state | = 1 2 (| | | | )f− 〉 〉 〉 − 〉 〉p p p p p

AB A B A BR R L L( / ) , where the  
superscripts A and B refer to Alice’s and Bob’s photons, respec-
tively. The photons are coupled into single-mode fibres that select 
only states with zero OAM (TEM00 mode). A q-plate at the output  
of each fibre transforms the polarization-entangled state to the  
rotationally invariant entangled state:

| 1
2

(|0 |0 |1 |1 ) =| .f f− −〉 → 〉 〉 − 〉 〉 〉
−

p
plates

L L L L L
AB q A B A B AB

To verify the generation of hybrid entanglement, we performed 
quantum state tomography of the experimental density matrix rL

AB 
measured without misalignment (θ = 0). The tomographically reconst-
ructed matrix, in the basis {|0 |0 , |0 |1 , |1 |0 , |1 |1 }〉 〉 〉 〉 〉 〉 〉 〉L L L L L L L L

A B A B A B A B ,  
is shown in Fig. 3c. The fidelity with the experimental polarization 
entangled state rp

AB input to the encoder is F AB AB
0( , ) = (93 1)%r rL p ± ,  

while the entanglement of rL
AB, as given by the concurrence, is 

C = (0.85 ± 0.03). As a first test on the rotational invariance of the 
state produced, we repeated the tomographic reconstruction with 
Alice’s measurement stage rotated by θ = 45°. The correspond-
ing reconstruction is shown in Fig. 3d. The fidelity with rp

AB is 
F AB AB

45( , ) = (96 1)%r rL p ± , and the concurrence is C = (0.84 ± 0.03), 
consistent with the case θ = 0. This indicates that our entanglement 
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Figure 3 | Experimental results of alignment-free QC tests. (a, b) measured fidelity of qubits encoded in the rotationally invariant polarization-oAm 
space, in a test of the BB84 quantum key distribution protocol, compared with that of standard polarization-encoded qubits. Panel (a) shows the 
fidelity FQKD (black square dots) averaged over the four hybrid qubit states used in the protocol, as a function of the misalignment angle θ between the 
transmission and detection reference frames. Panel (b) shows the individual fidelity of each of the four states (green bars) observed over the whole 
QC session including all the different rotation angles probed. The latter accounts for the general situation where the misalignment could vary randomly 
between transmitted photons. In both panels, the blue dots/bars and dashed lines give, respectively, the measured and theoretically calculated fidelity for 
the standard case of polarization encoding. The red line delineates the QKD security threshold. (c, d) Quantum state tomography of the entangled state 
of hybrid qubits distributed between Alice and Bob, for the case of aligned reference frames (c) and for a misalignment of θ = 45° (d). In both cases, only 
the real part of the density matrices is shown, as the imaginary part is negligible. (e) CHsH parameter S (black squares) in experimental non-locality tests 
on photon pairs entangled in the rotationally invariant qubit space, as a function of the relative misalignment θ between Alice’s and Bob’s frames. The red 
line is the local-hidden-variable bound. The blue dots represent the measured values of S for the bare polarization-entangled states without the logical 
protection, whereas the blue dashed line is the theoretically calculated maximal CHsH parameter that would be obtained with pure maximally entangled 
polarization states. The black dot-dashed line, in turn, represents the overall CHsH value S of the entire test, taking into account all the experimental runs 
with different θ. Error bars result from Poissonian statistics. When not visible, the error bar is smaller than the symbol.
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distribution scheme is immune to relative misalignments of Alice 
and Bob.

Alignment-free quantum non-locality. With the hybrid entan-
gled state (5), we performed a violation of the CHSH inequality 
S E a b E a b E a b E a b=| ( , ) ( , ) ( , ) ( , ) | 20 0 1 0 0 1 1 1+ + − ≤  in an alignment-
free setting. In the inequality, ax and by, with possible values 0 or 1, are 
the outcomes of Alice’s and Bob’s measurement settings x and y, respec-
tively, with x and y equal to 0 or 1. Correlators E a bx y

ax by( , ) = ( 1)〈 − 〉+ ,  
with 〈〉 the statistical average, quantify the fraction of events where 
Alice’s and Bob’s outcomes are observed to coincide. Any local-
hidden-variable model satisfies the inequality27. For the rotation-
ally invariant quantum violation of the inequality we chose the 
following hybrid measurement bases: {|0〉L,|1L〉} and {| + 〉L,| − 〉L}, 
corresponding to Alice’s settings x = 0 and x = 1, respectively, and 
{ 8 |0 8 |1 , 8 |0 8 |1 }cos( / ) sin( / ) sin( / ) cos( / )p p p p〉 + 〉 − 〉 + 〉L L L L  and 
{ 8 |0 8 |1 , 8 |0 8 |1 }sin( / ) cos( / ) cos( / ) sin( / )p p p p〉 + 〉 − 〉 + 〉L L L L , cor-
responding to Bob’s settings y = 0 and y = 1, respectively. Figure 3e 
reports the measured CHSH parameter S versus the rotation angle 
θ of Alice’s measurement frame. The figure shows that the local- 
hidden-variable bound is violated for all angles, in striking contrast 
with the experimental polarization state rp

AB (blue circles), or even 
with the ideal maximally entangled polarization state |f− 〉p

AB (blue 
dashed line). For the logically encoded states, we mixed the data of 
all different values of θ to test the violation’s immunity to arbitrarily 
varying frame orientation, obtaining a value of S = (2.47 ± 0.01) > 2. 
This alignment-free extraction of non-local correlations reconfirms 
the rotational invariance of the quantum resources created here.

Robustness of rotational-invariant hybrid qubits. A remarkable 
feature of our polarization-OAM hybrid-encoding QC scheme is 
that it turns out to be robust against the spatial-mode perturbations 
arising in beam misalignments around axes other than the optical 
one and atmospheric turbulence effects. Such robustness appears at 
first glance counterintuitive, because the encoding involves the use 
of OAM, which is quite sensitive to all the above-mentioned spatial 
perturbations37,38 (although significant progresses in pure OAM-
based classical and quantum communication through the atmos-
phere have been recently reported39–41). The main reason for such 
robustness is that the OAM spread induced by spatial-mode pertur-
bations is neutralized by the polarization degree of freedom, which 
is in contrast very robust against those spatial-mode perturbations. 
This allows one to filter out, in the receiving unit, most components 
of the state that would otherwise decrease the fidelities. That is, the 
particular decoding set-up used intrinsically implements an effec-
tive quantum error-correction procedure that discards (but does 
not correct) all states outside the logical subspace.

Indeed, spatial-mode perturbations will alter a generic hybrid qubit 
a b| | | |R l L r〉 〉 + 〉 〉p o p o, transforming it into the following state:

m
mC R m C L m∑ + −〉 〉 + 〉 〉[ | | | | ],1, 1,a bp o m p o

where |m〉o denotes a generic mode with OAM eigenvalue m   
and Cm,m′ are the probability amplitudes for the photon OAM  
to be shifted from m  to ′m  , owing to the perturbation. How-
ever, in the decoding unit, the photon undergoes another q-plate  
transformation

→ 〉 − 〉 + 〉 + 〉
−

+ −∑
q

m
m mC L m C R m

plate
p o p o[ | | 1 | | 1 ],1, 1,a b

followed by a projection onto an m = 0 Gaussian spatial mode  
(for example, by coupling it into a single-mode fibre), which leads  
to the following final state:

(6)(6)

(7)(7)

[ | | ]|0 .1, 1 1, 1C L C R+ + − −〉 + 〉 〉a bp p o

Therefore, if the spatial-mode perturbation satisfies the condition

C C+ + − −1, 1 1, 1= ,

the final polarization-encoded qubit will be identical to the initial 
one, except for a global phase and amplitude, and the communica-
tion fidelity will be preserved (in this simple analysis, we did not 
consider the radial modes; see Methods for a complete theory).

In particular, every beam transformation that is mirror- 
symmetric with respect to a plane containing the initial beam  
axis will be symmetrical in the sign of OAM and hence will  
satisfy equation (9). For example, beam parallel displacements,  
tilts, elliptical deformations, or aperturings with a circular iris 
(even if off centre) or a half-plane mask (knife-edge), all have this 
symmetry. An axial misalignment, that is, a misalignment around 
an axis other than the optical one, between the transmitting and 
receiving communication units is equivalent to a beam transla-
tion and/or tilt, with both contained in the same plane, and can be 
treated analogously. Only symmetry-breaking combinations of two 
or more of the above effects may affect the fidelity. For example, 
a beam tilt combined with a beam displacement along a different 
plane will break the mirror symmetry and hence might introduce 
some degree of qubit alteration. (See Supplementary Methods for 
an explicit analysis of these beam-misalignment perturbations.42) 
Also, the main optical effects arising from atmospheric turbulence, 
such as beam wandering and spreading are mirror-symmetric,  
so that the extent of qubit alteration is expected to be much less 
significant in our communication scheme than in the case of pure 
OAM communication.

Another important class of transformations that satisfies equa-
tion (9) is that mathematically defined by pure multiplicative factors 
acting on the optical field, for example, the transformations arising 
from crossing any arbitrary inhomogeneous medium that is thin as 
compared with the Rayleigh length. It is easy to verify that these 
will be described by coefficients Cm,m′ that depend on the difference 
m − m′ and on the absolute values |m| and |m′|, so that equation (9) 
is automatically satisfied. Weak turbulence, introducing only pure 
phase wavefront distortions, falls within this class of transforma-
tions and is therefore predicted to leave the qubit fidelity intact37. 
If we now consider the fact that light propagation in homogeneous 
media leaves the various OAM components constant, we conclude 
that equation (9) is satisfied even if the turbulent medium is fol-
lowed and/or preceded by a long-distance free-space propagation, 
as in the case of earth to satellite (and vice versa) communication 
through the atmosphere.

Experimental tests of rotational-invariant qubit robustness. As 
a first test, we considered transmission through two types of trans-
verse apertures: a half-plane movable obstruction (knife) covering 
a variable fraction of the transverse mode, and an iris (or pinhole) 
with variable radius. We have measured the state transmission 
fidelity F for different input states, at both aligned and 45°-rotated 
measurement stages, with respect to the transmitting unit, and for 
an increasing disturbance due to the obstruction. The experimental 
set-up used for this test is illustrated in Fig. 4a. We encoded different 
polarization qubits using two wave plates and mapped them into the 
hybrid encoding using a q-plate. For the purpose of comparison, we 
also switched to a pure-OAM encoding by inserting a fixed linear 
polarizer after the q-plate, so as to erase the polarization content of 
the qubit. Then, the photon was sent through the obstruction and 
to the receiving unit, and the communication fidelity was measured 
as a function of the obstruction transmittance, by varying the aper-
ture of the pinhole or the transverse position of the knife. Thus, the 

(8)(8)

(9)(9)
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lowest transmittivity corresponds to a tiny aperture of the pinhole 
(0.2 times the beam size), or to the almost complete coverage of  
the beam. All reported experimental fidelities were obtained by 
averaging over the six eigenstates of three mutually unbiased bases, 
therefore providing a good representative of the average fidelity 
over any input qubit state. The experimental results are reported in  
Fig. 4b,c. It is seen that the average fidelity of hybrid qubits is  
independent both of the transmittivity of the aperture and of the 
rotation angle of the measurement kit, with a global average of 
F = (98 ± 1)% for the case of iris and F = (96 ± 1)% for the knife. 
Moreover, in the former case the fidelity is not affected by the dis-
placement of the pinhole off the beam axis. For comparison, we 
tested the resistance of qubits encoded only in the two-dimensional  
OAM subspace o1 = {| + 1〉,| − 1〉}, that is, the same subspace used 
for the hybrid encoding. In this case, the fidelity remains high 
(F = (97 ± 1)%) only when the cylindrical symmetry of the modes  
is not perturbed, as for the centred iris, although for all other  
cases (non-centred iris or knife), the fidelity drops rapidly with 
decreasing transmission.

As a second test, we performed a communication run while 
changing the angle of the measurement kit without reoptimizing 
the alignment of the single-mode fibre. This corresponds to intro-
ducing small uncontrolled tilt and displacements in the beam dur-
ing the measurement. We found that the system preserves a good 
QC fidelity (that is, above the security threshold) for rotations up  
to 30°. Above this angle, it was necessary to slightly readjust the  
single-mode fibre alignment to restore a high fidelity.

Finally, we tested the communication fidelity dependence on a con-
trolled beam displacement, for two fixed angles of the measurement  

stage. Fig. 4d shows the behaviour of the average communication 
fidelity as a function of the beam displacement. The hybrid-qubit 
fidelity decreases with the displacement, but much slower than that 
of pure OAM encoding (see also the Supplementary Discussion).

Discussion
QC has a fundamental role in the modern view of quantum physics 
and opens the possibility of a variety of technological applications. 
Uncontrolled reference-frame misalignments limit QC, as they turn 
the transmitted quantum messages into noisy, classical ones. Here 
we report the development of a robust and compact toolbox for 
the efficient encoding and decoding of quantum information into  
single-photon states that are invariant under arbitrary rotations 
around the optical axis. With this, all concerns on relative axis- 
orientation during quantum transmissions reduce simply to the 
basic requirement of establishing an optical link.

Rotational invariance is achieved by exploiting decoherence- 
free subspaces spanned by hybrid polarization-OAM-entangled  
states. We experimentally showed the efficacy of these states through 
the feasibility demonstration of a cryptographic-key distribu-
tion protocol, distribution of entanglement, and violation of a Bell  
inequality, all in alignment-free settings. Importantly, as far as cryp-
tographic security is concerned, our scheme does not introduce loop-
holes other than those already present in any photonic experiment 
with conventional encodings. We also emphasize that, even though 
the states used are themselves invariant only under rotations about 
the propagation axis, the scheme resists misalignments around other 
directions too. This is due to a filtering mechanism intrinsic to our 
universal-decoder set-up, which maps errors originating from beam 
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Figure 4 | Experimental results for rotational-invariant qubit robustness. (a) Experimental set-up adopted for the tests on the resistance of the 
rotational invariant hybrid photonic qubits to spatial-mode perturbations. In the schematics, we reported both the circular aperture (pinhole) and the 
half-plane obstruction (a movable knife-edge) that can alter the transmission of the qubits. Displaced beam is represented by a dashed red arrow. QP, 
q-plate; HWP, half-wave plate; QWP, quarter-wave plate. (b, c) Experimental resistance of rotational invariant hybrid qubits to beam perturbations, 
compared with the case of pure oAm qubits. Panel (b) refers to the case of circular aperture. Average fidelity of pure oAm qubits (black squares), hybrid 
qubits for a measurement stage rotated at an angle θ = 0° (green triangles) and at an angle θ = 45° (red circles) with respect to the transmitting unit. The 
blue triangles refer to the pure oAm qubits case, when the circular aperture is displaced off the beam axis by 5% of the beam waist (the hybrid qubit 
behaviour in the latter case was essentially indistinguishable from the centred aperture case). The transmission efficiency is determined by single-mode 
(sm) fibre-coupling efficiency after a circular aperture of varying radius, in the case of hybrid qubits only. Panel (c) refers to half-plane aperture. Average 
fidelities for hybrid qubits at θ = 0° (green triangles) and θ = 45° (red circles). Black squares are the corresponding results for pure oAm qubits. sm 
coupling efficiency after a movable half-plane aperture. (d) Experimental resistance of hybrid qubits (green triangles represent the case θ = 0° and red 
circles θ = 45°) to a beam displacement, compared with the case of pure oAm encoding (black squares). In all panels, the red dashed line delineates the 
QKD security treshold. The beam waist in our experiment is w0 = (1.0 ± 0.1)mm. uncertainties are smaller than the symbols.
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rotations around axes other than the optical link, as well as other 
spatial perturbations, into signal losses instead of infidelity.

Recently, interesting alignment-free approaches for QKD43  
and to extract non-local correlations44–46 have been put forward. 
These, however, require that the relative axis orientations, though 
unknown, stay approximately static throughout the quantum 
data exchange session (see Supplementary Discussion for details). 
Remarkably, in contrast, our rotational-invariance protection  
works even if the relative orientations vary arbitrarily from meas-
urement to measurement. Moreover, another important feature of 
the present scheme is that it does not restrict to non-locality and 
QKD but enables also fully general QC protocols, all misalignment-
immune18. These include, for instance, quantum teleportation, 
dense coding, and entanglement swapping, the main ingredient of 
quantum repeaters.

Finally, our scheme should find applications in the forthcoming 
experiments on long-distance satellite-based QC3–6. There, apart 
from misalignments, other issues may impose serious obstacles 
too, such as precise satellite laser-tracking, collection efficiencies, or 
finite-size effects (for QKD). However, immunity against arbitrarily 
varying transverse relative orientations not only solves for misalign-
ments but also relaxes requirements on the repetition rates needed 
to overcome finite-size effects (see Supplementary Discussion).

Methods
Experimental apparatus. The input photon pairs are generated via spontaneous 
parametric fluorescence in a β-barium borate (BBO) crystal cut for type-II phase 
matching, pumped by the second harmonic of a Ti:sapphire mode-locked laser 
beam with a 76-MHz repetition rate. The generated photons have wavelength 
λ = 795 nm and spectral bandwidth ∆λ = 3 nm, as determined by two interference 
filters. The spatial and temporal walk-off is compensated by inserting a l /2 wave 
plate and a 0.75-mm thick BBO crystal on each output mode47. The detected  
coincidence rate of the source is 8 kHz. The photons are delivered to the set-up  
via single-mode fibres, to define their transverse spatial mode to a pure TEM00, 
corresponding to OAM m = 0. After the fibre output, two wave plates compen-
sate the polarization rotation introduced by the fibre. The polarization-encoded 
photonic states are transformed into rotationally invariant hybrid states by q-plates 
with topological charge q = 1/2. The average conversion efficiency of all the q-plates 
employed in the experiment has been optimized to (94 ± 2)% by controlling the 
electric field applied to the device48,49. For the analysis of experimental data, we 
referred to the coincidence counts between detectors [DA1,DB1] and [DA2,DB2] 
shown in Fig. 2, collected by a coincidence circuit with a gate of 3 ns. Typical coin-
cidence rates were 30 Hz for the CHSH experiment and 300 Hz for the BB84 one.

Theory of q-plate encoding/decoding with radial modes. To fully describe the 
optical action of the q-plate, we need to consider both the azimuthal quantum 
number m, corresponding to the OAM eigenvalue in units of  , and a radial 
quantum number p. These two numbers can be defined, for example, as in the case 
of Laguerre-Gauss beams, although this is not the only possible choice and our 
treatment is general in this respect. We denote with |P, m, p〉 the photon quantum 
state, including the spatial mode defined by m and p and the polarization state P 
(for example, L, R, H or V). The q-plate transformation laws are as follows:

| , , | , 1,

| , ,

| |,| 1|; ,

| |,| 1|;

L m p Q R m p

R m p Q
p

m m p p

p
m m

〉 → + ′〉

〉 →
′

+ ′

′
−

∑

∑ pp p L m p, | , 1,′ − ′〉

where Qm m p p, ; ,′ ′ are coefficients that do not depend on the sign of m and m′,  
owing to the mirror symmetry of the q-plate pattern. These coefficients can be  
also given explicit analytical expressions in a given radial basis (for example, the 
Laguerre-Gauss one), but these expressions are not needed for our purposes  
here. Let us now consider a generic input polarization-encoded qubit photon  
in a Gaussian mode TEM00 (m = 0, p = 0):

| = | ,0,0 | ,0,0 .y a b〉 〉 + 〉p R L

After the q-plate, this photon is converted into the following rotation-invariant 
hybrid state (corresponding to the logical qubit):

| = | , 1, | , 1, .0,1;0,y a b〉 − 〉 + + 〉( )∑L
p

pQ L p R p

(10)(10)

(11)(11)

(12)(12)

This generalizes the transformation (3), by including also the radial modes. In 
free-space propagation, the different spatial modes will acquire Gouy phase factors 
G|m|,p that depend only on the absolute value of m (see, for example, ref. 30). The 
final decoding procedure is based on a second q-plate followed by a spatial filtering 
into an output TEM00 mode (that is, m = 0, p = 0; but the output radial basis need 
not be the same as the input one, as a different beam radius can be defined). This 
spatial filtering can, for example, be implemented by coupling into a single-mode 
fibre. This leads to the output polarization-encoded state | = |′〉 〉y h yP P, where

h = .
,

0,1;0, 1, 1,0; ,0
p p

p p pQ G Q
′

′∑

Therefore |η|2 gives the quantum efficiency of the encoding/decoding process. 
After decoding, this output state is ready for detection or for further quantum 
processing.

Effect of spatial-mode perturbations during propagation. Let us now consider 
the action of generic spatial-mode perturbation acting on the photons during 
propagation, as defined by the following transformation laws:

| , , | , ,
,

, ; ,P m p C P m p
p m

m m p p〉 → ′ ′〉
′ ′

′ ′∑

where Cm m p p, ; ,′ ′ are suitable complex-valued coefficients (when ignoring the 
radial modes, they correspond to the Cm,m′ coefficients used in equation (6)).  
We assume here that the perturbation does not affect the polarization state. The 
Gouy phase factors describing free-space propagation can be included in (14)  
without loss of generality. Let us now consider the effect of the perturbation (14) 
on the encoded qubit (12), which is transformed into the following state:

| = | , ,

| , ,

, ,
0,1;0, 1, ; ,

1, ; ,

′〉 ′〉(
+

′
− ′

+ ′

∑y a

b

L
p m p

p m p p

m p p

Q C L m p

C R m ′′〉)p .

Next, we apply again to this perturbed state, the transformations used in the decod-
ing unit (q-plate and TEM00 filtering), obtaining the following final state

| =

| ,0,0

,
0,1;0, 1,0; ,0

1, 1; , 1, 1;

′〉

× 〉 +

′
′

− − ′ + +

∑y

a b

p
p p

p p

p p p

Q Q

C R C ,, | ,0,0 .′ 〉( )p L

The latter equation shows that the qubit state will be unaffected, except for a global 
amplitude and phase factor, if and only if the following equality holds true:

C Cp p p p− − ′ + + ′1, 1; , 1, 1; ,= ,

for all values of the radial indices p, p′, thus generalizing equation (9). In other 
words, any spatial-mode perturbation that satisfies equation (17) will not alter the 
qubit transmission fidelity, although it may affect the transmission efficiency by 
increasing the photon losses. Explicit examples of spatial transformations arising 
in typical beam misalignment effects, such as beam translations and/or tilting, are 
considered in the Supplementary Methods. 
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