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Abstract

In this paper, we address the problem of recovering a
hyperspectral texture descriptor. We do this by viewing the
wavelength-indexed bands corresponding to the texture in
the image as those arising from a stochastic process whose
statistics can be captured making use of the relationships
between moment generating functions and Fourier kernels.
In this manner, we can interpret the probability distribution
of the hyper-spectral texture as a heavy-tailed one which
can be rendered invariant to affine geometric transforma-
tions on the texture plane making use of the spectral power
of its Fourier cosine transform. We do this by recovering
the affine geometric distortion matrices corresponding to
the probability density function for the texture under study.
This treatment permits the development of a robust descrip-
tor which has a high information compaction property and
can capture the space and wavelength correlation for the
spectra in the hyperspectral images. We illustrate the utility
of our descriptor for purposes of recognition and provide
results on real-world datasets. We also compare our results
to those yielded by a number of alternatives.

1. Introduction

The development of image sensor technology has made
it possible to capture image data in hundreds of wavelength-
resolved images covering a broad spectral range in the visi-
ble and near-infrared range. The information-rich represen-
tation of the object under study provided by hyperspectral
imagery poses significant opportunities and challenges for
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localisation and classification tasks.

Hyperspectral imaging can be intuitively related to ma-
terial chemistry so as to employ spectral signatures for pur-
poses of classification and localisation. This hinges on the
notion that different materials have a characteristic response
as a function of wavelength which can be used so as to pro-
vide a description of the object under study. So far, algo-
rithms have been proposed for purposes of recognition and
classification based upon spectral imaging [6, 4]. These
are often based upon subspace projection methods such as
Principal Component Analysis, Linear Discriminant Anal-
ysis, Decision Boundary , Projection Pursuit, and kernel
methods[10]. All these algorithms treat the raw pixel spec-
tra as input vectors in high dimensional spaces and look
for linear or nonlinear mappings to the feature space, of-
ten with reduced dimensionality, by optimizing certain cri-
terion, leading to statistically optimal solutions to classifi-
cation.

Despite effective, the use of higher-level features, such
as those based upon texture or shape for purposes of recog-
nition, classification and localisation in hyperspectral imag-
ing are less common in the literature. Moreover, to our
knowledge, there are no hyperspectral texture descriptors
elsewhere in the literature. In trichromatic imaging, texture
has found applications not only as a shape queue [7, 18],
but has also attracted broad attention for recognition and
classification tasks [13]. Moreover, from the shape recov-
ery perspective, static texture planes can be recovered mak-
ing use of the structural analysis of predetermined texture
primitives [9, 1]. This treatment provides an intuitive geo-
metrical meaning to the task of recovering the parameters
governing the pose by making use of methods akin to 3D
view geometry.

In this paper, we focus in the development of a hyper-
spectal texture descriptor. To do this, we use an approach
based upon the higher-order statistics of the texture under
study. This is somewhat akin to the treatment given to dy-
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namic textures in computer vision, where image sequences
are modelled via probability density functions which ex-
hibit first and second order time-shift invariant moments [5].
As their static counterparts, dynamic textures have attracted
considerable interest for purposes of recognition. [17, 19].

We propose a descriptor based upon the use of statistics
and Fourier kernels for purposes of capturing a discrimi-
native and descriptive representation of the hyperspectral
textures in the scene. This provides a principled link be-
tween statistical approaches, signal processing methods for
texture recognition and shape modeling approaches based
upon measures of spectral distortion [12, 15]. Hence, this is
a means to both, a compact representation of the hyperspec-
tral texture based upon its statistical characterisation and
affine invariance via the estimation of the transformation
parameters on a locally planar texture plane. Here, we view
the hyperspectral texture as arising from a heavy-tailed dis-
tribution which can be related to a Fourier transform whose
kernel, for purposes of efficiency has been set to a cosine
function. This derives into a cosine transform which, when
effected with respect to the pixel-coordinates can be related
to the affine distortion of the texture. As a result, our de-
scriptor is affine-invariant at the image-level and, at a wave-
length level, captures the correlation of the moment gener-
ating functions for each of the bands under study.

The paper is organised as follows. In Section 2, we in-
troduce heavy tailed distributions and relate them to Fourier
kernels. We also elaborate on the compactness of represen-
tation making use of a cosine transform and provide a for-
mulation for the local geometric distortion matrix employed
here for purposes of affine invariance. In Section 3, we turn
our attention to the computation of the descriptor. In Sec-
tion 4, we provide further discussion on our descriptor and
its affine invariance. In Section 5 we show experimental
results making use of our descriptor for hyperspectral tex-
ture recognition on two real-world datasets. We also pro-
vide comparison to alternatives elsewhere in the literature
and provide discussion on the application of the descriptor
to other settings. Finally, we provide conclusion in Section
6.

2. Heavy-tailed Distributions
Here, we view hyperspectral textures as stochastic pro-

cesses whose moment generating functions are invariant
with respect to shifts in the image-coordinates. That is, the
mean, covariance, kurtosis, etc. for the corresponding joint
probability distribution are required to be invariant with re-
spect to changes of location on the image. Due to their den-
sities have high dispersion, their probability density func-
tions are governed by further-order moments. These intro-
duces a number of statistical “skewness” variables that al-
low high variability in terms of wavelength-dependent be-
haviour. This implies that the spectra in the hyperspectral

texture results in spectral values that can be rather high in
terms of their deviation from the texture-spectra mean and
variance. This variation, which cannot be ignored in hy-
perspectral data, is characteristic to the stochastic process
governing the texture under study.

Thus, we formulate our descriptor so as to model “rare”
stationary wavelength-dependent events on the image plane.
This is reminiscent of simulation approaches where im-
portance sampling cannot be effected via an exponential
changes of measure due to the fact that the moments are
not exponential in nature. This applies to distributions such
as the log-normal, Weibull with increasing skewness and
regularly varying distributions such as Pareto, stable and
log-gamma distributions [2]. We formulate the density of
the pixel-values for the wavelength λ at the pixel u in the
image-band Iλ of the texture as random variables Yu whose
inherent basis Xu = {χu(1), χu(2), . . . , χu(|Xu|)} is such
that

P (Yu) =
|Xu|∑
k=1

P (χu(k)) (1)

where, χu(k) are identically distributed variables and, as
usual for probability distributions of real-valued variables,
we have written P (Yu) = Pr[y ≤ Yu] for all y ∈ R.

In other words, we view the pixel values for each band in
the image for the texture under study as arising from a fam-
ily of heavy-tailed distributions whose variance is not nec-
essarily finite. It is worth noting in passing that, for finite
variance, the formalism above implies that P (Yu) is nor-
mally distributed. Nonetheless, this treatment generalises
the stochastic process to a number of independent influ-
ences, each of which is captured by the corresponding vari-
able χu(k).

In practice, the Probability Density Function (PDF)
f(Yu) is not available in close form. As a result, we can
re-parameterise the PDF recasting it as a function of the
variable ς making use of the characteristic function

ψ(ς) =
∫ ∞

−∞
exp(iςYu)f(Yu)dYu (2)

= exp
(
iuς − γ |ς|α (1 + iβ sign(ς)ϕ(ς, α))

)
where i =

√−1, u is, as before, the pixel-index on the
image plane and γ ∈ R+ are function parameters, β ∈
[−1, 1] and α ∈ (0, 2] are the skewness and characteristic
exponent, respectively, and ϕ(.) is defined as follows

φ(ς, α) =

{
tan(απ

2 ) if α �= 1
−π
2 log|ς| if α = 1

(3)

Note that, for the characteristic function above, α = 2 im-
plies a normal distribution, β = 0 and α = 1 corresponds to
a Cauchy distribution and, for the Levy distribution we have
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α = 1
2 and β = 1. Thus, nonetheless the formalism above

can capture a number of cases in exponential families, it is
still quite general in nature so as to allow the modelling of a
large number of distributions that may apply to hyperspec-
tral data.

Note that, so far, we have limited ourselves to the image-
plane for a fixed wavelength λ. That is, we have concen-
trated on the distribution of spectral values accross every
wavelength-resolved band in the image. We can extend
Equation 2 to the wavelength domain, i.e. the spectra of
the texture across a segment of bands, by noting that the
equation above is essentially a cross-correlation. Hence, we
can write the characteristic function for the texture parame-
terised with respect to the wavelength λ as follows

ϑ(t) =
∫ ∞

−∞

∫ ∞

−∞
exp(iλς)exp(iςYu)f(Yu)dYudς

=
∫ ∞

−∞
exp(iλς)ψ(ς)dς (4)

which captures the spectral cross-correlation for the charac-
teristic functions for each band.

In this manner, we view the characteristic function for
the hyperspectral texture as a heavy-tailed distribution of
another set of heavy-tailed PDFs, which correspond to each
of the band in the image. This can also be interpreted as a
composition of two heavy-tailed distributions, where Equa-
tion 2 corresponds to the image-band domain ς of the tex-
ture. Equation 4 is then the wavelength-dependent domain
λ. This composition operation also opens-up the possibil-
ity of following a two-step process. Firstly, at band-level,
the information is represented in a compact fashion and ren-
dered invariant to geometric distortions on the texture plane.
In the second step, wavelength-dependent correlation be-
tween bands is captured making use of the operation in 4.

2.1. Compactness of Representation

To achieve a compact representation making use of the
equations above, we refer to the fundamentals of integral
transforms [16]. We can view Equations 2 and 4 as char-
acteristic functions obtained via the integral of the prod-
uct of the function g(η), i.e. f(Yu) and ψ(ς), multiplied
by a kernel K(ω, η), which above becomes exp(iλς) and
exp(iςYu), respectively. As a result, we have

F (ω) =
∫ ∞

−∞
g(η)K(ω, η)dη (5)

where K(ω, η) is a Fourier kernel.
To see the relation between Fourier transforms and the

equations in previous sections, we can examine ψ(ϕ) in
more detail and write

log[ψ(ς)] = iuς − γ | ς |α (
1 + iβ sign(ς)ϕ(ς, α)

)
= iuς− | ς |α γ∗α exp

(− iβ∗
π

2
ϑsign(ς)

)

where ϑ = 1− | 1 − α | and the parameters γ∗ and β∗ are
given by

β∗ =
2
πϑ

arccos
(
cos

(
απ
2

)
√
Ω

)

γ∗ =
(

γ
√
Ω

cos
(
απ
2

)) 1
α

(6)

and Ω = cos2
(
απ
2

)
+ β2 sin2

(
απ
2

)
.

To obtain the kernel for Equation 2, we can use Fourier
inversion on the characteristic function and, making use of
the shorthands defined above, the PDF may be computed
via the equation

f(Yu; v, β∗, γ∗, α) =
1
πγ∗

∫ ∞

0

cos
(
(u− Yu)s

γ∗
+ sα sin(φ)

)

exp
(
− sα sin(φ)

)
ds

(7)

where φ = β∗πη
2 .

This treatment opens-up not only the possibility of ef-
fecting functional analysis on the characteristic function
making use of the techniques in the Fourier domain, but
also allows the use of other Fourier kernels for purposes
of compactness and ease of computation. Actually, the ex-
pression above can be greatly simplified making use of the
shorthandsA = (u−Yu)

γ∗ , η = sα and ωη = As+sαsin (φ),
which yields

sαsin (φ) = ωη −Aη 1
α (8)

Substituting Equation 8 into equation 7, the PDF can be
expressed as follows

f (Yu; υ, β∗, γ∗, α) =

√
2
π

∫ ∞

0

exp
(
−ωη +Aη

1
α

)
√
2πγ∗αη(

α−1
α )

cos (ωη) dη (9)

where the Fourier kernel becomes

K(ω, η) = cos(ωη) (10)

which can be related, in a straightforward manner, to the
Fourier Cosine Transform (FCT) of the form

F (ω) =

√
2
π

∫ ∞

0

exp
(
−ωη + (u−Yu)

γ∗ η
1
α

)
√
2πγ∗αη(

α−1
α )

cos (ωη) dη (11)

which is analogous to the expression in Equation 7.
Nonetheless, the transform above does not have imaginary
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coefficients. This can be viewed as a representation in the
power rather than in the phase spectrum. Moreover, it has
the advantage of compacting the texture information in the
lower-order Fourier terms, i.e. those for which w is close
to the origin. This follows the strong “information com-
paction” property of FCTs introduced in [14] and assures a
good trade-off between discriminability and complexity.

2.2. Invariance to Affine Distortions

Having introduced the notion of the FCT for purposes of
representing the PDF of the dynamic texture under study,
we now focus on relation between distortions on the tex-
ture plane and the Fourier domain. To this end, we fol-
low [3] and relate the Fourier domain distortions to affine
transformations on the texture shape. As mentioned ear-
lier, the function f(Yu) corresponds to the band-dependent
component of the texture and, as a result, its prone to affine
distortion. This hinges in the notion that a distortion on
the texture plane will affect the geometric factor in the sur-
face reflectance, but not its photometric properties. In other
words, the material index of refraction, roughness, etc. re-
mains unchanged, whereas the geometry of the reflective
process does vary with respect to affine distortions on the
image plane. The corresponding 2D FCT of the function
f(Yu) which, as introduced in the previous sections, cor-
responds to the pixel values for the image-band Iλ in the
texture under study is given by

F (ξ) =
∫
Γ

f (Yu) cos
(
2π

(
ξTu

))
du (12)

where u = [x, y]T is the vector of two-dimensional coordi-
nates for the compact domain Γ ∈ �2. It is worth noting in
passing that, in practice, the coordinate-vectors u = [x, y]T

will be given by discrete quantities on the image lattice.
For purposes of analysis, we consider the continuous case
and note that the affine coordinate transformation can be
expressed in matrix notation as follows

u′ =
[
x′

y′

]
=

[
a b
d e

] [
x
y

]
+

[
c
h

]
(13)

This observation is important because we can relate the
kernel for the FCT in Equation (12) to the transformed co-
ordinate u′ = [x′, y′]T . Also, note that, for patches centered
at keypoints in the image, the texture can be considered de-
void of translation. Thus, we can set f = c = 0 and write

ξTu = ξT

[
x
y

]
(14)

=
[
ξx ξy

] [ a b
d e

]−1 [
x′

y′

]

=
1

ae− bd
[
eξx − dξy −bξx + aξy

] [ x′

y′

]

Figure 1. Examples of reference, input and distortion corrected
single-band textures. In the panels, the left-hand image shows the
single-band textures whereas the right-hand panel shows the power
spectrum of the corresponding FCT.

where ξ = [ξx, ξy]T is the vector of spectral indexes for the
2D FCT.

Hence, after some algebra, and using the shorthand Δ =
ae− bd, we can show that the FCT for the transformed co-
ordinates u′ is

F (ξ) =
1
|Δ|

∫ ∞

−∞

∫ ∞

−∞
f (Yu′) cos

(
2π
Δ
(eξx − dξy)x′

+(bξx − aξy)y′
)
dx′dy′ (15)

This implies that

F (ξ) =
1
|Δ|F (ξ

′). (16)

where ξ′ is the “distorted” analogue of ξ. The distortion
matrix T is such that

ξ =
[
ξx
ξy

]
=

[
a d
b e

] [
ξ′x
ξ′y

]
= Tξ′ (17)

As a result, let the FCT for the affinely transformed pixel
Yu′ be given by U′. Analogously, suppose the FCT for the
pixel Yu be given by U. From Equation 15, we can con-
clude that the effect of the affine coordinate transformation
matrix T is to produce a distortion equivalent to (TT )−1

in the Fourier domain for the corresponding FCT. This ob-
servation is an important one since it permits achieving in-
variance to affine transformations on the texture plane via a
Fourier-domain distortion correction operation of the form

F (ξ) = (TT )
−1
F (ξ′) (18)

3. Descriptor Computation
With the formalism presented in the previous sections,

we now proceed to elaborate further on the descriptor com-
putation. Succinctly, this is a two-step process. Firstly,
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we compute the affine-invariant 2D-FCT for every band in
the hyperspectral texture under study. This is equivalent to
computing the band-dependent component of the character-
istic function ψ(ς). Secondly, we capture the wavelength-
dependent behaviour of the dynamic texture by computing
the FCT with respect to the spectral domain for the “train”
of distortion-invariant FCTs. Thus, the descriptor becomes
an FCT with respect to the band index for the cosine trans-
forms corresponding to wavelength-resolved image in the
sequence.

Following the rationale above, we commence by com-
puting the distortion invariant FCT for each band in the im-
age. To do this, we make use of the Fourier-domain prop-
erty in Equation 18 to estimate the distortion matrix with
respect to a predefined reference. Here, we make use of
the peaks of the power spectrum and express the relation of
the FCTs for two texture planes. We have done this follow-
ing the notion that a blob-like texture composed of a single
transcendental function on the texture plane would produce
two peaks in the Fourier domain. That is, we have set, as
our reference, a moment generating function arising from a
texture modelled as a cosine on a texture plane parallel to
the camera plane.

Let the peaks of the power spectrum for two locally pla-
nar texture patches be given by UA and UB . Those for the
reference are UR. As a result, the matrices UA, UB and
UR are such each of their columns correspond to the x-y
coordinates for one of the two peaks in the power spectrum.
These relations are given by

UA = (TA
T )−1 UR (19)

UB = (TB
T )−1 UR (20)

Where TA : UA ⇒ UR and TB : UB ⇒ UR are the
affine coordinate transformation matrices of the planar sur-
face patches under consideration.

Note that, this is reminiscent of the shape-from-texture
approaches hinging in the use of the Fourier transform for
the recovery of the local distortion matrix [15]. Nonethe-
less, in [15], the normal is recovered explicitly making use
of the Fourier transform, whereas here, we employ the co-
sine transform and aim at relating the FCTs for the two lo-
cally planar patches with that of the reference. We can do
this making use of the composition operation given by

UB =
(
TAT

−1
B

)T
UA (21)

= ΦUA (22)

where Φ =
(
TAT

−1
B

)T
is the distortion matrix. This matrix

represents the distortion of the power spectrum of UA with
respect to UB .

In practice, note that, if UR is known and fixed for ev-
ery locally planar patch, we can use the shorthands T

T
A =

URUA
−1 and T

T
B
−1 = UBU−1

R to write

Φ =
(
URUA

−1) (UBU−1
R

)
(23)

Which contrasts with other methods in the fact that, for
our descriptor computation, we do not recover the principal
components of the local distortion matrix, but rather com-
pute the matrix Φ directly through the expression above.
Thus, we can construct a band-level descriptor of the form

V = [F (I1)∗ | F (I2)∗ | . . . | F (I|I|)∗] (24)

which is the concatenation of the affine invariant FCTs
F (·)∗ for the frames in the texture. Moreover, we render
the band-level FCT invariant to affine transformations mak-
ing use of the reference peak matrix UR such that the FCT
for the frame indexed t is given by

F (IR) = F (It)∗Φ−1t (25)

where Φ−1t is the matrix which maps the FCT for the band
corresponding to the wavelength λ to the cosine transform
F (IR) for the reference FCT. Here, as mentioned earlier,
we have used as reference the power spectrum given by two
juxtaposed peaks rotated 45o degrees about the upper left
corner of the 2D FCT. The reference FCT is shown in Figure
1.

With the band-level representation V at hand, we can
perform the second FCT computation. This is done by us-
ing the discrete analogue of Equation 4. Thus, the kth coef-
ficient for the texture descriptor G becomes

Gk = F (V) =
|I|−1∑
n=0

F (In)∗ cos
(

π

| I |
(
n+

1
2
)(
k +

1
2
))

(26)

where | G |=| I |.

4. Discussion
In this section, we provide a discussion on the descrip-

tor presented previously. We commence by illustrating the
distortion correction operation at the band level in Figure 1.
In the panels, we show the reference, corrected and input
textures in their spatial and frequency domains. Note that,
at input, the texture shows an affine distortion which affects
the distribution of the peaks in its power spectrum. The dis-
tortion corrected texture patch is in good accordance with
the reference.

To further illustrate the effects of affine distortions, in
Figure 2, we show a sample texture which has been affinely
distorted. In the figure, we have divided the distorted input
texture into patches that are assumed to be locally planar.
We then apply the FCT to each of these patches, represented
in the form of a lattice on the input image in the left-hand
panel. The corresponding power spectrums are shown in
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Figure 2. From left-to-right: Affine distortion of a sample single-band texture, FCT of the texture in the left-hand panel, distortion-corrected
power spectrums for the FCTs in the second panel, inverse FCTs for the power spectrum in the third panel.

the second column of the figure. Note that, as expected,
the affine distortions produce a displacement on the power
spectrum peaks. In the third panel, we show the power spec-
trums after the matrix Φ has been recovered and multiplied
so as to obtain the corrected FCTs given by F (·)∗. The dis-
tortion corrected textures in the spatial domain are shown in
the right-most panel in the figure. These have been obtained
by applying the inverse cosine transform to the power spec-
trums in the third column. Note that, from both, the cor-
rected power spectrums and the inverse cosine transforms,
we can conclude that the correction operation can cope with
large degrees of shear in the input texture-plane patches.

Now, we turn our attention to the wavelength depen-
dency in hyperspectral textures. To this end, we illustrate,
in Figure 3, the step-sequence of the descriptor computation
procedure. We depart from a series of bands in the image
and compute the band-by-band FCT. With the band FCTs at
hand, we apply the distortion correction approach presented
in the previous sections so as to obtain a “power-aligned”
series of cosine transforms that can be concatenated into V.
The descriptor is then given by the cosine transform of V
over the wavelength-index. Note that the descriptor will be
three-dimensional in nature, with sizeNx×Ny×Nλ, where
Nx andNy are the texture sizes on the image lattice andNλ

is equivalent to the wavelength range for the dynamic tex-
ture sequence. In the figure, for purposes of visualisation,
we have raster-scanned the descriptor so as to display a 2D
matrix whose rows correspond to the time-indexes of the
dynamic textures under study.

5. Experiments

For purposes of illustrating the utility of our descriptor
for purposes of texture recognition, we make use of three
datasets. The first two of these are hyperspectral imaging
ones. The third is the DynTex dataset. The first of the hy-
perspectral datasets comprises 100 hyperspectral images of
Oriental Fruit Moths (OFM). In each view, together with
the insects, there is an amount of debris present, which acts
as a confounding factor. The second hyperspectral data set
is comprised by 50 images of urban scenes in high-oblique
views. For the OFM dataset, the images have been acquired

in 10nm-step bands spanning from 380 to 1050nm. In the
case of our urban views, these are comprised of 10 bands in
regular wavelength intervals of 25nm from 420 to 650nm.
Also, note that the third of our datasets is not hyperspectral
in nature, but rather a dynamic texture one. This is so as to
illustrate how the descriptor presented here may be applied
to time-dependent as well as wavelength-resolved textures.

Here, we have used each of these descriptors for pur-
poses of recognition as follows. After selecting a subset of
the textures in each dataset for testing, the rest of the im-
age are used as a data-base for purposes of recognition and
localisation making use of a k-nearest neighbour classifier.
We have organised this section as follows. We commence
by presenting our results on hyperspectral data. We then
turn our attention to the application of the descriptor pre-
sented here to a dynamic texture setting. Along these lines,
note that, as mentioned earlier, to our knowledge, there are
no hyperspectral texture descriptors available in the liter-
ature. As a result, for purposes of comparison, we have
turned our attention to the dynamic texture literature and
selected the the algorithm of Zhao and Pietikäinen [20] as
that to compare against. The reasons for this are twofold.
Firstly, this is a method based upon local binary patterns
(LBPs), which can be viewed as a vehicle which combines
the statistical and structural models of texture analysis. Sec-
ondly, from the literature [20], this method provides a mar-
gin of advantage over other alternatives.

5.1. Hyperspectral Imagery

In this section, we illustrate the utility of our descriptor
for purposes of hyperspectral object localisation via texture
recognition. To this end, we have used SIFT [11] keypoints
recovered from the average image luminance so as to re-
cover patches on the image plane. We have then used this
patches as candidates for purposes of hyperspectral texture
recognition. To do this, we have used half of the images in
each dataset for purposes of training. The other half was
used for testing.

In the case of the OFM dataset, we aim at localising the
moths so as to identify them in each view. This is a chal-
lenging task since each image portrays areas with specular-
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Figure 3. From left-to-right: Hyperspectral texture, the band-wise FCT, the distortion invariant cosine transforms for every band in the
image and the final transform, i.e. correlation, with respect to wavelength.

Figure 4. Sample hyper-spectral OFM images used in our experi-
ments.

ities, shadowing, debris and optic distortion. Each image
contains eight moths. Figure 4 shows some sample OFM
images. So as to deal with photometric artifacts, we have
used the illuminant estimation method in [8] for purposes
of photometric calibration. For purposes of training, we
have used 400 texture patches depicting the moths in the
dataset. Thus, the aim is to localise the 400 moths in the 50
remaining testing images.

For the urban-scene dataset, we have labelled the vehi-
cles in each scene. We have done this so as to illustrate
the utility of the descriptor for purposes of vehicle local-
isation in high-oblique hyperspectral imagery of built en-
vironments. Sample hyperspectral urban scene images are
shown in Figure 5. As in the case of the OFM data, the
images present a number of photometric artifacts whose ef-
fects in the localisation task have been mitigated through
the use of photometric calibration. As before, the illumi-
nant spectrum has been recovered using the method in [8].
With the calibrated images at hand, we have hand-labelled
the 387 cars in the imagery. Of these, 189 appeared in the
25 training images and the other 198 were in the testing im-
ages. Again, in our experiments, we aim at localising these
198 vehicles within the testing imagery.

In Table 1, we show recognition results for both, our de-
scriptor and the alternative, when applied to the two data
sets under study. The accuracy reported in the table cor-
responds to the percentage of moths or vehicles correctly
localised in the testing imagery. Note that, for the two data
sets, our method provides a margin of improvement over the
alternative. In the table, we also provide details regarding
descriptor-lengths. Recall that our descriptor has a length of
Nx×Ny×Nλ. Note that a longer descriptor will potentially
encode more information. Nonetheless, due to the good in-
formation compaction properties of our approach, the com-
plexity of the descriptor presented here is lower than that of
the alternative.

Figure 5. Sample hyper-spectral urban views used in our car local-
isation experiments.

Data set Method
Descriptor

Length
Accuracy

rate
Urban
Scenes

FCT
LBP [20]

1000
4176

83.65%
69.20%

OFM
FCT
LBP [20]

3000
4176

83.09%
76.54%

Table 1. Recognition results (%) for the hyper-spectral image data
sets with respect to our method (FCT) and the alternative Zhao &
Pietikäinen [20]

5.2. Dynamic Textures

As mentioned earlier, we also present results on the Dyn-
Tex dataset 1. This is a dynamic texture depicting light can-
dles, moving plants and trees, smoke plumes, sea waves,
etc. Each texture class contains 12 dynamic texture se-
quences. Following the experimental setting in [20], we
have pre-segmented each of the dynamic textures in each
class so as to divide them into a number of non-overlapping
subsets. Here, we have obtained ten non-overlapping im-
age sequences of random sizes Nx × Ny × Nt (here, Nt

is equivalent to Nλ in the equations throughout the paper)
from each texture sequence and set k = 6 for our k-nearest
neighbour classifier. We have used the Euclidean distance
between the descriptors corresponding to each of the dy-
namic texture pairs comprised by the query, i.e. testing, and
the sequences in the data-base. An example of the segmen-
tation operation on the dataset is shown in Figure 6. This
pre-segmentation operation yields 1080 items in the final
dataset, half of which we use for testing and the other half
we reserve for recognition purposes.

From a more quantitative viewpoint, in Table 2, we show
the recognition rates yielded by our descriptor as compared
to the method in [20]. In the table, we have shown results
for three different descriptor lengths and compare our re-

1The DynTex dataset can be downloaded from
http://www.cwi.nl/projects/dyntex/
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(a) (b)

Figure 6. Example segmentation of a sample DynTex dynamic tex-
ture sequence. (a): Original; (b): Segmented sequences

Method
Descriptor

Length
Recognition

rate
FCT 9000 96.24%
FCT 1000 95.71%
LBP [20] 4176 95.07%

Table 2. Table showing the average recognition results (%) on
the DynTex database for our descriptor (FCT) and the alternative
(LBP).

sults with those in [20]. It is somewhat expected that, as the
length increases, more information can be compacted into
the descriptor. This is in accordance with the fact that, for
a length of 1000, i.e. Nx = Ny = Nt = 10, the recogni-
tion rate is slightly lower (approx 1%) than that yielded by
the descriptor with length 9000, i.e. Nx = Ny = 30 and
Nt = 10. Nonetheless, our descriptor with length 1000 still
provides a margin of advantage over that in [20]. This is a
significant observation since the descriptor in [20] has 4176
coefficients. That is, our descriptor outperforms the alter-
native regardless of being a factor of four less expensive to
store.

6. Conclusion
We have presented a novel approach to dynamic texture

recognition based upon heavy-tailed distributions. Here, we
provide a link to Fourier kernels and, through the use of a
cosine transform, we achieve a texture representation that is
compact and invariant to spectral distortions. The resulting
descriptor is given by the time-correlation for the distortion
invariant frame-wise cosine transforms. We have illustrated
the utility of the method for purposes of recognition by per-
forming experiments on the DynTex and the MIT temporal
texture dataset, where our method outperforms the alterna-
tives.
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