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Abstract. In this paper, we describe the use of concepts from structural and sta-
tistical pattern recognition for recovering a mapping which can be viewed as an
operator on the graph attribute-set. This mapping can be used to embed graphs
into spaces where tasks such as categorisation and relational matching can be
effected. We depart from concepts in graph theory to introduce mappings as op-
erators over graph spaces. This treatment leads to the recovery of a mapping
based upon the graph attributes which is related to the edge-space of the graphs
under study. As a result, this mapping is a linear operator over the attribute set
which is associated with the graph topology. Here, we employ an optimisation
approach whose cost function is related to the target function used in discrete
Markov Random Field approaches. Thus, the proposed method provides a link
between concepts in graph theory, statistical inference and linear operators. We
illustrate the utility of the recovered embedding for shape matching and cate-
gorisation on MPEG7 CE-Shape-1 dataset. We also compare our results to those
yielded by alternatives.

1 Introduction

In the pattern analysis community, there has recently been renewed interests in the em-
bedding methods motivated by graph theory. One of the best known of these is ISOMAP
[1]. Related algorithms include locally linear embedding which is a variant of PCA that
restricts the complexity of the input data using a nearest neighbor graph [2], and the
Laplacian eigenmap that constructs an adjacency weight matrix for the data-points and
projects the data onto the principal eigenvectors of the associated Laplacian matrix [3].
Collectively, these methods are sometimes referred to as manifold learning theory.
Embedding methods can also be used to transform the relational-matching problem
into a point-pattern matching problem in a high-dimensional space. The idea is to find
matches between pairs of point sets when there are noises, geometric distortion and
structural corruption. This problem arises in shape analysis, motion analysis and stereo
reconstruction. The main challenge in graph matching is how to deal with differences
in node and edge structure. One of the most elegant approaches to the graph matching
problem has been to use graph spectral methods [4], and exploit information conveyed
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by the eigenvalues and eigenvectors of the adjacency matrix. More recently, Sebastian
and Kimia [5] have used a distance metric analogous to the string edit distance to per-
form object recognition from a dataset of shock graphs.

The main argument levelled against the methods mentioned above is that they adopt
a heuristic approach to the relational matching problem by using a goal-directed graph
similarity measure. To overcome this problem, several authors have proposed more
general approaches using ideas from information and probability theory. For instance,
Wong and You [6] defined an entropic graph-distance for structural graph matching.
Christmas, Kittler and Petrou [7] have shown how a relaxation labeling approach can
be employed to perform matching using pairwise attributes whose distribution is mod-
eled by a Gaussian. Wilson and Hancock [8] have used a MAP (maximum a posteriori)
estimation framework to accomplish purely structural graph matching. Recently, Cae-
tano ef al. have proposed a method to estimate the compatibility functions for purposes
of learning graph matching [9].

In this paper, we aim at estimating a linear mapping so as to embed a graph into
a high-dimensional space where distances between nodes correspond to the structural
differences between graphs. This can be viewed as a statistical learning process in which
the goal of computation is the recovery of a linear operator which maps the attribute-
set of a graph onto an embedding space in order to minimise a cost function arising
from a Markovian formulation. In this manner, the recovered mapping is related to the
space defined by the graph edge-set while being an operator on the attribute-set. Such
an embedding permits the use of metrics in the target space for relational matching and
shape categorisation tasks.

Thus, the motivation here is to recover a statistically optimal solution for the graph
embedding problem. The bulk of the work elsewhere in the literature hinges in the use of
dimensionality reduction techniques or relational similarity and matching algorithms.
Here we take a more general view of the problem through learning. This learning ap-
proach leads to the statistical methods, where, for Graphical Models, MRFs are the
ideal choice due to their use of pairwise potentials. Moreover, the method provides a
link between structural and statistical pattern recognition techniques through the alge-
braic graph theory [10], graph spectral methods [4] and Markov Random Fields [11].

2 Graph Theory and Statistical Learning

Here we work with a data set ' of attributed graphs. As mentioned earlier, we aim
at learning a linear mapping 7 that can be used to embed the attributes of the graph-
vertices into a space of dimensionality {2 whose basis is the optimal transformation of a
linear map from the vertex to the edge space. In this manner, the embedding will reflect
the structure of the edge-space of the graph while being based upon its attribute-set.
This has two main advantages. Firstly, the target space for the learned mapping will
reflect the structure of the graphs under study. Since similar graphs should have akin
edge-spaces, this provides an embedding that is inherently related to a graph topology
common to the set I". Secondly, note that the mapping 7 embeds the vertex-attributes
into the graph edge-space according to a linear operator drawn from spectral geometry.



This is not only practically useful but theoretically important since it provides a link
between the spectra of graphs and linear operators.

2.1 Structured Learning

To commence, we require some formalism. Let G; = (V;,&;, 4;) denote the graph
indexed 7 in I" with node-set V; = {V; 1,...,V; v, |}, edge-set & = {e|Via, Vi € Vi}
and attribute-set 4; = {A;1,..., A; |y, }. Here, we aim at learning a global mapping
7 which is a matrix whose dimensionality is 2x | 4; |. In other words, we aim at
recovering an operator which can embed any of the attributes for a given G; € I” into a
space R,

In this manner, the aim of computation is the recovery of the optimal transformation
matrix over the field of attributes for the graphs in I'. To recover this transformation
matrix, we provide a link to Markov Random Field (MRF) models so as to abstract the
problem into a graphical setting which takes profit of the inherent strength of Markovian
approaches as related to pairwise potentials. To commence, we associate each V; , € V;
with a hidden variable X, in the state space A. The probability distribution represented
by the MRF is given by
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where X' = {X;},—1,..|v,| is the set of hidden variables, (;(X,) and ©; & (X, Xp)
are unitary and binary potential functions which determine the likelihood of the graphs
in the data set corresponding to the state p € Aand Z = [ 1 P(X) is the normalisation
factor.

Since this normalisation factor is invariant with respect to X,, the inference of the
above MRF model can be recast as an Maximum A Posteriori (MAP) estimation prob-
lem to maximise the probability P(X) over the state space A. Moreover, we can con-
sider X,, as a vector of continuous variables whose elements can be viewed as the linear
product such that X, = TA;(a), where A;(a) is the row indexed a of the matrix A,
whose rows correspond to the node attribute set .4; for the graph G;. In other words, the
hidden variables correspond to the embeddings of the graph-vertex attributes onto the
space defined by the linear mapping 7 : 4; — . From an alternative viewpoint, we
can consider X, to be the weighted analogue of the attribute-vector for the a‘" vertex in
the graph indexed 7 in I".

Taking the logarithm of Equation 1, we have

log P(x) = Z Z X} ci(a) + Z Z X wik(a,b) X (2)
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where log (;(X,) = XX¢;(a) and log p; k(Xa, X) = XL w; (a,b)X, are determined
by the potential functions. Note that, in the expression above, ¢;(a) is a vector and
wi7k(a7 b) is a matrix, respectively. Also, the normalisation factor has become an addi-
tive constant and, as a result, we have removed it from further consideration.



Maximising the above cost function is equivalent to solving the original MRF in-
ference problem, as defined in Equation 1. The cost function is in quadratic form and,
hence, it is a natural choice to apply quadratic programming techniques to solve the
relaxation problem. However, the Hessian of Equation 2 is determined by the coeffi-
cients of the second order term w; 1, (a, b) which are not necessarily convex. A number
of techniques have been proposed to relax the discrete problem above and convert the
MREF cost functional into more tractable forms. Along these lines, some examples are
SDP [12], SOCP [13], and spectral relaxation [14].

Instead of finding a continuous relaxation for the original cost function of the MRF
model, we propose an alternative cost function which is closely related to it. Notice that
the first and the second terms on the right-hand-side of the cost function in Equation 2
can be treated as correlation terms. The first of them measures the correlation between
the graph and the single node potential. The second term measures the compatibility
between graphs and the pairwise node-potential w; x(a, b). By thinking of correlation
as a measure of similarity and viewing it as an inverse distance, we can transform the
maximisation problem at hand into a minimisation one. To do this, the L2 norm is a
natural choice. The corresponding cost function is hence defined as follows
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where 7 is a regularisation constant. For the sake of consistency, we have used vector
norms where appropriate.

The reformulation of the cost function as above has several appealing properties.
First, it is closely related to the MRF model in terms of its physical meaning. Like the
MRE, our cost function also accommodates two complementary terms, i.e. a term which
measures the compatibility between the data and its transformed field variable and a
smoothness term which can be used to enforce the consistency between the variables
for those nodes corresponding to the same graph, i.e. ¢ = k. The main difference in
the cost functions above is the replacement of the inner product with squared distance.
Secondly, the cost function defined above is convex. Thus, we can always attain globally
optimal solutions for the relaxed problem on the continuous variables. Moreover, the
problem can be reduced to that of solving a sparse linear system of equations with
positive semidefinite Hessian.

2.2 The L2-norm

In this section, we explore the use of the L2-norm for purposes of recovering the map-
ping 7. We show how the extremisation of the cost function defined in Equation 3 can
be reduced to that of solving a sparse linear system of equations. Recall that we have
let X, = TA,;(a), then the cost function can be rewritten as follows
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Further, by using the factorisation properties of matrix norms and enforcing consis-
tency between those nodes corresponding to the same graph, i.e. ||w; x(a,b)|| = 1 iff
1 = k and zero otherwise, we can greatly simplify the equation above as
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Since « does not depend on ‘7, and, hence, becomes a constant, from now on, and
for the sake of convenience, we use the shorthand A = 7.

To minimise the cost function above, in practice, we can treat the problem as a
continuous relaxation one which leads to a convex quadratic optimisation problem. To
this end, we constraint the rows of the transformation matrix to add up to unity and
introduce the vector of lagrange multipliers N. The cost function becomes

g=f(X)-N"(TTe—¢) 7

where e is a vector of ones whose dimensionality is given by the context.
With these ingredients, we compute the partial derivative with respect to 7. We get
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where C; is a matrix whose a*" row corresponds to the vector c;(a) for the node indexed
a in the graph G; and A; is the matrix defined earlier.
We now introduce the shorthands F; = 2ATA; and G; = 2CT AT As a result,

we can now write the partial derivative above in the following manner

99
Following a similar approach, we can compute the partial of the function 4 with
respect to the Lagrange multipliers in IN. By equating both partial derivatives to zero,
we can write the solution as a the linear equation. This linear equation can be written
using matrix notation in a straightforward manner by adding over the graphs in I



3 Implementation Issues

Based on the above components, we now turn our attention to the implementation and
application of our embedding method. Here, training can be viewed as the stage where
the linear mapping 7 is learned from the graph vertex-attributes and the PCA of the in-
cidence mapping. The testing stage then becomes the use of the mapped graph attributes
into the target space for different purposes, for example, categorisation and relational
matching.

The training stage starts from constructing the attributes of the graph-vertices. The
attribute-set is application dependent. Here, we view, in general, the vertex-attributes
A ;(a) as vectors, where each of these has a one-to-one correspondence to a graph ver-
tex. This also permits the computation of the weight matrix ¥V with elements W(a, ¢)
for the graph G;. The weight matrix W can be related to the un-normalised Lapla-
cian through the relationship £ = D — W, where D is a diagonal matrix such that
D = diag(deg(1),deg(2), ...,deg(|V;|)) and deg(c) = ZLV;‘I W(a, c) is the degree
of the node indexed c in the graph [4].

The use of the graph Laplacian is important, since it permits the computation of the
unary potentials ¢;(a). Consider the mapping Z of the functions 4(e) over the set of
edges &; to all the functions £(-) over the set of vertices V;. The incidence mapping Z
is then an operator such that Zg(e) = f(es) — A(e—), where the nodes V; , = e and
Vi,e = e_ are the head and tail, respectively, of the edge e € &;. As aresult, T is a
| Vi | x | & | matrix which satisfies

L=1I" (10)

Note that the incidence mapping Z is independent of the orientation of the edges
in &;. Moreover, it is an operator, so it is independent of the vertex-basis, i.e. it is
permutation invariant [10]. Further, the incidence mapping is recovered via a Young-
Householder [15] decomposition on £. With these ingredients, we proceed to define the
unary potential (;(X,) as an exponential family over the optimal linear transformation
of the incidence mapping Z into a space in ‘. Thus, in practice, we can recover the
potential ¢;(X,) using the Principal Component Analysis (PCA) of the matrix Z. This
is, we perform an eigendecomposition on Z so as to select the leading (2 eigenvectors of
the incidence mapping. This yields ¢;(a) = [¢1(a), ¢2(a),. .., pn(a)]T, where ¢y (a)
is the a'” coefficient of the k" eigenvector of the incidence mapping Z for the graph
indexed 4 in I, such that ¢, = [¢r (1), Px(2), ..., (| Vi DIT.

Our choice of unary potential hinges in the developments in [16]. It can be shown
that the space spanned by the PCA analysis is equivalent to the vertex-to-node scatter
for the graph. Thus, we can view the terms ¢; (a) X! e as the projections of the vectors X,
onto the subspace defined by the principal directions of the covariance for the mapping
between the sets V; and &; in G;. With ¢;(a) at hand, the linear mapping matrix 7 can
be solved by extremising f(X) as described in the previous sections.

As related to computational complexity, note that the embedding recovery is ef-
fected via Quadratic Programming and, therefore can be solved in polynomial time.
The embedding operation, in practice, is a matrix multiplication, which can also be
rendered computationally efficient. In summary, the step sequence of the method is as
follows:



1. For every graph in I', compute the corresponding incidence mapping Z via the
Young-Householder decomposition of the Laplacian L.

2. Compute the vectors ¢;(a) via PCA on the incidence mappings for the graphs in
the data set.

3. Compute the linear mapping 7 by extremising the cost function in Equation 5.

Using the the linear mapping matrix 7', we can transform any A;(a) into a target
space, where each graph is represented as a matrix whose a'” row corresponds to the
coordinates associated to the attribute indexed a in the 7" graph in I'. As a result, rela-
tional matching between graphs can be performed by comparing the distances between
the transformed attributes. This is due to the fact that there is a known one-to-one rela-
tionship between vertices and attributes in the graph. Further, these row vectors can be
used to represent each graph as a probability distribution of pairwise vertex distance in
the target space. In practice, these can be done via a histogram of distance frequencies
whose bin-centres in the embedding space can be recovered using a clustering method
such as k-means or maximum-likelihood estimation (MLE) approaches. This can be
viewed as a codebook in the target space. In this way, we transfer the structural repre-
sentation of a graph into a statistical representation that can be used for categorisation
or relational matching tasks.

4 Experimental Results

Now, we turn our attention to the applicability of the embedding 7 to shape categorisa-
tion and relational matching settings. We use the MPEG7 CE-Shape-1 shape database,
which contains 1400 binary shapes of 70 different classes with 20 images in each cat-
egory. Fig. 1 shows some examples in the dataset. We have represented each shape as
a graph whose vertices correspond to contour pixels sampled in regular intervals. Here,
we have sampled 1 in every 10 pixels on the shape contours. With the sample contour
pixels, we build a fully connected graph whose edge-weights are given by the Euclidean
distances on the image plane between each pair of pixel-sites. Thus, the entries of the
weight matrix for the graph correspond to the pairwise distances between the image-
coordinates for every pair of vertices in the graph. The weigh matrix is then normalised
to unity so as to have every weight in the graph in the interval [0, 1]. The attribute set is
given by the frequency histogram of these distances for every clique. That is, for the a*”
vertex in G;, A;(a) is given by the histogram for the edge-weights for the clique cen-
tered at the node indexed a. In our experiments, we have used 12 bins for the frequency
histogram computation.

4.1 Relational Matching

Firstly, we illustrate the applicability of the embedding for relational matching making
use of sample shapes in the dataset. We have learned the embedding 7 for the MPEG7
CE-Shape-1 database so as to embed the set of graphs corresponding to the shapes
into a space whose {2 = 70. Once the embedding is at hand, relational matching was
performed by viewing the node matching task as a point-matching one in the embed-
ding space. We have used the coordinates X, = T A;(a) in the target space in order to



PINIUBSSPP
T tdiled Qb »
RGN AG AR ®
AWML d vy Lty
HSHEHIOe

Fig. 1. Samples images from the MPEG7 CE-Shape-1 dataset

compute the distances between nodes in the graph-vertices to be matched. The corre-
spondences are deemed to be the nearest neighbours for the vertex embeddings for each
of the graphs under study. That is, the vertex a in the data graph is a match to the node
b in the model graph iff the Euclidean distance between the corresponding embedded
coordinate vectors X, and X is minimum for all the nodes in the graph pair.

Ja= W o

Fig. 2. Example matching results for our embedding (left-hand column) and graduated assign-
ment (right-hand column)

In the the right-hand panels of Fig. 2, we show the results obtained using the re-
covered embedding 7. In the left-hand panel are the results obtained via graduated
assignment [17]. Note that, from the panels, its clear that the distances in the target
space provide a means to relational matching. Moreover, qualitatively, the results ob-
tained making use of the embedding 7 show less mis-assignments than those recovered
using the alternative.

4.2 Shape Categorisation

As mentioned earlier, one of the advantages of the embedding strategy adopted here is
that it provides a means to connect structural pattern recognition with statistical pattern
recognition. Here, we employ the histogram of pairwise distances in the embedding
space for the coordinates X, = 7T A;(a) and construct a frequency histogram as a graph
feature vector that can be used to obtain a “codeword” for each graph. To this end,



Method |Proposed Method|Skeletal Contexts|Shape Contexts|Structured Learning
[18] [19] [20]
Accuracy 91.8% 88.4% 76.51% 87.3%

Table 1. Shape categorisation result comparison on the MPEG7-CE-Shape-1 dataset

we have used the frequency histograms for the distances between pairs of embeddings
X, = TA,(a) for those attributes in the same graph. These distance histograms have
been used to recover a codebook which is computed using k-means clustering, where
k = 200. Using the pairwise distances for the histogram representation of graphs, we
can construct a codebook for all shapes, which we have performed categorisation using
a linear SVM. This enables us to perform supervised learning and, thus, the proposed
method can take advantage of the recent progresses in machine learning.

For our shape categorisation experiments, we divided the graphs in the MPEG-7
dataset dataset into a training and a testing set. Each of these contains half of the graphs
in each dataset. This is, we have used 700 graphs for training and 700 for testing. In
contrast to our relational matching examples, here we have recovered the embedding
matrix 7 making use of those graphs in the training set only. We have tuned the SVM
parameters using ten-fold cross validation. The experiments were done on a server with
Xeon 2.33GHz CPU and 16G memory. In our experiments, the main computational
burden was at training time, where graph generation took approximately 10 minutes,
whereas the k-means application and SVM training took 50s.

The categorisation results are shown in Table 1. For purposes of comparing our
results with alternatives elsewhere in the literature, we show recognition rates for the
skeletal matching method by Demirci et al. [18], the shape context method by Belongie
et al. [19] and the structured learning method by Chen et al. [20]. The former two
methods are unsupervised categorisation ones, while the last one is a supervised learn-
ing method. As shown in Table 1, our method shows a margin of improvement over the
alternatives. Note that the alternative methods above have been specifically designed to
provide optimum performance on binary shapes. Our method, on the other hand, makes
a very simple abstraction of the shape in hand and can be naturally adapted to any
shape whose structure can be captured by a relational structure. Moreover, our method
is quite general in nature, permitting different tasks, such as the shape matching and
categorisation, to be effected in a single computational framework.

5 Conclusions

In this paper, we have proposed a method to recover a mapping which is based upon the
graph attribute-set and, at the same time, is inherently related to the graph topology. We
have done this by drawing a link between the incidence mapping and a linear operator
over the graph-vertex attributes. This linear operator is, in fact, a mapping that can be
used for purposes of embedding graphs in a space where matching and categorisation
tasks can be effected. We recover this embedding using a Markovian formulation which
can be viewed as a learning process over a common topology for the set of graphs under



study. This learning process is based upon a cost function which is convex in nature. We
exemplify the utility of our method for shape categorisation and matching on MPEG7
CE-Shape-1 dataset.
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