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Abstract 25 

The Australian region spans some 60 degrees of latitude and 50 degrees of longitude and 26 

displays considerable regional climate variability both today and during the Late Quaternary. 27 

A synthesis of marine and terrestrial climate records, combining findings from the Southern 28 

Ocean, temperate, tropical and arid zones, identifies a complex response of climate proxies to 29 

a background of changing boundary conditions over the last 35,000 years. Climate drivers 30 

include the seasonal timing of insolation, greenhouse gas content of the atmosphere, sea level 31 

rise and ocean and atmospheric circulation changes. Our compilation finds few climatic 32 

events that could be used to construct a climate event stratigraphy for the entire region, 33 

limiting the usefulness of this approach. Instead we have taken a spatial approach, looking to 34 

discern the patterns of change across the continent.  35 

 36 

The data identify the clearest and most synchronous climatic response at the time of the last 37 

glacial maximum (LGM) (21 ± 3 ka), with unambiguous cooling recorded in the ocean, and 38 

evidence of glaciation in the highlands of tropical New Guinea, southeast Australia and 39 

Tasmania. Many terrestrial records suggest drier conditions, but with the timing of inferred 40 

snowmelt, and changes to the rainfall/runoff relationships, driving higher river discharge at 41 

the LGM. In contrast, the deglaciation is a time of considerable south-east to north-west 42 

variation across the region. Warming was underway in all regions by 17 ka. Post-glacial sea 43 

level rise and its associated regional impacts have played an important role in determining the 44 

magnitude and timing of climate response in the north-west of the continent in contrast to the 45 

southern latitudes. No evidence for cooling during the Younger Dryas chronozone is evident 46 

in the region, but the Antarctic cold reversal clearly occurs south of Australia. The Holocene 47 

period is a time of considerable climate variability associated with an intense monsoon in the 48 
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tropics early in the Holocene, giving way to a weakened monsoon and an increasingly El 49 

Niño-dominated ENSO to the present. The influence of ENSO is evident throughout the 50 

southeast of Australia, but not the southwest. This climate history provides a template from 51 

which to assess the regionality of climate events across Australia and make comparisons 52 

beyond our region  53 

Keywords 54 

Australia, tropics, temperate, arid zone, Southern Ocean, last glacial maximum, deglacial 55 

period, Holocene, INTIMATE 56 

1. Introduction 57 

Australia, the “Island Continent”, spans the latitudinal range of 10
o
S to 43

o
S, and is bordered 58 

by New Guinea and Indonesia to the north, the Pacific Ocean to the east, the Indian Ocean to 59 

the west and the Southern Ocean to the south (Fig. 1). This location means that the continent 60 

and the modern climate are juxtaposed between the heat of the equatorial tropics  from the 61 

Indo-Pacific Warm Pool (IPWP) and the cool waters of the Southern Ocean. Australia‟s 62 

latitudinal position results in several synoptic-scale controls on the climate including dry 63 

descending air associated with the Hadley Cell and the resulting Sub-tropical High Pressure 64 

Belt, easterly zonal flow associated with the South East Trade winds and the summer 65 

monsoon in the north and prevailing westerlies in the south (Fig. 2). The size of the mainland 66 

produces strong continentality with precipitation and temperature gradients from the coast to 67 

the dry centre. 68 

 69 

The mean climatic conditions across Australia primarily respond to the seasonal zonal 70 

circulation by continental heating and cooling and the land-sea temperature contrast (Gimeno 71 
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et al., 2010), and are driven by multiple atmospheric and oceanic influences and the 72 

interactions between them (e.g. Gallant et al., 2012). The non-stationarity, intensity and 73 

spatial variability of these climatic drivers, and the degree to which they have interacted 74 

through time, are the key criteria for addressing the reconstruction of Australian 75 

palaeoclimate. 76 

 77 

The last 35 kyr encompasses the end of Marine Isotope Stage (MIS) 3, the transition into full 78 

glacial conditions, subsequent deglacial warming and establishment of the Holocene, and 79 

includes millennial-scale reversals (e.g. the Antarctic Cold Reversal; ACR) and centennial-80 

scale variability of climate (e.g. the Holocene). This period, into and out of the last glacial, is 81 

of key interest to the INTegration of Ice core, Marine and Terrestrial (INTIMATE) project 82 

(Barrows et al., editorial). In this paper we bring together the records discussed in each of the 83 

four regional synthesis papers in this volume (Bostock et al., Fitzsimmons et al., Petherick et 84 

al., Reeves et al., this volume) as the „broader Australian region‟. This broader region extends 85 

from 10
o
N encompassing New Guinea and much of Indonesia, to 65

o
S, to include the 86 

Australian segment of the Southern Ocean, and from 100-165
o
E (Fig. 3).  87 

 88 

This paper provides a synthesis of major climatic events over the last 35 kyr and attempts to 89 

determine their regional distribution. We find that changing boundary conditions through 90 

time exert variable influence across the region, with regional controls such as the land:sea 91 

ratio, the monsoon and the influence of the El Niño Southern Oscillation (ENSO), and 92 

changes in the westerly winds and mean state of the Southern Ocean, important for 93 

determining the pattern of climate change.   94 
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 95 

Climate Event Stratigraphy 96 

The original remit of the AUS-INTIMATE project was to develop a climate event 97 

stratigraphy for the Australian region (Barrows et al., editorial). From a global perspective, 98 

the phenomenon of the bi-polar see-saw (Broecker, 1998) and the continuing debate as to the 99 

relative timing of climate change between the hemispheres prompted the question of how 100 

global scale climate events are expressed in the Australian region. Clear differences are 101 

apparent between the high latitudes of both hemispheres (Blunier and Brook, 2001) 102 

indicating that a climate event stratigraphy based on a Greenland ice core record has limited 103 

meaning in the Australian region. There is potential to develop a Southern Hemisphere high-104 

latitude stratigraphy based on Antarctic records (e.g. Pedro et al., 2011; EPICA, 2006), but it 105 

remains unclear as to how applicable this would be for the Australian region, given its 106 

distance from Antarctica. Clearly, we first need to understand how the Australian region 107 

responds to the competing influences of changing boundary conditions over such a large 108 

region.  109 

 110 

Here we document changes across the region to better describe the driving mechanisms of 111 

climate change. We take a time-slice approach to synthesize terrestrial and marine records 112 

during the late MIS 3 period, the early glacial period, the LGM, the deglacial period 113 

including during the ACR and the early-to-mid and late Holocene. The regional compilations 114 

(e.g. Bostock et al. Fitzsimmons et al., Petherick et al., Reeves et al., this volume) examine 115 

various proxy archives from the equator to the Southern Ocean which together allow us to 116 

investigate the relative changes of the tropics versus high latitudes through time, and spatial 117 

coherence in response to global climate change across the vast Australian region. This 118 
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temporal and spatial synthesis then allows for the better characterisation of the drivers of the 119 

climatic changes over the last 35 kyr and the regionality of the climate response.  120 

 121 

1.1 Modern ocean-atmospheric climate drivers 122 

The following section provides a brief overview of the modern ocean-atmospheric drivers of 123 

the Australian climate. We interpret climatic changes over the last 35 kyr as modifications to 124 

the major elements of the modern climate system. The oceanographic setting of the region 125 

has been discussed elsewhere in this volume (see Bostock et al., Petherick et al., Reeves et 126 

al.) and the dominant features are shown in Figure 1. 127 

 128 

The modern climate patterns of the Australian region may be considered as including the 129 

tropics, encompassing both the perennially wet equatorial and seasonally wet monsoonal 130 

regions; the temperate zone of the east, south and south-west coasts, including Tasmania; and 131 

the arid interior, which receives little rainfall (<250 mm per annum) (see Fig. 3 for a 132 

schematic representation of this subdivision). Australia receives predominantly winter rainfall 133 

in the south, summer rainfall in the north and sporadic, winter and summer rainfall in the 134 

central region of the east coast (Gentilli, 1971). The ocean circulation patterns and the heat 135 

distribution around the continent also play a role in determining the nature and distribution of 136 

rainfall patterns across Australia. With few exceptions beyond the eastern Great Dividing 137 

Range/Eastern Escarpment, the relatively low altitude of the Australian continent results in 138 

minimal orographic influences. The interannual variation in precipitation can exceed that of 139 

annual variation, particularly in the arid zone.  140 

 141 
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The climate of Australia (Fig. 3) is determined by continental-scale atmospheric circulation 142 

patterns. In the Southern Hemisphere, warm, moist air is lifted by the Hadley Cell at the 143 

equatorial low pressure or Inter-tropical Convergence Zone (ITCZ) and descends around 144 

30
o
S resulting in the Sub-Tropical High Pressure Belt (STHPB). The sinking air of this 145 

STHPB dominates the modern climate of the arid interior (Sturman and Tapper, 1996). The 146 

ITCZ moves into the north of Australia during the austral summer, bringing with it the 147 

summer monsoon. To the north of Australia lies the Indo-Pacific Warm Pool (IPWP), a 148 

region where mean annual sea surface temperatures (SSTs) exceed 28
o
C and provide a major 149 

global source of latent heat release (Gagan et al., 2004). Some of the descending air from the 150 

STHPB travels back to the equator along the surface of the Earth, creating the south easterly 151 

trade winds, which flow from the east to west across the equatorial Pacific. These trade winds 152 

in turn typically bring about deep atmospheric convection (Walker Circulation) over the 153 

tropics which result in heavy rainfall over the northeast coast of Australia during summer 154 

(November to April).  155 

 156 

The climate patterns of the eastern half of Australia are partly modulated on an inter-annual 157 

scale by ENSO (e.g. Verdon et al., 2004). Variations in SST across the equatorial Pacific are 158 

associated with weakening (El Niño) or strengthening (La Niña) of this Walker Circulation 159 

over cycles of several years (see Diaz and Markgraf (2000) for further details). The Inter-160 

decadal Pacific Oscillation (IPO) has similar characteristics to ENSO, but on longer 161 

timescales and affecting the wider Pacific Basin (Power et al., 1999). The IPO influences 162 

Australia via a modulation of both the magnitude and frequency of ENSO impacts leading to 163 

multi-decadal epochs that are significantly wetter or drier than others (e.g. Kiem et al., 2003; 164 

Kiem and Franks, 2004). This effect has been identified for at least the past 400 years 165 

(Verdon and Franks, 2006). Whilst other inter-annual drivers are relevant in the Australian 166 
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region (e.g. Indian Ocean Dipole or Southern Annular Mode) most palaeo-proxy data are of 167 

lower resolution preventing the identification of such drivers.  168 

 169 

South of the Hadley Cell, descending air moves southward in the Ferrel Cell, before 170 

ascending at the margins of the polar front (~60°S).  The surface wind flow of the Ferrel Cell 171 

is responsible for the mid-latitude westerly wind belt or “westerlies” which are largely 172 

responsible for winter rainfall in southern Australia (Pitman et al., 2004) and play a dominant 173 

role in circulation in the Southern Ocean (Varma et al., 2010). In addition, the cold fronts 174 

embedded in the STHPB and associated with the westerlies, influence the landscape through 175 

aeolian transport of surface sediments, particularly in the arid zone (Hesse and McTainsh 176 

1999; Hesse, 2010).  177 

 178 

1.2 Drivers of past changes 179 

The dominant external forcing on the global climate system over the past 35 kyr has been the 180 

changing seasonal and meridional distribution of insolation arising from cyclic changes in the 181 

Earth's orbital geometry (Berger, 1978). On glacial-interglacial timescales, feedbacks 182 

involving the global carbon cycle and atmospheric greenhouse gases have amplified the 183 

response of the climate system to this signal (e.g. Petit et al., 1999). In the Northern 184 

Hemisphere, this period has been characterised by the expansion and retreat of ice sheets in 185 

response to changes in summer insolation at high latitudes. This resulted in a long build-up of 186 

ice sheets during glacial phases and relatively rapid deglaciation, into interglacial phases. By 187 

contrast, the continents of the Southern Hemisphere did not possess ice sheets, excepting 188 

Antarctica, but the associated changes in sea level altered land:sea ratios and continental 189 

connections, and therefore altered ocean currents and regional climates.  Changing 190 

temperature differentials between land and sea altered wind strengths and precipitation. The 191 
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variable seasonal cycle of insolation also drove changes in the background state of the 192 

tropical Pacific Ocean, with direct consequences for the climate of the Australian region. 193 

 194 

The Southern Ocean has played a significant role on the balance of CO2 between the oceans 195 

and atmosphere on centennial-millennial timescales (e.g. Toggweiler, 1996; Sigman et al., 196 

2010). The expansion of Antarctic sea ice during the glacial acted to trap CO2 in the deep 197 

ocean, lowering atmospheric CO2 levels. Conversely, during the deglacial when sea ice 198 

retreated, outgassing of CO2 occurred on a large scale (e.g. Lourantou et al., 2010; Bostock et 199 

al., this volume).  200 

 201 

On decadal to centennial timescales, changes in solar irradiance and explosive volcanism are 202 

also significant. Existing reconstructions of solar forcing only extend back as far as the early 203 

Holocene (e.g. Steinhilber et al., 2009), while reconstructions of volcanic forcing (e.g. 204 

Plummer et al., 2012) only cover the last 2,000 years. Thus the potential role of these forcings 205 

in driving climatic changes over the past 35 kyr is extremely poorly understood, and changes 206 

seen within the Australian climate over this period may therefore have been driven by 207 

unknown external events. In particular, there is some evidence that volcanic eruptions, 208 

despite being only short in duration, can be sufficient to push the climate system past tipping 209 

points into alternative states that can persist for multiple centuries (Miller et al., 2012). 210 

 211 

2. Rationale for record inclusion 212 

The synthesis presented here builds on the four review papers in this issue, which deal with 213 

the Australian tropical (Reeves et al.), terrestrial (Petherick et al.) and arid interior 214 
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(Fitzsimmons et al.) zones and the Southern Ocean (Bostock et al.). Our synthesis builds on 215 

an earlier effort as part of the AUS-INTIMATE project by Turney et al. (2006a). Previous 216 

regional reviews of climate have been summarised by Williams et al. (2009), who also 217 

compiled key long records with quantifications of climate change. In this review we build on 218 

this earlier works by incorporating a larger contribution from deep-sea records, covering the 219 

Holocene and incorporating new records from all regions.  220 

 221 

 222 

The criteria for inclusion of records into this synthesis would ideally be: contininuity through 223 

the last 35 kyr, sound chronology, centennial-scale or better resolution and unambiguous and 224 

quantifiable palaeoclimate estimates. Although this has been achieved in many of the marine 225 

and speleothem records, their spatial coverage does not represent the greater Australian 226 

region. We have therefore also chosen here to also include: high-resolution short-term 227 

records (e.g. corals), discontinuous geomorphic records (e.g. fluvial, lake shore, dune, 228 

glacier) where the interpretation is robust (see Fitzsimmons et al., this volume for further 229 

discussion), as well as qualitative records (e.g. pollen), although noting the context of the site 230 

and the limitations of each record (Fig. 2). 231 

 232 

The chronologies of the records were determined using a variety of methods. Radiocarbon is 233 

the most common method used, frequently on bulk sediment, charcoal or foraminifera for 234 

marine cores and calibrated here using INTCAL09 or MARINE09 (Reimer et al., 2009). 235 

Other methods include optically-stimulated luminescence (OSL) and thermoluminescence 236 

(TL) dating of sediments, predominantly applied to aeolian and fluvial records, exposure 237 

dating (especially 
10

Be and 
36

Cl) of moraines; and U/Th dating of speleothems and corals. All 238 

ages are presented as calendar years ka (thousand years) for consistency.  239 
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 240 

3. Synthesis  241 

During the first time slice (late MIS 3), we compare climatic conditions to modern mean 242 

annual temperature and precipitation. Other time slices are described with reference to the 243 

preceding time slice. The age boundaries of these time slices are chosen to coincide with the 244 

largest changes recorded in the climate proxy records. We refer here to effective 245 

precipitation, which is influenced not only by  total precipitation, but also evaporation, wind 246 

and vegetation cover. The simplified patterns of temperature and effective precipitation 247 

between regions and through time are shown in Figure 4 a-h.  248 

 249 

35-32 ka – late Marine Isotope Stage 3 250 

Figure 4ai,ii shows climatic conditions during the period 35-32 ka in comparison to the 251 

present day,  with cooler climate in the NE tropics, arid interior and lower latitudes of the 252 

Southern Ocean, and transient or variable conditions in the other regions. Wet conditions are 253 

evident throughout most of the region due to decreased evaporation under cooler than present 254 

conditions (Galloway, 1965; Bowler and Wasson, 1984).  255 

 256 

Leading up to the last glacial period, much of inland Australia had large permanent lakes in 257 

catchments which are presently dry or ephemeral (Bowler et al., 1976; 2012; Cohen et al., 258 

2011, 2012; Fitzsimmons et al., this volume). Relatively high lake stands prevailed in both 259 

the temperate (Coventry, 1976; Bowler and Hamada, 1971) and tropical zones (Veth et al., 260 

2009). This period witnessed a peak in fluvial activity across the continent, both in the north 261 

(Nanson et al., 2008; Veth et al., 2009) and in the temperate zone, particularly in the 262 
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tributaries of the Murray-Darling Basin (MDB) (Bowler and Wasson, 1984; Page et al., 1996; 263 

Page and Nanson, 1996; Kemp and Rhodes, 2010). Cool and humid conditions are inferred, 264 

with increased effective precipitation (Kemp and Rhodes, 2010). However, it is important to 265 

note that although this time was wet in comparison to present, it was dwarfed by the wet 266 

intervals of Marine Isotope Stage 5 and 4 (Nanson et al., 1992, Cohen et al., 2011, 2012). 267 

Cooler conditions in the arid zone (Miller et al., 1997) and wetter conditions in the north of 268 

the continent around this time are also suggested (Wallis, 2001; van der Kaars and De 269 

Deckker, 2002). Ice core records from Antarctica show millennial-scale variability through 270 

this period, corresponding to temperature shifts of up to 2
o
C (EPICA, 2006). These 271 

perturbations are also recorded in the Murray Canyons offshore South Australia (De Deckker 272 

et al., 2012) and in deep sea cores from the Southern Ocean (Barrows et al., 2007a; Armand 273 

and Leventer, 2010).  274 

 275 

32-22 ka - early glacial period 276 

Cooling began around 32 ka, with  glacier advance in the Snowy Mountains (Barrows et al., 277 

2001). Glacial conditions may have commenced in New Guinea by ~28 ka (Prentice et al., 278 

2005). A peak in dune activity in both the central arid region (Fitzsimmons et al., this issue), 279 

and increased dust transport, most likely from the increasingly arid MDB, to the subtropics 280 

along the east coast (Petherick et al., 2008; 2009) is interpreted as indicating cooler, drier 281 

conditions. Significant vegetation change commenced, with the expansion of herbs and 282 

grasses at the expense of arboreal taxa, in southeastern Australia (Dodson, 1975; Colhoun et 283 

al., 1982; Colhoun, 2000; Kershaw et al., 2007).  A drying trend was also present in the NE 284 

Indian Ocean region from 32 ka, noted in the speleothems of Flores (Lewis et al., 2011) and 285 

pollen records off Java (van der Kaars et al., 2010) and also off Cape Range, Western 286 
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Australia (van der Kaars and De Deckker, 2002). However relatively wet conditions persisted 287 

in Sumatra and West Papua (Newsome and Flenley, 1988; Hope and Tulip, 1994; van der 288 

Kaars et al., 2012).  289 

 290 

After slightly warmer conditions in Antarctica centred around 30 ka, cooling commenced in 291 

earnest and near full glacial temperatures were achieved around 27 ka (EPICA, 2006). Strong 292 

cooling had also occurred in the Southern Ocean by ~26 ka, accompanied by a northward 293 

movement of the subtropical front by some 3-5
o
,  bringing cool, sub-Antarctic waters to the 294 

south of Australia (De Deckker et al., 2012; Bostock et al., this volume). The wet conditions 295 

of the temperate region persisted until ~25 ka, followed by drying, bringing about a 296 

dominance of grass and herb vegetation (Petherick et al., this volume). Dune activity 297 

increased within the central arid zone (e.g. Hesse et al., 2004; Fitzsimmons et al., 2007) and 298 

expanded at the desert margins during the early glacial period (Lomax et al., 2011; 299 

Fitzsimmons et al., this volume). In the tropics, dry, stable conditions are evident in the 300 

vegetation and speleothem records of Indonesia (Reeves et al., this volume). Both the lake 301 

level and the speleothem records from the tropics show a close correlation between effective 302 

precipitation and regional insolation through this period. There is no evidence for a strong 303 

monsoon penetrating the Australian mainland at this time (Devriendt, 2011; Lewis et al., 304 

2011; Reeves et al., this volume).  305 

 306 

There is some evidence for a short-lived expansion of rainforest taxa in north Queensland 307 

~26-24 ka (Moss and Kershaw, 2007).  This coincides with lower, oscillating lake levels in 308 

the Willandra system (Bowler et al., 2012), an increase in dust transport to the subtropics 309 

(Petherick et al., 2008), abrupt drying and increased variability in the Borneo speleothem 310 

record 26.5-25 ka (Partin et al., 2007) and warming offshore South Australia (Calvo et al., 311 
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2007) and the Southern Ocean (Armand and Leventer, 2010). These combined factors point 312 

to a warming and drying trend in the earlier glacial period (Fig. 4bi,ii). Although there are 313 

few records from this time period that have strong enough chronological control to resolve 314 

how widespread this climatic anomaly was, in most places conditions prior to 26 ka were 315 

substantially different to those prevailing after 24 ka, when the accelerated descent into the 316 

last glacial maximum (LGM) commenced. This period is consistent with the first interstadial 317 

of the Last Glacial Cold Period in New Zealand, coincident with the Kawakawa tephra 318 

(Barrell et al, this volume; Vandergoes et al., this volume) but earlier than the brief warming 319 

in Antarctica at ~24-23 ka (EPICA, 2006).  320 

 321 

22-18 ka – Last Glacial Maximum 322 

The LGM, globally the interval of greatest ice sheet extent over the last full glacial cycle, 323 

encompasses both maximum glacial extent and SST minima across the region (Fig. 4ci,ii). 324 

Sea surface temperature was typically in the order of 3-6
o
C cooler than present in the 325 

Southern Ocean (Barrows et al., 2007a). This was combined with an expansion of winter sea-326 

ice as far north as 55
o
S (Gersonde et al., 2005; Armand and Levanter, 2010). Cooling in the 327 

tropical oceans was less pronounced, with SST 1-3
o
C cooler than present in the NW and 1-328 

2.5
o
C cooler in the NE (e.g. Stott et al., 2002; Visser et al., 2003; Barrows and Juggins, 2005; 329 

Dunbar and Dickens, 2003; Jorry et al., 2008. These cooler ocean temperatures coincided 330 

with a constriction of both the ITF and the IPWP (Reeves et al., this volume). Some of the 331 

greatest differences in SST were felt along the northwest and south coast of Australia, 332 

attributed to the weakening of the Leeuwin Current and northward movement of the 333 

subtropical front (Petherick et al., this volume).   334 

 335 
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The most significant glacier advance is centred on ~19 ka, both in Tasmania and the Snowy 336 

Mountains of southeastern Australia (Barrows et al., 2001; 2002; Kiernan et al., 2004; 337 

Mackintosh et al., 2006). Peak glacial extent occurred at the same time (20.3-19.4 ka) at Mt 338 

Giluwe in New Guinea (Barrows et al., 2011). Estimates of the maximum expanse of ice are 339 

15 km
2
 in the Snowy Mountains (Barrows et al., 2001), 1085 km

2 
in Tasmania (Colhoun, 340 

1996) and 3400 km
2
 in New Guinea (Prentice et al., 2011). Cooling in the upland areas is 341 

postulated to be as much as 11
o
C below present in New Guinea (Hope, 2009), 9

o
C in south-342 

eastern Australia (Galloway, 1965) and between ~6.5- 4.2
o
C in Tasmania (Colhoun, 1985; 343 

Fletcher and Thomas, 2010) with a peak in periglacial activity at ~22 ka (Barrows et al., 344 

2004).  These estimates are based onpollen recordssnowlines and lower limits of periglacial 345 

solifluction. The extent of cooling is generally at odds with the moderate cooling observed in 346 

the oceans (Barrows et al., 2000) and highlights their buffering capacity, except where 347 

movement of the oceanic fronts brought about significant cooling (e.g. Calvo et al., 2007; 348 

Bostock et al., this issue). Some of the differences may also be due to the accuracy and 349 

precision of the temperature estimates. For example, the snowline is affected by both 350 

temperature and precipitation, solifluction can occur below the treeline, and vegetation is 351 

affected by many variables including precipitation and carbon dioxide levels.  352 

 353 

Both cooler and drier conditions are evident in the vegetation records from the Indonesian 354 

region and the east coast of Australia, including Tasmania, with a reduction in woody taxa, in 355 

particular rainforest species, and expansion of grasses and herbs (Petherick et al., this 356 

volume, Reeves et al., this volume). Estimates of temperature from vegetation changes in the 357 

lowlands of Tasmania are in the order of 4.2
o
C below present (Fletcher and Thomas, 2010). 358 

However, some minor rainforest persisted in refugia in the Australian subtropics (Donders et 359 

al., 2006; Petherick et al., 2008) and woodland and heath in the southwest (Dodson, 2001).   360 
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 361 

Average air temperature in the interior decreased significantly to as low as 9
o
C below 362 

present, determined from amino-acid racemisation of emu eggshells (Miller et al., 1997). 363 

Dune activity intensified in the arid core, but was most noticeable in the semi-arid desert 364 

margins (Fitzsimmons et al., 2007) where it was better preserved (Lomax et al., 2011; 365 

Fitzsimmons et al., this volume) and into the present-day temperate zone (Hesse et al., 2003; 366 

Duller and Augustinus, 2006; Gardner et al., 2006), indicating either less vegetation, windier 367 

conditions and/or increased sediment availability with the potential expansion of the arid 368 

zone beyond its modern extent. Lakes and rivers in the northern, monsoon-influenced arid 369 

zone generally experienced lower levels and reduced flow respectively, due to an absence of 370 

the monsoon in northern Australia during the LGM (Fitzsimmons et al., this volume).  371 

 372 

By contrast, rainfall-fed lakes in the southeastern Australian highlands, record high or 373 

oscillating levels during the LGM (Coventry, 1976; Page et al., 1994; Bowler et al., 2012) . 374 

This is coeval with significant fluvial activity in the rivers of the Riverine Plain (Page et al., 375 

1996; Kemp and Rhodes, 2010). These conditions are believed to reflect increased runoff 376 

from seasonal snow melt and reduced vegetation within the catchments, and do not preclude 377 

a drier climatic phase (Dosseto et al., 2010; Kemp and Rhodes, 2010; Bowler et al. 2012; 378 

Fitzsimmons et al., this volume). Evidence for at least periodically wet conditions exists also 379 

in the tropical region (Nott and Price, 1999; Reeves et al., 2007; Croke et al., 2010). In 380 

addition, there is evidence for increased precipitation in South Australia, from speleothem 381 

records from Naracoorte (Ayliffe et al., 1998) as well as recurrent large floods in silt-rich 382 

floodplains accumulating in the southern Flinders Ranges (Haberlah et al., 2010), attributed 383 

to a more northerly penetration of the westerlies.   384 

 385 
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18-15 ka early deglacial period 386 

The first evidence of warming following the LGM comes from the Coral Sea, commencing 387 

around 20 ka (Tachikawa et al., 2009). Deglacial warming in Antarctica commenced around 388 

19 ka (Pedro et al., 2011), followed by the retreat of sea ice and increase in SST in the 389 

Southern Ocean, which occurred rapidly between 18 and 15 ka (Barrows et al., 2007a), 390 

accompanied by a dramatic increase in opal flux and atmospheric CO2 (Armand and 391 

Levanter, 2010; Bostock et al., this volume). This warming resulted in the STF moving back 392 

to a more southerly position (Sikes et al., 2009). SST also increased off the east coast of 393 

Australia although lagged the warming in the south (Weaver et al., 2003; Petherick et al., this 394 

volume). Other than a brief decrease around 18 ka (Yokoyama et al., 2001), warming in the 395 

Indian Ocean lagged behind the Pacific Ocean, not commencing until ~15 ka (Martinez et al., 396 

1999;). This time interval also saw glacial retreat in the Snowy Mountains around 16.8 ka 397 

(Barrows et al., 2001) and in Tasmania and New Guinea from ~18 ka, the latter becoming 398 

becoming more rapid after 15.4 ka (Barrows et al., 2011).  399 

 400 

The rate of response in vegetation change during the deglacial period varied greatly across 401 

the region (Fig. 4di,ii). Wetter and warmer conditions are first noted in Indonesia around 17 402 

ka and NW Australia ~15 ka with more prolonged recovery in New Guinea and NE Australia 403 

(Reeves et al., this volume).  Dry conditions persisted in Borneo, as recorded in speleothems, 404 

until ~15 ka, after which time there was a rapid shift to wetter conditions (Partin et al., 2007). 405 

Vegetation records from the temperate region showed a gradual response to warmer and 406 

wetter conditions, with an increase in arboreal taxa from ~15 ka (Petherick et al., this 407 

volume).  408 

 409 
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Although there was an expansion in Lake Carpentaria from 18 ka, the northern plunge pools 410 

were considered inactive and Lake Gregory may have been dry (Reeves et al., this volume). 411 

Other lakes in the arid interior and temperate regions were also low. High lake levels are 412 

recorded in Lake Frome from 18-16 ka, although dry conditions at Lake Eyre persisted (De 413 

Deckker et al., 2010; Cohen et al., 2011, 2012). However, fluvial discharge increased in the 414 

lower MDB and in coastal rivers of NSW, possibly in response to snow-melt (Page et al., 415 

1996; 2009; Nanson et al., 2003). Although limited dune activity persisted throughout this 416 

period within the semi/arid zone (Fitzsimmons et al., 2007; Lomax et al., 2011), conditions in 417 

the southern part of the continent are likely to have become relatively more stable and humid. 418 

 419 

15-12 ka late deglacial period 420 

Climate for the period from 15-12 ka was highly varied, with conflicting climatic responses 421 

across the Australian region (Fig 4ei,ii). Whilst glacier retreat was complete on the continent 422 

(Barrows et al., 2001, 2002), the re-advance of sea-ice and decrease in SST and atmospheric 423 

CO2 in the Southern Ocean occurred between 14.5 and 13 ka during the Antarctic Cold 424 

Reversal (Pedro et al., 2011; Bostock et al., this volume). This resulted in a northward 425 

movement of the STF, again close to the southern Australian coast and suggests a lowering of 426 

SST offshore South Australia (Calvo et al., 2007). Wetter conditions are evident in western 427 

Tasmania around this time (14-11.7 ka; Fletcher and Moreno, 2011) and active river 428 

migration in the temperate zone continued throughout this period, perhaps due to snow melt, 429 

with evidence of increased precipitation in the lower MDB from 13.5 ka (Gingele et al., 430 

2007; Petherick et al., this volume).   431 

 432 

In contrast,  SST warming commenced at 15 ka in the tropical north-west of Australia, 433 

coincident with the initial flooding of the Sunda Shelf (Bard, 1990). Warmer and wetter 434 
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conditions prevailed throughout the north, with the re-invigoration of the monsoon, bringing 435 

freshwater to the Gulf of Carpentaria and recovery of woodland and forest in PNG and NE 436 

Australia (Reeves et al., this volume). Increased precipitation associated with the monsoon 437 

from ~14 ka is evident in lake level transgression in the Gregory Lakes basin (Wyrwoll and 438 

Miller 2001) and by ~12 ka at Lake Eyre (Magee et al., 2004). The speleothem record of 439 

Borneo shows a rapid decrease in 
18

O, reflecting an increase in precipitation after 15 ka, 440 

with a reversal to drier conditions between 13.3-12.3 ka (Partin et al., 2007). Desert dune 441 

records across both the arid zone and semi-arid desert margins of the MDB show aeolian 442 

activity persisted or possibly stabilised, during this period (Fitzsimmons et al. 2007; this 443 

volume; Lomax et al., 2011).  444 

 445 

12-8 ka early Holocene 446 

Maximum warming in Antarctica occurred at 11.8 ka (Pedro et al., 2011). The peak in SSTs 447 

of the Southern Ocean (e.g. Barrows et al., 2007a) and ambient air temperature are coincident 448 

with the most poleward migration of the STF (Bostock et al., this volume). SST throughout 449 

the temperate and tropical regions approached modern values around 11-9 ka (Petherick et 450 

al.; Reeves et al, this volume), and saw a re-activation of the Leeuwin current extending to 451 

South Australia (Calvo et al., 2007; De Deckker et al., 2012). By 9.8 ka glaciers in New 452 

Guinea had disappeared (Barrows et al., 2011), most of the shallow shelf seas were re-453 

established, and the land:sea ratio, particularly in the tropics, approached modern conditions. 454 

The mangrove swamps of the north and estuaries of the eastern seaboard had formed and 455 

growth of the Great Barrier Reef was re-initiated (Reeves et al., this volume).  456 

 457 

Increasingly wet conditions in Borneo and Flores from 12 and 11 ka coincided with warming 458 

of the South China Sea (Partin et al., 2007; Griffiths et al, this volume) (Fig 4fi.ii). Wet 459 
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conditions are also evidenced by the active plunge pools in the north of Australia and 460 

vegetation similar to modern in Indonesia by 11 ka and NE Australia by 9 ka, with the 461 

establishment of rainforest taxa (Reeves et al., this volume). Interestingly, although the early 462 

Holocene fluvial records of the Lake Eyre Basin see a peak in discharge compared to present, 463 

those of the Riverine Plain of the lower MDB show a significant decline compared with the 464 

deglacial, with a shift from bedload to suspended-load sedimentation, caused primarily by a 465 

reduction in discharge (Fitzsimmons et al., this volume; Petherick et al., this volume).  466 

 467 

Vegetation records from across the temperate region east of the Great Dividing Range show a 468 

shift at ~12-11 ka to include a greater representation of rainforest taxa, indicating both 469 

warmer and wetter conditions than previous (Petherick et al., this volume). Lake levels at 470 

Keilambete and George also increased after 11 ka (Wilkins et al., in press; Fitzsimmons and 471 

Barrows, 2010) and peaked after 9.6 ka in the Wimmera (Kemp et al., 2012).  472 

 473 

8-5 ka mid-Holocene 474 

The mid-Holocene period represents maximum temperature in terrestrial records throughout 475 

the Australasian region, although it was expressed in different places at different times (Fig 476 

4gi,ii). By 8 ka both sea level and SST had reached essentially modern conditions (Lewis et 477 

al., this volume) and after a decline from the high temperatures of the early Holocene, 478 

Antarctic temperatures stabilised (EPICA, 2004). In the north, the thermal maximum of the 479 

IPWP was achieved by 6.8-5.5 ka (Abram et al., 2009). Peak wet conditions occurred on 480 

Flores by 8-6 ka, but only by ~5 ka in Borneo (Reeves et al., this volume). There is an 481 

increase in composite charcoal from the north at 8 ka, associated with a switch from grass-482 

dominant to rainforest taxa from the northeast (Mooney et al., 2011; Moss and Kershaw, 483 

2007).  484 
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 485 

Offshore southern Australia experienced a peak in SST at ~6 ka of 18-21
o
C (Calvo et al., 486 

2007). An increased representation of rainforest taxa, peak in representation in the macro-487 

charcoal record especially in the north (Mooney et al., 2011) and a peak in discharge in the 488 

fluvial records of the east coast support both warmer and wetter conditions centred around 6 489 

to 5.5 ka (Petherick et al., this volume). Dune activity persisted in the desert margins of the 490 

MDB (Lomax et al., 2011). Increasingly humid conditions from 7 to 5 ka are evident around 491 

the Flinders Ranges and Lake Frome (Fitzsimmons et al., this volume). Both Lake George 492 

(Fitzsimmons and Barrows, 2010) and the lakes of western Victoria (Wilkins et al., in press) 493 

record high lake conditions, indicating peak effective precipitation, in the early-mid-494 

Holocene. Although the peak warm and relatively wet conditions throughout the Australian 495 

region all occur sometime during this mid-Holocene period, the east coast appears to lag the 496 

more southerly sites.  497 

 498 

5-0 ka late-Holocene 499 

Increasing variability with enhanced drier conditions was the overall characteristic of much 500 

of the Australasian region through the Late Holocene, indicative of ENSO in El Niño mode 501 

(Fig 4hi,ii). This is seen in the coral (e.g. Tudhope et  al., 2001; Gagan et al., 2004; McGregor 502 

and Gagan, 2004) and speleothem (Griffiths et al., 2009, 2010 a,b) records in the north, and 503 

reactivation of dunes and dust deposits in the northern, interior and temperate zones (e.g. 504 

Shulmeister and Lees, 1995; Fitzsimmons et al., 2007; Marx et al., 2009, 2011; Fitzsimmons 505 

and Barrows, 2010). Fluvial activity decreased (e.g. Cohen and Nanson, 2007), with lower 506 

lake levels across much of the continent (e.g. De Deckker, 1982; Wilkins et al. in press).  In 507 

contrast, the southwest was relatively consistently warm and moist (e.g. Gouramanis et al., 508 

2012). An increasing number of records across the continent are showing variability in the 509 
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order of 1000-2000 years, attributed to El Niño in the north (e.g. McGregor and Gagan, 2004; 510 

Turney et al., 2004) and changes in the westerly wind belt in the south (e.g. Moros et al., 511 

2009; Kemp et al., 2012; Wilkins et al., in press). Although there have been recent records 512 

which focus particularly on decadal and finer resolution of the last 2000 years in the 513 

Australasian region, these are covered in other reviews (e.g. Neukom and Gergis, 2011).  514 

 515 

4. Discussion  516 

The changes in climate we have documented over the last 35 kyr highlight a complex 517 

response across a continent that spans a vast array of climatic zones. The latitudinal range, 518 

together with its extensive interior and fringing mountainous areas, results in the interplay of 519 

all the major circulation systems of the low and mid latitudes over the continent. The 520 

consequences of this are often diachronous, and sometimes contradictory, responses of the 521 

landscape, vegetation and sea surface when sites are compared across this range. This 522 

patchwork response is in strong contrast to the Northern Atlantic Ocean, where huge changes 523 

in heat flux from the ocean act to synchronise the climate of Europe through time. A 524 

consequence of this is that the climate signal preserved in the ice cores of Greenland can act 525 

as a template for the stratigraphy of a large proportion of the European region (e.g. Lowe et 526 

al., 2001). No such obvious simple approach exists for Australia that can adequately describe 527 

or characterise the changes that take place. Both the magnitude and pattern of climate change 528 

vary meridionally across the Australian continent. At the sea surface, the highest magnitude 529 

temperature changes occur in the high latitudes (cf. Barrows et al., 2007b) and on land the 530 

highest changes tend to be in the highest altitudes.  531 

 532 

A major limitation on the characterisation of Australian climate change is the lack of 533 

quantitative proxies for both temperature and precipitation across a large proportion of the 534 
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continent, with exceptions being in the far north (e.g. Lewis et al., 2011; Griffiths et al., this 535 

volume) and far south (e.g. Rees et al., 2008; Fletcher and Thomas, 2010), confounded by 536 

limitations in the ability to date events precisely. Although chronologies are constantly 537 

improving, aided by increased luminescence, exposure age and  radiocarbon data sets, the 538 

interpretation of many records remains difficult. Landscape responses such as lake level 539 

change, river discharge and dune activity can be produced under a range of different climate 540 

scenarios, from variable combinations of temperature and precipitation. Knowledge of 541 

temperature change across the continent is consequently mostly guided by sea-surface 542 

temperature records from around the periphery of the continent.  543 

 544 

The changes in temperature and effective precipitation recorded across Australia during the 545 

last 35 kyr suggest large scale reorganisation of the circulation systems and major shifts in 546 

climate zones. However, current evidence indicates that the majority of these changes can be 547 

explained and accommodated using existing climate systems. Most of the changes in 548 

precipitation can be explained by the presence or absence of the monsoon in the northern half 549 

of the continent, and the meridional shifts in the westerlies and their intensity in the south. 550 

Temperature changes have not necessarily occurred in tandem with these moisture delivery 551 

changes, leading to effective precipitation at times being out of phase with major global 552 

temperature changes. This is illustrated for example during the deglaciation when both wet 553 

and arid periods are superimposed upon a dominantly warming trend.  554 

 555 

The onset of glacial-magnitude cooling is recorded first in the high latitudes of the Australian 556 

region in the Southern Ocean, as early as 40 ka (Barrows et al., 2007a). Vandergoes et al. 557 

(2005) suggested that the early onset of cooling in the high southern latitudes relates to a 558 

minimum in Southern Hemisphere summer insolation around 30-35 ka. However, this 559 
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suggestion contrasts with the lock-step relationship of temperature between the hemispheres 560 

during full glacial conditions and the Holocene. The lag in cooling of the low latitudes 561 

resulted in a stronger meridional temperature gradient than at present, which is likely to have 562 

had a response in stronger westerly and trade wind systems, delivering more water to inland 563 

lake and river systems. However, the Asian monsoon probably migrated northward between 564 

~40-35 ka, removing the major source of inflow for the monsoon dominated north and Lake 565 

Eyre basin (e.g. Magee et al., 2004).  566 

 567 

High resolution SST records indicate one or more interstadial periods around 30 ka (e.g. 568 

Barrows et al., 2007a), which also occur in ice core records from Antarctica (e.g., EPICA, 569 

2006), but temperature remained well below Holocene levels. Most records indicate steady 570 

cooling from 30-20 ka. However, there is a brief reversal in the cooling trend during the 571 

period 26-24 ka recorded in Antarctic ice cores (Fig. 4bi,ii; EPICA, 2006), which produced 572 

warm and wetter conditions in the NE of Australia, and a minor interstadial in the southern 573 

temperate zone and the higher latitudes of the Southern Ocean (Petherick et al., this volume; 574 

Bostock et al., this volume). An interstadial is also recorded in Antarctic ice core records at 575 

the same time (EPICA, 2006). The cause of this event is unknown and it slightly leads 576 

Greenland Interstadial 2 in the North Atlantic (Lowe et al., 2001), indicating a relationship 577 

through the 'bipolar seesaw' (Broecker, 1998).  578 

 579 

Rapid growth of the Northern Hemisphere ice sheets from 30-20 ka (Lambeck and Chappell, 580 

2001) resulted in lower sea levels, which exposed the continental shelves around the 581 

Australian margin. Land bridges were formed between New Guinea and the north of 582 

Australia, forming the Sahul Shelf. The Indonesian archipelago was also largely connected, 583 

forming the Sunda Shelf. This not only altered ocean circulation, but also reduced the area of 584 
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warm shallow seas. This had a major influence on the tropical climates of northern Australia 585 

because of a greater restriction on sources of tropical rainfall (Reeves et al., this volume). The 586 

exposure of the continental shelves also has an acute regional affect on moisture delivery in 587 

Bass Strait and Torres Strait.  588 

 589 

The LGM heralded cooler, windier and drier conditions across most of the continent (Fig. 590 

4ci,ii). The synchroneity of this response both at the sea surface (Barrows and Juggins, 2005) 591 

and on land, across a range of climatic zones, indicates a common regional control through 592 

greenhouse gas forcing of temperature. Carbon dioxide levels fell below 200 ppm before 25 593 

ka, and remained between 180-200 ppm until 17 ka (Schmitt et al., 2012). This interval 594 

corresponds to maximum temperature depression and decline of woody taxa, despite a peak 595 

in summer insolation in the Southern Hemisphere. However, the period of maximum 596 

glaciation and periglacial activity in Australia and Papua New Guinea was only a brief 597 

interval within this period, centred at 19-22 ka, indicating that carbon dioxide cannot be the 598 

only control on surface temperature. Despite lower precipitation and presumably more 599 

northerly penetration of the westerlies, lower evaporation and increased seasonality of 600 

discharge (because of the timing of snowmelt), resulted in apparently wetter conditions in 601 

parts of inland Australia (Kemp and Rhodes, 2010; Fitzsimmons et al., this volume).   602 

 603 

Warming in the deglacial period occurred much earlier than in the Northern Hemisphere, 604 

commencing as early as 19 ka in the south (Pedro et al., 2011; Bostock et al., this volume) 605 

and established by ~18-17 ka through much of the region (Turney et al., 2006b; Petherick et 606 

al., this volume; Reeves et al., this volume) (Fig. 4di, ii). Warming preceded increases in 607 

precipitation in most areas, particularly the northwest of Australia. The lag in this region may 608 

be attributed in part to the restricted influence of warmer tropical waters, and a less 609 
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pronounced Leeuwin Current (Spooner et al., 2005, 2011; De Deckker et al., 2012).  The 610 

presence of relatively high levels at Lake Frome, but dry Lake Eyre during the early deglacial 611 

period, in the absence of a monsoon may be attributed to a southerly moisture supply in the 612 

westerlies (Cohen et al., 2011, 2012).  613 

 614 

Temperature reached near Holocene levels by 15 ka in many records. An increase in dune 615 

activity occurs at this time, perhaps as a result of temperature outpacing increases in 616 

precipitation. Because this is the last major period of dune activity, it may also be an 617 

indication of stabilisation and preservation of dunes, as much as an increase in aridity. The 618 

warming also coincides with the resumption of the monsoon increasing moisture delivery to 619 

the north (Fig. 4ei,ii) as low pressure systems developed over the continent.  620 

 621 

With the exception of the marine records offshore South Australia (Calvo et al., 2007) the 622 

ACR (14 – 13.5 ka) is only weakly recorded in the southern part of the continent, mostly as a 623 

pause in the warming rather than as a distinct cooling event, producing wetter conditions in 624 

the temperate zone. No cooling is recorded during the Younger Dryas interval, as is expected 625 

under the 'bipolar seesaw' of interhemispheric heat exchange, nor is there a mechanism for 626 

causing a cooling at this time in the Australian region (Barrows et al., 2007b; De Deckker et 627 

al., 2012; Tibby, 2012).  628 

 629 

 630 

Although the timing of response is varied, the early Holocene is a time of warmer and wetter 631 

conditions across the region. Conditions are wetter in the north associated with high sea-632 

surface temperatures and moisture delivery enhanced because of flooding of the shallow shelf 633 

seas. The monsoon delivered more precipitation than at present, as a function of the pressure 634 



27 
 

gradient established between northern Australia and Asia (Fig. 4fi,ii). The exception to this 635 

would be the Riverine Plain in the lower Murray-Darling Basin, where the trend is towards a 636 

decrease in river discharge. This is associated with a southerly migration of the westerly wind 637 

belt, restricting moisture supply west of the Great Dividing Range, coupled with increasing 638 

temperatures, decreasing snow cover and subsequent melt in the upland areas which fed the 639 

rivers.  640 

 641 

The establishment of maximum sea level (~8-7.5 ka; Lewis et al, this volume) is coincident 642 

with many regions recording maximum temperature and precipitation. This period sees the 643 

reinitiation of the coral reefs on the Great Barrier Reef and the flooding and infilling of the 644 

tropical estuaries with sediment trapped by mangroves (Reeves et al., this volume). In some 645 

areas, particularly the temperate zone, vegetation change and establishment of woody taxa 646 

lags behind changes in climate and rise in CO2, presumably owing to slow migration and re-647 

establishment processes in forest ecosystems. Compared with the early Holocene, the trend at 648 

~5 ka is for cooling conditions in the NE and Southern Ocean and drying in the interior (Fig. 649 

4 gi,ii). The flooding of the broader continental shelf along the northeast coast, may have 650 

buffered the climatic response during this interval; however the driving mechanism remains 651 

unresolved. During the late Holocene,. a weakening of the Walker Circulation, and thus a 652 

weakening of the easterly trade winds over the tropical Pacific Ocean, has been attributed to a 653 

weaker Asian summer monsoon system due to decreasing insolation at northern mid-latitudes 654 

during the boreal summer (Zheng et al., 2008). This created conditions more favourable for 655 

the development of El Niño events, resulting in a progressive increase in El Niño frequency 656 

(Phipps and Brown, 2010). The El Niño mode starts to dominate from 7-5 ka (Rodbell et al., 657 

1999; Tudhope et al., 2001; Moy et al., 2002; Gagan et al., 2004) and this has the effect of 658 

producing drier conditions in northern and eastern Australia. 659 
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 660 

The Late Holocene sees an increase in climatic variability, particularly with regards to 661 

moisture availability (Fig. 4 hi,ii) largely attributed to a stronger expression of El Niño 662 

(Moros et al., 2009). This is over-printed by the interaction with the Indian Ocean Dipole and 663 

a weakening of the monsoon (Shulmeister and Lees, 1995; Shulmeister, 1999). Thus, the late 664 

Holocene records warm conditions, with greater El Niño frequency, increased fire and 665 

extended droughts, alternating with shorter, wet La Niña events (e.g. Moy et al., 2002; Moros 666 

et al., 2009; Mooney et al., 2011), a pattern which persists today . 667 

 668 

5. Further work 669 

There are clear gaps in the types and distribution of data across the greater Australian region 670 

and areas where the chronology could be significantly improved. As a palaeoclimate 671 

community there is still a lack of consensus with regards to the hydrological balance and role 672 

of groundwater in key time intervals such as the LGM. Quantitative estimates are required on 673 

wind strength, evaporation and seasonality; parameters that are currently largely 674 

unconstrained. The Australian region still lacks sufficient sub-millennial-scale resolution 675 

terrestrial records to identify climatic leads and lags and there are many locations across the 676 

continent, such as the majority of Western Australia and the Northern Territory, coastal 677 

southeastern Australia and terrestrial southwest Queensland, where data is non-existent. 678 

Lastly, the role of humans in modifying the biophysical environment, which influences the 679 

interpretation of climate, is one area that is poorly known for much of the last 35 kyr. 680 

 681 

The OZ-INTIMATE project aimed to consolidate the climate records from the broader 682 

Australian region over the past ~35 kyr and compare the response of each of the four major 683 

climatic regions to global climatic drivers. Future work will need to engage more actively 684 
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with climate modelling to test the longevity of dynamical mechanisms of the climate system 685 

of the modern day and how these have manifested in the past. In addition, targeted palaeo-686 

proxy data gathering must continue, with a focus on filling the spatial gaps outlined above, 687 

developing well-resolved chronologies and quantitative reconstructions. This combined 688 

approach will enhance our ability to predict the evolution of the climate system and the 689 

impacts of future changes on the climate of the Australian region. 690 
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Figures 1314 

Figure 1. Map of average modern sea surface temperature and the major oceanographic 1315 

features of the Australian region. The major currents are shown in solid lines: IPWP = Indo-1316 

Pacific Warm Pool, ITF = Indonesian Throughflow, SEC = South Equatorial Current, LC = 1317 

Leeuwin Current (with dashed line showing extent during La Niña), EAC = East Australian 1318 

Current, ACC = Antarctic Circumpolar Current. The mean positions of the major fronts are 1319 

shown in dotted lines: TF = Tasman Front, STF = Subtropical Front, SAF = Subantarctic 1320 

Front, PF = Polar Front.  1321 

 1322 

Figure 2. Map showing the major features of the modern climate system of the Australian 1323 

region. ITCZ = Inter-tropical Convergence Zone, ENSO = El Niño Southern Oscillation, IOD 1324 

= Indian Ocean Dipole, SAM = Southern Annular Mode.  1325 

 1326 

Figure 3. Map of the greater Australian region, with site localities (white dots) considered 1327 

here in this study. The shadings are a stylistic representations of the four climate regions 1328 

referred to as tropics (yellow terrestrial, purple marine), arid interior (orange), temperate 1329 

(green terrestrial, royal blue offshore) and Southern Ocean (lower rectangle). The reader is 1330 

directed to the other papers within this volume, which deal with each of these regions 1331 

independently, for more information on the detailed boundaries (i.e. Reeves et al., 1332 

Fitzsimmons et al., Petherick et al., Bostock et al.). The inset graphs show summer and winter 1333 

insolation at a) 20
o
S and b) 40

o
S, respectively. 1334 

 1335 

 1336 
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Figure 4. Schematic representation in the changes in temperature (i) and effective 1337 

precipitation (ii) through time. Change here is considered as a trend in relation to the previous 1338 

time slice, that is; are conditions hotter or wetter, for example, than the previous period. For 1339 

temperature, red = hot, blue = cold, purple = no change. For precipitation, green = wet, 1340 

orange = dry, yellow = no change. Grey indicates no data are available. Please refer to figure 1341 

2 for the division of the climate zones represented here by boxes, with reference to latitude 1342 

and longitude. The time slices are a = c. 32 ka, b = c. 25 ka, c = c. 20 ka, d = c. 17 ka, e = c. 1343 

14 ka, f = c. 9 ka, g = c. 5 ka, h = c. 2 ka  1344 

 1345 
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