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The ultimate bound to the accuracy of phase estimates is often assumed to be given by the Heisen-
berg limit. Recent work seemed to indicate that this bound can be violated, yielding measurements
with much higher accuracy than was previously expected. The Heisenberg limit can be restored as
a rigorous bound to the accuracy provided one considers the accuracy averaged over the possible
values of the unknown phase, as we have recently shown [Phys. Rev. A 85, 041802(R) (2012)]. Here
we present an expanded proof of this result together with a number of additional results, including
the proof of a previously conjectured stronger bound in the asymptotic limit. Other measures of the
accuracy are examined, as well as other restrictions on the generator of the phase shifts. We provide
expanded numerical results for the minimum error and asymptotic expansions. The significance of
the results claiming violation of the Heisenberg limit is assessed, followed by a detailed discussion
of the limitations of the Cramér-Rao bound.

PACS numbers: 42.50.St, 03.65.Ta, 06.20.Dk

I. INTRODUCTION

Phase estimation is the basis for much precision mea-
surement. Optical interferometers offer highly accurate
measurements of length, and atomic phase measurements
provide highly accurate measurements of time, as well as
other physical quantities like magnetic field [1–5]. In op-
tics, most measurements are limited by the shot-noise
limit, where the accuracy scales as 1/

√

〈N〉, where N is
the photon number operator. In contrast, it is normally
assumed that the fundamental limit is the Heisenberg
limit, where the accuracy scales as 1/〈N〉 [6–8]. This po-
tentially provides far greater accuracy, but is extremely
difficult to achieve in practice because it requires highly
nonclassical states of light, as well as arbitrarily high effi-
ciencies [9–11]. Any amount of loss will cause the scaling

to revert to 1/
√

〈N〉 for large 〈N〉 [11].
Recently a number of papers suggested that the

Heisenberg limit is not the fundamental limit to accu-
racy, and that a better scaling constant or even a higher
power of 〈N〉 might be possible. In Ref. [12], Anisimov et
al. gave a proposal for violating the Heisenberg limit by
a small amount. In another work, Zhang et al. [13] pro-
posed a scheme offering zero phase uncertainty with finite
〈N〉. Finally, in Ref. [14] Rivas and Luis presented a pro-
posal for obtaining scaling as 1/〈N〉p for p > 1. A qual-
itatively different proposal for violating the Heisenberg
limit is that based on nonlinear interferometry [15, 16].
However, that work differs in its use of terminology; it
does not violate the Heisenberg limit in the sense we use
here (see Sec. VII D) [7].

A common feature of proposals to violate the Heisen-
berg limit is that they only work for a limited range of
phases. Additional phase information would be needed to
confine the phase to within the region where the measure-
ment is accurate. One can consider first using a sequence

of measurements to ensure that the phase lies within a
suitable region, then using the super-Heisenberg mea-
surement. If the overall measurement (consisting of the
sequence of individual measurements) could yield better
accuracy than the Heisenberg limit, then it could be re-
garded as providing a true improvement. On the other
hand, if the resources required to localise the phase to the
required region result in an overall measurement with
accuracy that is not better than the Heisenberg limit,
then the accuracy of the super-Heisenberg measurements
would seem to be illusory.

An analogous situation was seen in considering the
reciprocal-peak-likelihood as a measure of uncertainty.
In Ref. [17, 18] a technique was proposed that would
apparently yield super-Heisenberg accuracy in terms of
reciprocal-peak-likelihood. Later work found that, in
practice, the proposal resulted in accuracy that was worse
than the Heisenberg limit [19]. Another example is that
of NOON states. NOON states yield phase informa-
tion scaling as the Heisenberg limit, but require initial
phase information with similar accuracy. In that case,
it is known how to combine measurements from multiple
states to obtain an overall measurement that scales at
the Heisenberg limit [20, 21].

To evaluate whether the super-Heisenberg measure-
ments would be able to yield an overall measurement vi-
olating the Heisenberg limit, we examined the case where
the mean-square error is averaged over all phase shifts.
We showed that the Heisenberg limit provides a rigor-
ous lower bound to the square root of the average mean-
square error (RAMSE) in such a case [22]. Therefore, no
scheme that apparently beats the Heisenberg limit for a
small range of phase could be used to construct an over-
all measurement starting from an unknown phase that
beats the Heisenberg limit. An alternative approach is
to determine the bound if the initial phase is restricted
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to a given range. In Ref. [23] it was shown that with such
a restriction the usual Heisenberg limit can be multiplied
by a factor proportional to the phase range, and further
results have been given in Refs. [24–27]. An alternative
approach has yielded a bound on the average of the error
at just two locations [28].
The specific result from Ref. [22] is

δΦ̂ ≥ k

〈G+ 1〉 , (1)

where δΦ̂ is the RAMSE, G is the generator of the phase
shifts, which is here assumed to have nonnegative integer
eigenvalues, and k is a constant. These quantities are
explained in Sec. II below. We have analytically proven
that this inequality holds with k = kA :=

√

2π/e3 ≈
0.5593 [22]. In Sec. III we give the full proof of that result,
as well as a generalised result in terms of the absolute
value of G in the case where G also has negative integer
eigenvalues.
Numerical calculations indicate that the inequality

holds with the larger scaling constant k = kC ≈ 1.3761.
We give the detailed numerical results in Sec. IV, indicat-
ing that this result holds both for the RAMSE and the
error estimated using the Holevo variance. In Sec. V we
calculate asymptotic expansions for the RAMSE, provid-
ing strong analytic support for the scaling constant kC ,
and proving that k = kC is valid in the asymptotic limit
〈G〉 → ∞. We examine the scaling with the number of
probe states in Sec. VI, then give a detailed discussion of
the papers claiming violation of the Heisenberg limit in
Sec. VII. The Cramér-Rao bound and the error propaga-
tion formula are commonly used in examining the Heisen-
berg limit, but have some limitations; these are discussed
in Sec. VIII.

II. FIGURES OF MERIT FOR AVERAGE
PHASE RESOLUTION

There are a number of different figures of merit for
phase measurements. Before describing these, we first
introduce some notation, largely following Ref. [22]. The
random variable for the phase shift of the system is Φ,
and the random variable for the estimate of that phase
shift is Φ̂. The error in the phase estimate is Θ = Φ̂−Φ.
We use capital letters for the random variables; the corre-
sponding values and measurement outcomes are denoted

by the corresponding lower case letters (φ, φ̂, and θ).
We consider a Hilbert space with a phase shift operator

G. In the completely general case, the only restriction is
that the eigenvalues of G must be integers. We may also
consider the specific case where the eigenvalues are all
nonnegative integers, in which case we denote the opera-
tor by N . This includes, for example, the case of photon
number. Alternatively, if the eigenvalues include all inte-
gers, such as for angular momentum, we use the symbol
J .

The phase shift is described by the unitary opera-
tor exp(−iGΦ). That is, the probe state ρ0 becomes
ρφ := e−iGφρ0e

iGφ. The detection method used to esti-
mate φ is described by a positive-operator valued mea-
sure (POVM) {Mφ̂}. Hence, the probability distribu-

tion is given by p(φ̂|φ) = Tr(Mφ̂ρφ). Because phase is

only defined modulo 2π, we do not distinguish between

φ and φ+2π, or between φ̂ and φ̂+2π. This means that

p(φ̂|φ) = p(φ̂ + 2πk|φ) for any integer k, and p(φ̂|φ) is
normalised over a (arbitrary) 2π interval.

A. Root-mean-square error

The most common figure of merit for a measurement
is the square root of the mean-square error (MSE). We
will call this the RMSE. For a specific phase shift, φ, the
MSE is given by

(∆φr

φ Φ̂)2 :=

∫ φr+π

φr−π

dφ̂ (φ̂− φ)2p(φ̂|φ). (2)

There is a subtlety in that for phase, values that differ by
2π are equivalent, which means that a range of 2π must
be specified for the integral. However, the reference phase
shift, φr , is arbitrary, and the value that is obtained for
the MSE will depend on φr. Ideally φ should be near the
centre of the range. If it is near one of the bounds of the
range then the MSE will be unreasonably large.
To solve this problem, it is convenient to take the dif-

ference φ̂−φ modulo (−π, π]. That is, we add or subtract
a multiple of 2π such that the value obtained is in the
range (−π, π]. It is important to note that this conven-
tion can only decrease the value obtained for the MSE. In
this work we are concerned with placing lower bounds on
the MSE. We prove these lower bounds for the MSE with
the difference defined modulo 2π. Because this MSE is
no larger than that obtained without taking the differ-
ence modulo (−π, π], all results hold for that case as well.
Thus, it is natural to work with the minimumMSE, given
by

(∆φΦ̂)
2 :=

∫ φr+π

φr−π

dφ̂
{

(φ̂− φ) mod (−π, π]
}2

p(φ̂|φ)

=

∫ φ+π

φ−π

dφ̂ (φ̂− φ)2p(φ̂|φ), (3)

where we have used the fact that p(φ̂|φ) repeats modulo
2π. It follows that

∆φΦ̂ ≡ ∆φ
φΦ̂ ≤ ∆φr

φ Φ̂ (4)

for any reference phase φr .
The above ∆φΦ̂ is a measure of the accuracy of the

phase measurement only for a specific phase shift φ. It
is trivial to see that one can always choose a measure-
ment such that the MSE can be zero for a specific phase
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shift, φ0: the trivial measurement that always yields the

result φ̂ = φ0. In reality, for a phase measurement the
phase shift is unknown; otherwise a measurement would
be unnecessary. To be useful, a measurement must give
accurate results for a range of phase shifts.
A rigorous way of taking account of the range of phase

is to average the figure of merit over the phase shift. For
the MSE one would use

∫ π

−π

dφ p(φ)(∆φΦ̂)
2, (5)

where p(φ) is a probability distribution describing the
prior information about the phase shift. In this work we
consider the case that there is no prior information, so
p(φ) = 1/2π. Then the average MSE (AMSE) is given
by

(δΦ̂)2 :=
1

2π

∫ π

−π

dφ (∆φΦ̂)
2. (6)

One then finds that

(δΦ̂)2 =

∫ π

−π

dθ θ2 p̄(θ) = 〈Θ2〉. (7)

Here p̄(θ) is the probability density for the error in the

phase estimate Θ = Φ̂− Φ, and is defined by

p̄(θ) :=
1

2π

∫ π

−π

dφ p(θ + φ|φ). (8)

We call δΦ̂ the RAMSE, because it is averaged over φ
before taking the square root, whereas the RMSE ∆φΦ̂
is for a specific φ.
Equation (7) holds because the mean-square error is

a linear figure of merit. A general figure of merit for
the accuracy of a phase estimate Φ̂ can be defined as a
functional, F , that takes as input a probability density

in φ̂, and outputs a scalar. In the case that F is linear,
we find that

∫ π

−π

dφ p(φ)F (p(Φ̂|φ)) = F (p̄(Θ)). (9)

This means that, for linear measures, the average figure
of merit and the figure of merit of the average distribution
are equivalent.
More generally, consider a convex figure of merit; that

is, one that satisfies

F (tp1(Φ̂) + (1− t)p2(Φ̂)) ≤ tF (p1(Φ̂)) + (1− t)F (p2(Φ̂)),
(10)

for t ∈ [0, 1]. By using Jensen’s inequality, one obtains

∫ π

−π

dφ p(φ)F (p(Φ̂|φ)) ≥ F

(∫ π

−π

dφ p(φ)p(Φ̂|φ)
)

= F (p̄(Θ)). (11)

What this means is that, if the figure of merit is convex,
then placing a lower bound on the figure of merit for the

average distribution also provides a lower bound on the
average of the figure of merit. That is the approach we
use in this work; we find lower bounds on the figure of
merit for the average distribution, which also hold for the
average of the figure of merit.

B. Holevo variance and average bias

There are alternative measures of the spread which are
similar to the MSE but which are specifically defined for
phase. These are typically defined in terms of the average

of the exponential of the phase, 〈eiΦ̂〉. In the case that the
phase distribution is sharply peaked, then this quantity
will be close to 1. One possibility for quantifying the

uncertainty in the phase is 2(1− |〈eiΦ̂〉|) [29]; another is
1− |〈eiΦ̂〉|2 [30, 31].
A measure of this type with some nice properties is

that proposed by Holevo [32],

VH,φ(Φ̂) := |〈eiΦ̂〉φ|−2 − 1, (12)

which has been dubbed the Holevo variance [33]. Here
the subscript φ indicates that the variance is determined
for a specific value of the phase shift. That is,

VH,φ(Φ̂) :=

∣

∣

∣

∣

〈
∫ π

−π

dφ̂ eiφ̂p(φ̂|φ)
〉∣

∣

∣

∣

−2

− 1. (13)

In this case there is no ambiguity in choosing the bounds
of the integral, because the argument is clearly periodic
modulo 2π.
A minor problem with this definition is that it does

not penalise biased estimates. However, this is easily
corrected by using the modified definition

VarH,φΦ̂ := Re〈ei(Φ̂−φ)〉−2
φ − 1. (14)

If the measurement is “U(1)-unbiased”, in the sense that

φ = arg[〈eiΦ̂〉φ], (15)

then these two expressions for the Holevo variance are
equivalent.
The Holevo variance is a convex functional of the prob-

ability distribution. From Eq. (11), this means that one
can place a lower bound on the average Holevo variance
by considering the Holevo variance of the average distri-
bution. That is,

(δHΦ̂)2 := (Re〈eiΘ〉)−2 − 1 (16)

is a lower bound on the average value of VarH,φ(Φ̂). In
this paper we do not discuss the Holevo variance without
averaging over φ, so we will refer to (δH Φ̂)2 as the Holevo
variance.
In the case that the average distribution p(θ) is U(1)-

unbiased, in the sense that 〈eiΘ〉 is real and positive, then

(δHΦ̂)2 = |〈eiΘ〉|−2 − 1. (17)
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If the average distribution is biased, then it can be mod-
ified to obtain a U(1)-unbiased measurement. Taking
θav := arg〈eiΘ〉, we can replace measurement operators
MΦ̂ with

M ′
Φ̂
=MΦ̂+θav

. (18)

Then, for these new measurement operators, p′(φ̂|φ) =

p(φ̂+ θav|φ), so

〈eiΘ〉M ′ =
1

2π

∫ π

−π

dφ̂

∫ π

−π

dφ ei(φ̂−φ)p(φ̂+ θav|φ)

=
1

2π

∫ π

−π

dφ̂

∫ π

−π

dφ ei(φ̂−θav−φ)p(φ̂|φ)

= e−iθav〈eiΘ〉M . (19)

Hence this modification of the measurement yields a
U(1)-unbiased average measurement.
With this condition, we can bound the mean-square

error by using the following inequality,

|〈eiΘ〉| = 〈cosΘ〉 ≥ cos
√

〈Θ2〉, (20)

where we have used the fact that cos
√
x is a convex

function, along with Jensen’s inequality. There are al-
ternative ways to bound the mean-square error, but this
particular inequality will be useful in Appendix C. It
also has the nice property that it can be saturated, for
a probability distribution that is just delta functions at
±
√

〈Θ2〉. Now consider the limit where the mean-square

error (δΦ̂)2 = 〈Θ2〉 is small. Expanding as a Maclaurin
series in this small parameter, we obtain

(δΦ̂)2 ≥
(

arccos{[(δHΦ̂)2 + 1]−1/2}
)2

= (δHΦ̂)2 − 2

3
(δHΦ̂)4 +O((δH Φ̂)6). (21)

This means that, except for higher-order terms, the
Holevo variance lower bounds the AMSE from below, so
asymptotically we have (δHΦ̂)2 . (δΦ̂)2.
We can also use the Holevo variance to bound the

AMSE from above. Using the fact that cos θ ≤ 1−2θ2/π2

on the interval [−π, π], we have the inequality

〈cosΘ〉 ≤ 1− 2〈Θ2〉
π2

. (22)

Using this, we have

(δΦ̂)2 ≤ π2

2

(

1− [(δHΦ̂)2 + 1]−1/2
)

=
π2

4
(δHΦ̂)2 − 3π2

16
(δH Φ̂)4 + O((δH Φ̂)6). (23)

The reason for the factor of π2/4 is that even for small
variance, the main contribution to the AMSE can be from
large phase errors. The inequality (22) is saturated for a
distribution that has contributions at ±π.

Returning to the asymptotic lower bound (21), its sig-
nificance is that any lower bound on the Holevo variance
is also asymptotically a lower bound on the AMSE. In
particular, it is known that for canonical phase measure-
ments on a single-mode field there is the tight asymptotic
lower bound on the Holevo variance δHΦ̂ & kC/〈N〉 with
kC := 2(−zA/3)3/2 ≈ 1.3761 (where zA is the first zero
of the Airy function) [34, 35]. This is tight in the sense
that, asymptotically, the Holevo variance is equal to this
value with any difference being of higher order. Because
the Holevo variance is asymptotically a lower bound on
the usual AMSE, we must also asymptotically have the
lower bound δΦ̂ & kC/〈N〉 for canonical phase measure-
ments on a single-mode field. It will be shown in Sec. III
that this is in fact a tight lower bound.

C. Entropic length

Another measure of concentration is the entropic

length [36, 37]. This is given by

L(Φ̂) := eH(Θ), (24)

where H(Θ) is the entropy of the error probability den-
sity,

H(Θ) = −
∫ π

−π

p̄(θ) ln(p̄(θ))dθ. (25)

The entropy takes its largest positive value for a flat dis-
tribution, and takes large negative values as the distri-
bution provides more information about the phase. The
negative of the entropy provides a measure of how much
information about the phase is available. The entropic
length is correspondingly small for a distribution provid-
ing a lot of information about the phase.
Similar to the AMSE or the Holevo variance, the en-

tropic length will be small for a sharply peaked distri-
bution. However, in contrast to those measures, the en-
tropic length will also be small if there are multiple sharp
peaks, with a value roughly equal to the total width of
those peaks. The entropic length satisfies several basic
properties expected for a length, discussed in Ref. [36]. It
can also be used to provide a lower bound to the RAMSE
via the relation [37]

δΦ̂ ≥ (2πe)−1/2L(Φ̂). (26)

This is because, if one were considering a distribution
on the infinite line, the entropy is maximised for fixed
Φ̂ by a Gaussian distribution, in which case δΦ̂ =
(2πe)−1/2L(Φ̂). For the case of phase, we are limited
to the interval [−π, π], which means that the Gaussian
distribution cannot be obtained exactly. Therefore the
inequality still holds, but cannot be saturated except
asymptotically.
In contrast to the other measures considered here, the

entropy is not convex. This means that one needs to
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be cautious when considering the average entropy. The
entropy of the average distribution does not provide a
lower bound on the average of the entropies. We do not
determine the lower bound on the average of entropies;
this is an open problem.

III. OBTAINING UNIVERSAL BOUNDS FROM
NONDEGENERATE BOUNDS

We now present the universal form of the Heisenberg
limit, which was first derived in Ref. [22]. In subsection
A we present the theorem showing that bounds which
hold for canonical measurements on nondegenerate sys-
tems also hold for completely arbitrary measurements on
general systems. In optics a single-mode field is nonde-
generate, whereas the general case includes multimode
interferometry. In subsection B we use this to provide
our universal form of the Heisenberg limit. In Sec. IV
we will present numerical results indicating that a better
scaling constant is possible.

A. Mapping the general problem to a
nondegenerate problem

As discussed at the start of Sec. II, the detection
method may be described by a POVM {Mφ̂}, which gives

the probability distribution via

p(φ̂|φ) = Tr(Mφ̂ρφ). (27)

A particularly useful form of POVM is a covariant
POVM. Whereas for an arbitrary POVM the individ-
ual Mφ̂ can be chosen independently of each other (ex-

cept for the normalisation requirement), for a covariant
POVM only one measurement operator may be chosen,
then all others are related via the generator of shifts. In
particular,

M φ̂ = e−iGφ̂M0e
iGφ̂. (28)

For a covariant POVM, the probability distribution for
the error in the estimate is independent of the phase shift.
This may be shown via

p(θ + φ|φ) = Tr(Mθ+φρφ)

= Tr(e−iG(θ+φ)M0e
iG(θ+φ)e−iGφρ0e

iGφ)

= Tr(e−iGθM0e
iGθρ0). (29)

A particular form of covariant POVM is the canonical

POVM. This can be defined as {e−iGφC0e
iGφ}, with [38]

C0 =
1

2π

∑

d

∑

n,n′∈S;d≤D(n),D(n′)

|n, d〉〈n′, d|. (30)

Here we have labelled the states with n and n′ indicating
the eigenvalues of G, and d the degeneracy. The function

D(n) gives the degeneracy for eigenvalue n. S denotes
the spectrum of eigenvalues of G, which we have assumed
to be the integers or a subset thereof. This definition
of a canonical POVM is not unique in general, because
it depends on the labelling of the degenerate states; a
fact which was not noted in Refs. [22, 38], and which
does not affect the results therein. However, we will only
require the simpler case of no degeneracies in what fol-
lows, where for this case the POVM is uniquely given by

{e−iG(s)φC
(s)
0 eiG

(s)φ}, with

C
(s)
0 =

1

2π

∑

n,n′∈S

|n〉〈n′|. (31)

We use G(s) to denote a generator with the same spec-
trum of eigenvalues as G, but nondegenerate.
We now show that any average phase distribution,

p̄(θ), can be obtained by a covariant measurement, and
that the covariant measurement result can be obtained
by a canonical measurement on a system without degen-
eracy. In Ref. [22] we obtained this result by a three-step
process: first that any average phase distribution, p̄(θ),
can be obtained by a covariant measurement; second
that the covariant measurement result can be obtained
by a canonical measurement; and third that the canon-
ical measurement result can be obtained by a canonical
measurement on a system without degeneracy. Here we
simplify the proof by combining the second two steps.
To express these results it is convenient to modify the

notation slightly. We will use subscripts on the prob-
ability p to indicate the POVM used. In addition, we
will indicate the state used in the probability. In the
case of the probability for the measurement error θ for
the covariant POVM, we omit φ, because the probability
is independent of φ as discussed above. Therefore, we
replace p(θ + φ|φ) with pM (θ|ρ0).
Expressed in terms of this notation, the first result is

as follows.

Lemma 1. For any POVM {Mφ̂}, there exists a covari-

ant POVM {M φ̂} such that for all states ρ0,

pM (θ|ρ0) = p̄M (θ|ρ0). (32)

Proof. This result is well known [32], but we provide a
proof here for completeness. Given POVM {Mφ̂}, we

define the covariant POVM via

M0 :=
1

2π

∫ π

−π

dφ eiGφMφe
−iGφ. (33)

Then we find

pM (θ|ρ0) = Tr(e−iGθM0e
iGθρ0)

=
1

2π

∫ π

−π

dφTr(e−iGθeiGφMφe
−iGφeiGθρ0)

=
1

2π

∫ π

−π

dφ pM (φ|φ − θ)

=
1

2π

∫ π

−π

dφ pM (φ+ θ|φ) = p̄M (θ|ρ0). (34)
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In the last line we have shifted the variable of integration.
This shows the relation (32) required.

The second result, which is a combination of the two
steps given in Ref. [22], is as follows.

Lemma 2. Given any covariant POVM {M φ̂} and state

ρ0, there exists a state without degeneracies ρ
(s)
0 such that

the probability distribution of G(s) for ρ
(s)
0 is the same as

that of G for ρ0, and

pC(s)(θ|ρ(s)0 ) = pM (θ|ρ0). (35)

Proof. Choose the state without degeneracies via

ρ
(s)
0 = 2π

∑

n,n′∈S

|n′〉〈n|
∑

d≤D(n),d′≤D(n′)

〈n′, d′|ρ0|n, d〉

× 〈n, d|M0|n′, d′〉. (36)

Note that ρ
(s)
0 is indeed a density operator, and yields the

same distribution for G(s) as ρ0 does for G. The details
for how to prove these facts are given in Appendix A.
It can be shown that the average phase distributions

are also the same, via

pC(s)(θ|ρ(s)0 ) = Tr(e−iG(s)θC
(s)
0 eiG

(s)θρ
(s)
0 )

=
1

2π
Tr



e−iG(s)θ
∑

m,m′∈S

|m〉〈m′|eiG(s)θ2π
∑

n,n′∈S

|n′〉〈n|
∑

d≤D(n),d′≤D(n′)

〈n′, d′|ρ0|n, d〉 × 〈n, d|M0|n′, d′〉





=
∑

n,n′∈S

ei(n
′−n)θ

∑

d≤D(n),d′≤D(n′)

〈n′, d′|ρ0|n, d〉〈n, d|M0|n′, d′〉

=
∑

n,n′∈S

∑

d≤D(n),d′≤D(n′)

〈n′, d′|ρ0|n, d〉〈n, d|e−iGθM0e
iGθ|n′, d′〉

=
∑

n′∈S

∑

d′≤D(n′)

〈n′, d′|ρ0e−iGθM0e
iGθ|n′, d′〉 = Tr(e−iGθM0e

iGθρ0) = pM (θ|ρ0). (37)

This shows the relation (35) required.

Using these lemmas then enables us to prove our theo-
rem that the average distribution can always be obtained
by a canonical measurement on a system without degen-
eracies.

Theorem 1. Any bound on the concentration of the
canonical phase distribution of a nondegenerate system

with shift generator G(s), under some constraint C on
the distribution of G(s), is also a bound on the concen-

tration of the average phase distribution p(θ) of an ar-
bitrary phase estimate for any shift generator G having

the same eigenvalue spectrum as G(s), providing that the
probe state satisfies the same constraint C with respect to
the distribution of G.

Remarks. A measure of the concentration is a func-
tional of the probability distribution, and includes the
mean-square error, the Holevo variance, and the en-
tropic length. For measures that are convex, such as the
mean-square error and Holevo variance, lower bounds on
the measure for the average distribution provide lower
bounds on the average of that measure (see Sec. II A).
By the distribution of G, we mean the probability distri-
bution for the eigenvalues of G. Examples of constraints
on the distribution of G are a fixed mean 〈G〉, an upper
bound on the eigenvalues, or a fixed mean absolute value
〈|G|〉.

Proof. Consider any state ρ0 that satisfies the constraint
C on the distribution of G. Given an arbitrary measure-
ment described by a POVM {Mφ̂}, we obtain an average

phase distribution p̄(θ). Using Lemma 1, we find that
there exists a covariant POVM {M φ̂} such that the same

probability distribution is obtained with the same state,
ρ0. Next, using Lemma 2, there exists a state without

degeneracy, ρ
(s)
0 , such that the nondegenerate canonical

measurement on ρ
(s)
0 produces the same phase distribu-

tion, and the distribution of G(s) is the same as the dis-
tribution of G for ρ0.

Therefore, the distribution of G(s) for ρ
(s)
0 still sat-

isfies the same constraint C. Furthermore, because the
probability distribution for the canonical measurement

pC(s)(θ|ρ(s)0 ) is equal to the average phase distribution
p̄M (θ|ρ0), any measure of the concentration of the prob-
ability distribution is unchanged. Because any value of
the concentration that can be obtained for the arbitrary
measurement under constraint C can also be obtained
for the concentration of the canonical phase distribution
under the same constraint, the arbitrary measurement
must satisfy the same bound as the canonical measure-
ment.
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B. Analytic bounds via an entropic uncertainty
relation

It is possible to obtain a number of bounds by using
entropic uncertainty relations. The entropic uncertainty
relation for canonical phase measurements and a nonde-
generate shift generator G is given by [39, 40]

H(Θ) +H(G) ≥ ln 2π. (38)

This can then be used to obtain bounds on the RAMSE
[22]. In particular, combining Eqs. (24), (26) and (38)
yields

δΦ̂ ≥ (2πe)−1/2eH(Θ) ≥ (2π/e)1/2e−H(G). (39)

We first specialise to the case where the eigenvalue
spectrum S includes all nonnegative integers, so we de-
note the generator by N . The entropy for fixed mean
number is maximised for the thermal (negative exponen-
tial) distribution. By a straightforward calculation, one
can show that this results in the inequality

H(N) ≤ ln〈N + 1〉+ 〈N〉 ln(1 + 1/〈N〉). (40)

Because x ln(1 + 1/x) < 1, this yields (for finite expecta-
tion values)

H(N) < ln〈N + 1〉+ 1. (41)

Substitution into Eq. (39) then gives

δΦ̂ >
kA

〈N + 1〉 , (42)

where kA =
√

2π/e3 ≈ 0.5593 (defined in the Introduc-
tion). Using Theorem 1, this result holds for the RAMSE
for all possible phase measurements, and for any shift
generator with nonnegative integer eigenvalues. Recall
that, because the MSE is a linear measure, the RMSE of
the average distribution is equivalent to the RAMSE [see
Eqs. (7) and (9)].
We can also use this result to infer the result in the

more general case where there is some lower bound g on
the eigenvalues of G. Then we can take G = g11 +N , so
〈N〉 = 〈G− g〉. Then one obtains

δΦ̂ >
kA

〈G− g + 1〉 . (43)

Note that, for this result, it is not necessary for the spec-
trum S to include all integers above g. This is because,
in minimising δΦ̂ for given 〈G− g〉, removing some inte-
gers restricts the possible states, and therefore can only
increase the AMSE.
An alternative restriction that one may wish to con-

sider is, instead of a fixed mean, a fixed mean of the
absolute value, 〈|G|〉. This is of particular interest in the
case of angular momentum, where G = J . Then fixed
〈|J |〉 corresponds to a mean absolute value of the angu-
lar momentum. The maximum entropy for fixed 〈|G−g|〉,

where g is any real number, can be obtained by finding
a critical point of the variational quantity

Λ = −
∑

n∈S

pn ln pn − α
∑

n∈S

pn − β
∑

n∈S

|n− g|pn, (44)

where α and β are variational parameters. As shown in
Appendix B, this yields

H(G) < ln(2〈|G− g|〉+ 1) + 1. (45)

Substitution in Eq. (39) then gives

δΦ̂ >
kA

〈2|G− g|+ 1〉 . (46)

Once again we note that this result holds both when S
includes all integers, so G = J , and when S does not
include all integers. In the latter cases, the maximum
entropy distribution can not be obtained exactly, but it
still provides a bound.
For a given state, one can adjust the value of g in

order to maximise this lower bound. The optimal value
is the median; that is, the value such that there is equal
probability for eigenvalues above and below g.
Another restriction on the distribution that can be con-

sidered is a finite range of eigenvalues. For example, with
number we have a minimum eigenvalue of 0, and can
place an upper bound of nmax on the eigenvalues. Then
the entropy is bound as

H(G) ≤ ln(nmax + 1), (47)

because the maximum entropy is for the flat distribution.
Then, combining with (39) gives

δΦ̂ >

√

2π/e

nmax + 1
. (48)

In the specific case of the Holevo variance, there is a
well-known result for canonical measurements [33, 41],

δHΦ̂ ≥ tan

(

π

nmax + 2

)

. (49)

This result is achievable for arbitrary nmax. Using our
Theorem, this result also holds for the average distribu-
tion for arbitrary measurements. Furthermore, because
the Holevo variance is a convex functional of the prob-
ability distribution, this bound holds for the root-mean
value of the Holevo variance (averaging over phase shifts).

IV. OPTIMAL BOUNDS VIA NUMERICAL
CALCULATIONS

The bound in Eq. (42) has a scaling constant of

kA =
√

2π/e3 ≈ 0.5593. In contrast, based on the
asymptotic result for Holevo variance [34, 35], we ex-

pect δΦ̂ & kC/〈N〉 with kC = 2(−zA/3)3/2 ≈ 1.3761 for
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large 〈N〉, where zA is defined in Sec. II B. This indicates
that the scaling constant of the bound in Eq. (42) is not
optimal, and suggests the conjecture [22]

δΦ̂ >
kC

〈N + 1〉 . (50)

In order to test this conjecture, we solved the variational
problem to find the minimum value of the RAMSE or
Holevo variance as a function of 〈N〉. The results sup-
porting this conjecture are given in this section. In Sec. V
the conjecture is proved analytically for the special case
of the asymptotic limit 〈N〉 → ∞.

A. Holevo variance

The case of the Holevo variance is simplest, because
the problem is to maximise |〈eiΘ〉|. Given a state

|ψ〉 =
∞
∑

n=0

ψn|n〉, (51)

we have

|〈eiΘ〉| =
∣

∣

∣

∣

∣

∞
∑

n=0

ψn+1ψ
∗
n

∣

∣

∣

∣

∣

. (52)

Note that we can upper bound this expression via

∣

∣

∣

∣

∣

∞
∑

n=0

ψn+1ψ
∗
n

∣

∣

∣

∣

∣

≤
∞
∑

n=0

|ψn+1ψn|. (53)

The normalisation and 〈N〉 are unaffected by replacing
the coefficients ψn with their absolute values. Therefore,
for maximisation of |〈eiΘ〉|, we can always take ψn to be
real and nonnegative.
From the above, the variational problem is thus to find

a critical point of

Λ =

∞
∑

n=0

(

ψnψn+1 − αψ2
n − βnψ2

n

)

, (54)

where α and β correspond to normalisation and mean
photon number constraints. The variational condition
∂Λ/∂ψn = 0 leads directly to the eigenvalue equation

ψn−1 + ψn+1 = 2(α+ βn)ψn (55)

for n ≥ 1, and ψ1 = 2(α + βn)ψ0. To avoid the need
to specify a different equation for n = 0, we can simply
define ψ−1 := 0.

B. Root-mean-square error

The problem for minimising the RAMSE is somewhat
more difficult, because we do not have a simple expression

like Eq. (52). However, any well-behaved function (i.e.,
satisfying the Dirichlet conditions) can be expanded in a
Fourier series on the interval [−π, π] as

f(θ) =

∞
∑

m=−∞

zme
imθ. (56)

For m ≥ 0, the expectation values of the exponentials
are given by

〈eimΘ〉 =
∞
∑

n=0

ψn+mψ
∗
n. (57)

For m < 0, the expectation values are just the complex
conjugate of those for positive m.
Unlike the case of the Holevo variance, it is not obvious

at first sight that we can take the state coefficients to be
real. However, if f(θ) is real, and symmetric about θ = 0,
then z−m = z∗m = zm. Therefore the expectation value
of f(Θ) is given by

〈f(Θ)〉 =
∞
∑

m,n=0

ψ∗
mZmnψn (58)

where Z is the real symmetric matrix with coefficients
Zmn := z|m−n|.
The variational problem is then to find a critical point

of

Λ = 〈f(Θ)〉 − α− β〈N〉

=

∞
∑

m,n=0

ψ∗
m [Zmn − (α+ βn)δmn]ψn. (59)

The variational condition leads to
∞
∑

n=0

Zmnψn = (α+ βm)ψm. (60)

This equation is solved as an eigenvalue equation with
α as the eigenvalue. Because the corresponding matrix
Z −βN is real and symmetric in the number state basis,
the eigenvectors are real in this basis (up to a global
phase factor). This means that the state coefficients can
indeed be taken to be real.
In the specific case of f(θ) = θ2, the Fourier series is

θ2 =
π2

3
+ 4

∞
∑

m=1

(−1)m

m2
cos(mθ). (61)

We then obtain the eigenvalue equation
(

π2

3
− βm

)

ψm +

∞
∑

n=−m
n6=0

2(−1)n

n2
ψn = αψm. (62)

Numerical solution of this eigenvalue equation is difficult,
because there are an infinite number of Fourier coeffi-
cients. The problem can be truncated at some maximum
number, but solution still requires finding the eigenvalues
of a full matrix. In contrast, the problem for the Holevo
variance is sparse, and can therefore be solved much more
efficiently.
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C. Bounding the AMSE

As we are interested in testing a lower bound on the
AMSE, we can alternatively use an expression with a
finite number of Fourier coefficients, but that forms a
lower bound on θ2. One alternative is to use f1(θ) :=
2(1 − cos θ), which is the same optimisation problem as
for the Holevo variance. To show f1(θ) ≤ θ2 on [−π, π],
we can use a Taylor expansion to third order with the
Lagrange form of the remainder

f1(θ) = θ2 +
f
(3)
1 (ξ)

3!
θ3 = θ2 − 1

3
θ3 sin ξ, (63)

where ξ ∈ [0, θ]. Because sin ξ has the same sign as θ3,
the remainder term is negative, and f1(θ) ≤ θ2.
The drawback to this alternative is that it yields results

that do not satisfy the conjectured lower bound. We
therefore use a higher-order approximation given by

f2(θ) :=
5

2
− 8

3
cos θ +

1

6
cos 2θ. (64)

Again expanding in a Taylor series,

f2(θ) = θ2 +
f
(3)
2 (ξ)

3!
θ3 = θ2 − 8

3
θ3(1 − cos ξ) sin ξ

≤ θ2. (65)

We can also obtain an upper bound using (see Appendix
C)

f3(θ) := (π2/4− 1)[2(1− cos θ)− (1− cos 2θ)/2]

+ 2(1− cos θ). (66)

In the following we will use (δmΦ̂)2 := 〈fm(Θ)〉 for m ∈
{1, 2, 3}.

D. Numerical results

The minimal Holevo variance, as well as the minimal
values of 〈Θ2〉 and δ2Φ̂, have been determined by nu-
merically solving the eigenvalue equations. In each case,
a number cutoff was used that was about 10 times the
value of 〈N〉, or 100 for small 〈N〉. At this point the
magnitude of the state coefficients had fallen to less than
1/106 of the maximum value, and increasing the cutoff
beyond this did not alter the results by more than 1 part
in 106. For the results for 〈Θ2〉, the maximum 〈N〉 was
about 5000, due to the difficulty in finding eigenvalues of
a full matrix. In contrast, for the Holevo variance and
for δ2Φ̂, the maximum 〈N〉 was over 106.
The results for the Holevo variance are given in Fig. 1.

In this figure the square root of the Holevo variance is
plotted multiplied by 〈N + 1〉. Therefore, if kC/〈N + 1〉
provides a lower bound to the RAMSE, the curve should
be above kC (also shown in the figures). It is clear
from the figure that the numerical results indicate that
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FIG. 1: Minimum possible value of 〈N + 1〉δHΦ̂, plotted as
a function of 〈N〉 (solid curve). The case where δ1Φ is used

instead of δHΦ̂ is shown as the dashed curve (green). The
asymptotic value of kC ≈ 1.3761 is shown as the horizontal
dotted line (blue).
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FIG. 2: Minimum possible value of 〈N + 1〉δΦ̂, plotted as a
function of 〈N〉. The dotted curve (green) shows the values

obtained for δΦ̂ (i.e., the RAMSE). The solid curve (black)

uses δ2Φ̂ instead of δΦ̂. The dash-dotted curve (red) is the

lower bound using arccos[1 − (δ1Φ̂)2/2]. The dashed curve

(blue) is the upper bound using δ3Φ̂ calculated for the state

that minimises δ1Φ̂. The asymptotic value of kC ≈ 1.3761 is
again shown as the horizontal dotted line (blue).

kC/〈N+1〉 provides a strict lower bound to δHΦ̂. In this

figure δ1Φ̂ is also shown, and δ1Φ̂ < kC/〈N + 1〉 in the
range shown.
The results calculated for δΦ̂ are shown in Fig. 2. It

can be seen that these results are also above the line for
kC , indicating that δΦ̂ > kC/〈N + 1〉. One would like

to provide more easily calculated lower bounds on δΦ̂ to
test this inequality more thoroughly. It is clear that δ1Φ̂
is not useful for this purpose, because the curve in Fig. 1
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is below kC . It is also possible to obtain a tighter lower
bound on δΦ̂ using δ1Φ̂ (see Appendix C), but this curve
is still not above kC for all 〈N〉.
A better lower bound to δΦ̂ is δ2Φ̂, which is also shown

in Fig. 2, and is above the kC line. This quantity can be
calculated more rapidly and reliably than δΦ̂, and results
are given up to 〈N〉 ≈ 2 × 106. This provides further

numerical evidence that δΦ̂ > kC/〈N + 1〉. Results were
also calculated for 〈N〉 down to about 10−6. These are
not shown in the figures, but the curves that are above
kC do not cross below kC .

E. Angular momentum calculations

We have also calculated the corresponding results with
a fixed value of 〈|J |〉. The variational problem is exactly
the same as before, except now we sum over positive and
negative values of j (as opposed to n), and replace n with
|j|. That is, the variational problem is to find a critical
point of

Λ = 〈f(Θ)〉 − α− β〈|J |〉. (67)

As before, for a real function f symmetric about zero
we can assume that the state coefficients are real, so the
variational condition yields

∞
∑

m=−∞

amψj+m = (α+ βj)ψj . (68)

In the case of f(θ) = θ2, we obtain the eigenvalue equa-
tion

π2

3
ψj +

∞
∑

m=−∞
m 6=0

2(−1)m

m2
ψj+m = (α+ β|j|)ψj . (69)

The eigenvalue equation for the case of f1(θ) is

ψj−1 + ψj+1 = 2(α+ β|j|)ψj . (70)

We will not consider f2(θ) for this problem.
The results for δΦ, δHΦ, and δ1Φ were all determined

numerically, and the results are shown in Fig. 3. It will
be shown in the next section that the asymptotic optimal
value for δ1Φ̂ is

δ1Φ̂ ∼ k′C
〈2|J |+ 1〉 , (71)

with k′C = 4(−z′A/3)3/2 ≈ 0.7916, where z′A is the first
zero of the derivative of the Airy function. We have there-
fore plotted the results for δΦ̂ multiplied by 〈2|J |+1〉 in
Fig. 3. It can be seen in this figure that all the results are
above k′C , supporting the conjecture that there is strict
inequality with the scaling constant k′C .
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FIG. 3: Minimum possible value of 〈2|J | + 1〉δΦ̂ is plotted as
a function of 〈N〉 as the dotted curve (green). The minimum

value of 〈2|J | + 1〉δHΦ̂ is shown as the solid curve (black),

and 〈2|J | + 1〉δ1Φ̂ is shown as the dashed curve (red). The
asymptotic value of k′

C ≈ 0.7916 is shown as the horizontal
dotted line (blue).

V. ASYMPTOTIC EXPANSIONS

A. Holevo variance

In the specific case of the Holevo variance, it is pos-
sible to obtain analytic results in terms of Bessel func-
tions to provide further support to the conjecture that
δHΦ̂ > kC/〈N + 1〉. The recurrence relation (55) has a
known solution in terms of Bessel functions [35]. Bessel
functions of the first kind satisfy the recurrence relation
Jk−1(z)+Jk+1(z) = (2k/z)Jk(z). Therefore the solution
is of the form

ψn(x, z) = AJx+n+1(z), (72)

with x := α/β − 1, z := 1/β. Bessel functions of the
second kind can be ignored, because they diverge for large
values of the order. The condition that ψ−1 = 0 implies
the restriction

Jx(z) = 0 (73)

on the parameter z, thus confining its allowed values to
the (countable) set of zeroes of Jx.
To obtain the smallest Holevo variance for a given

mean photon number, we wish to take the solution for
the largest value of α. This corresponds to the largest
solution of Eq. (73) in terms of x for given z. Conversely,
for given x we want the first positive zero of Jx. The
normalisation constraint yields

A−2 =

∞
∑

n=0

[Jx+n+1(z)]
2 =

∞
∑

k=1

[Jx+k(z)]
2, (74)
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and hence one has

〈N〉 = A2
∞
∑

n=0

n [Jx+n+1(z)]
2 = A2

∞
∑

k=1

(k − 1)[Jx+k(z)]
2

=

∑∞
k=1 k [Jx+k(z)]

2

∑∞
k=1[Jx+k(z)]2

− 1, (75)

〈eiΘ〉 = A2
∞
∑

n=0

Jx+n+1(z)Jx+n+2(z)

=

∑∞
k=1 Jx+k(z)Jx+k+1(z)
∑∞

k=1[Jx+k(z)]2
. (76)

Using Eq. (55), we have

〈eiΘ〉 = (α+ β〈N〉) = (x+ 〈N〉+ 1)/z. (77)

Up until this point, these results for the Bessel functions
are the same as those of Ref. [35]. Reference [35] then
uses an approximation in terms of Airy functions. We
have determined more accurate results using formulae
for sums of Bessel functions (see Appendix D). We find
that

|〈eiΘ〉|−2 − 1 =

5
∑

k=1

b2k
〈N + 1〉2k +O

(

1

〈N + 1〉12
)

, (78)

where b2 = k2C , and b2 to b10 are all positive and close
to 2. The fact that each bj that has been calculated is
positive strongly supports the conjecture that the Holevo
variance is strictly lower bounded by the first term.

B. Upper bounding the optimal mean-square error

It would be desirable to obtain a similar approxima-
tion for the exact RAMSE δΦ. However, the eigenvalue
equation does not have any solution in terms of elemen-
tary functions that we have been able to find. Even the
lower bounding quantity δ2Φ yields an eigenvalue equa-
tion that does not appear to have an analytic solution.
However, we can place an upper bound on the optimal
value of δΦ, using

θ2 ≤ f3(θ), (79)

for θ ∈ [−π, π]. We can calculate δ3Φ̂, except for the

state that minimises δ1Φ̂. This value is shown in Fig. 2
for comparison with δΦ̂.
Using the properties of Bessel functions, this leads to

the result that the optimal value of δΦ̂ satisfies (see Ap-
pendix D)

(δΦ̂)2 ≤ k2C
〈N + 1〉2 +O

(

1

〈N + 1〉3
)

. (80)

This means that, asymptotically, the optimal value of δΦ̂
cannot be larger than kC/〈N + 1〉. Because δΦ̂ cannot

be smaller than δHΦ̂ except for higher-order terms [see

Eq. (21)], this means the optimal δΦ̂ must be asymptot-
ically equal to kC/〈N +1〉 [i.e., kC is the largest value of
k for which Eq. (1) can be true].

C. Angular momentum calculations

Next we consider the problem with fixed 〈|J |〉. Recall
that the variational problem yields an eigenvalue problem
given in Eq. (70). This is solved by taking [42]

ψj(x, z) = A1 Jx+j(z), (81)

for j ≥ 0, and

ψj(x, z) = A2 Jx−j(z), (82)

for j ≤ 0. In this case we take x := α/β, z := 1/β. We
again may ignore Bessel functions of the second kind,
because they diverge. The restriction that the solutions
coincide for n = 0 means that A1 = A2 = A, and

ψj(x, z) = AJx+|j|(z), (83)

for all j. The condition that the recurrence relation holds
for j = 0 means that

Jx+1(z) =
x

z
Jx(z) =

1

2
[Jx−1(z) + Jx+1(z)]. (84)

This implies

Jx−1(z)− Jx+1(z) = 0. (85)

Then, using [Jx−1(z) − Jx+1(z)]/2 = J ′
x(z), this means

we must have J ′
x(z) = 0.

Performing series expansions similar to that for the
first case, gives (see Appendix E)

2(1− |〈eiΘ〉|) =
9
∑

k=2

dk
〈2|J |+ 1〉k +O

(

1

〈2|J |+ 1〉10
)

,

(86)

where d2 = k′C
2
, and coefficients up to d5 are positive,

but d6 is negative. This strongly supports the numerical
results that the strict inequality

δ1Φ̂ ≥ k′C
〈2|J |+ 1〉 , (87)

holds. In turn, because δΦ̂ ≥ δ1Φ̂, this also supports the
conjecture that the inequality holds for δΦ̂. In addition,
δHΦ̂ ≥ δ1Φ̂, so this supports the conjecture that the
inequality holds for δHΦ̂.
Similarly to the case for fixed 〈N〉, one can use Eq. (79)

to find a series expansion for an upper bound on the
optimal value of δΦ̂, giving

(δΦ̂)2 ≤ k′C
2

〈2|J |+ 1〉2 +O

(

1

〈2|J |+ 1〉3
)

. (88)

This means that we have upper and lower bounds on the
optimal δΦ̂, showing that it is asymptotically equal to
k′C/〈2|J |+ 1〉.
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VI. SCALING WITH NUMBER OF PROBE
STATES

Another question is what the scaling of the lower
bound is if there are m identical probe states. Nor-
mally it is expected that the MSE will scale like 1/

√
m

if there are m copies of the state. This is because, for
estimates formed by the average of the individual esti-
mates, the standard error scales as 1/

√
m. Similarly, the

Cramér-Rao bound for m identical probe states yields
the following bound for estimates that are unbiased (in
the standard statistical sense, not what we have called
U(1)-unbiased in Sec. II B) [32, 43]:

∆φΦ̂ ≥ 1

2
√
m∆N

. (89)

We will call this the Helstrom-Holevo bound.
Because of these results one might expect that one

could derive a lower bound to the uncertainty in terms
of 〈N〉 of the form k/(

√
m〈N + 1〉). On the other hand,

directly using the above methods yields a lower bound of

δΦ̂ ≥ k

〈mN + 1〉 , (90)

because the overall average number is m〈N〉. Recall that
we have proven this inequality for k = kA, and have
extremely strong numerical evidence for the inequality
for k = kC .
We can prove that there is no lower bound scaling as

1/(
√
m〈N + 1〉) in the following way. Let m ∈ N, 〈N〉,

and δ > 0 be given. We use µ for the required value of
〈N〉, to avoid confusion with intermediate states we use
in this discussion with different values of 〈N〉.
Let |χn−1〉 be the state with the minimum phase un-

certainty for mean number 〈N〉 = n− 1, and let |χ′
n−1〉

be the corresponding state with the same amplitudes,
but shifted up by one. This means that there is no
vacuum component, the phase uncertainty is unchanged,
and 〈N〉 = n. We are considering small δ and large
m, so we expect that µδ ≤ m. In that case, we take
n = (mµ)1/(1+δ), and consider m copies of

|ψ〉 =
√

1− µ/n|0〉+
√

µ/n|χ′
n−1〉. (91)

For this state, 〈N〉 = µ. Now consider a phase measure-
ment that first distinguishes between |0〉 and |χ′

n−1〉 on
all copies of the state. If the |χ′

n−1〉 result is found, then
a canonical phase measurement is performed.
The probability of getting the |χ′

n−1〉 result is µ/n. For
m repetitions, the probability of projecting every single
copy onto the state |0〉 is (1 − µ/n)m ≤ exp(−mµ/n) =
exp(−(mµ)δ/(1+δ)). This probability scales exponentially
in mµ and may be ignored for asymptotically large mµ.
The phase uncertainty is therefore (up to an exponen-
tially small correction) no more than that for |χ′

n−1〉,
which is

δΦ̂ = kC/n+O(1/n2)

= kC/(mµ)
1/(1+δ) +O(1/(mµ)2/(1+δ)). (92)

For µδ > m, we can just take n = µ, and |ψ〉 = |χ′
n−1〉.

In this case we have 1/(mµ)1/(1+δ) ≥ 1/µ. Therefore,
considering just the uncertainty for a single copy of the
state gives

δΦ̂ = kC/µ+O(1/µ2)

< kC/(mµ)
1/(1+δ) +O(1/(mµ)2/(1+δ)). (93)

This provides an upper bound to the uncertainty for m
copies of the state.
Therefore, we find that, for any δ > 0, m ∈ N and µ =

〈N〉, we can find a state such that the uncertainty is no
greater than kC/(mµ)

1/(1+δ) to leading order. Because
we can choose any δ > 0, this means that, for fixed 〈N〉,
the lower bound to the scaling must be arbitrarily close
to 1/m.
This result is counterintuitive, because for a state that

does not depend onm, the uncertainty can be expected to
scale as 1/

√
m, similarly to the Helstrom-Holevo bound

(89). However, the Helstom-Holevo bound, in terms of
m and ∆N , holds even for states that depend on m.
Similarly, a bound in terms of m and 〈N〉 must hold for
states that are chosen based on m. We have shown that
the potential dependence of states upon m means that it
is not possible to obtain a universal bound that scales as
1/

√
m for given 〈N〉.

VII. PAPERS CLAIMING VIOLATION OF
HEISENBERG LIMIT

In the following, we present some recent measurement
schemes claiming violation of the Heisenberg limit. We
summarise the techniques used in these schemes, and ex-
plain why they appear to violate the Heisenberg limit.
We argue that the accuracy of these super-Heisenberg
measurements should be considered illusory, primarily
because they only work for a very restricted range of
phase.

A. Anisimov et al.

Anisimov et al. [12] describe a noncovariant phase es-
timation method having a minimum RMSE

∆0
φΦ̂ =

1

[〈N〉(〈N〉+ 2)]1/2
. (94)

This quantity is for a particular phase shift, as opposed
to the average over the phase shift, δΦ̂. Also, the RMSE
is here using a reference phase of 0, rather than the ref-
erence phase of φ that we use (see Sec. II A). This result
violates an alternative definition of the Heisenberg limit,
given by Anisimov et al. as [12]

∆0
φΦ̂ ≥ 1/〈N〉. (95)

First, it should be noted that this does not give a different
power of 〈N〉, and does not change the scaling constant.
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It only violates this form of the Heisenberg limit by an
amount which is significant for small 〈N〉, and is of higher
order for large 〈N〉. In later work [44], they have modified
their claim to that of achieving the Heisenberg limit.
In fact, it is easy to see that the above form (95) of the

Heisenberg limit cannot be a strict limit for small 〈N〉.
For any 〈N〉 less than 1/π it must be violated, because
the maximum RMSE possible is π2. For the same reason,
any bound of the form k/〈N〉 cannot hold for all 〈N〉. It
is for this reason that we have used 〈N + 1〉 (or 〈G + 1〉
more generally).
Note from Eq. (94) that the minimum RMSE satisfies

∆0
φΦ̂ >

1

[〈N〉(〈N〉+ 2) + 1]1/2
=

1

〈N + 1〉 . (96)

Hence, the RAMSE, δΦ̂, trivially satisfies our analytical
lower bound (42). However, the minimum value is below
our conjectured best possible bound (50), by a factor of
kC ≈ 1.3761 in the asymptotic limit. This does not con-
tradict our conjectured bound, because the conjectured
bound is for δΦ̂, whereas the above value is for a spe-
cific value of the phase shift. This is an important aspect
of our result. It is possible to obtain smaller errors for
specific values of the phase shift [23–27], but not when
the average is taken over the phase. That is, the nonco-
variance of the scheme in Ref. [12] does allow beating our
conjectured bound, in a small range of phase shifts about
φ = 0, but only at the expense of worse phase resolution
over the remainder of possible phase shift values.

B. Zhang et al.

Zhang et al. [13] propose a superposition state with
arbitrarily high phase sensitivity but finite average pho-
ton number. They consider a two-mode Mach-Zehnder
interferometer (MZI) system, with a probe state of the
form

|ψ〉 :=
∑

n≥1

cn|ψn〉,

|ψn〉 :=
1√
2
[|n, 0〉+ |0, n〉] . (97)

That is, |ψ〉 is a superposition of (mutually orthogonal)
NOON states.
They use the quantum Cramér-Rao bound (QCRB)

to derive the ultimate limit to the uncertainty of phase
measurement as

∆0
φΦ̂ ≥ 1

√

〈N2〉
, (98)

in contrast to Eq. (95). Also N = Na + Nb is the to-
tal photon number operator for the two modes a and b,
rather than just the number operator Na for the mode
passing through the phase shift. They call Eq. (98) the
“proper” Heisenberg limit, and Eq. (95) the “generally

accepted form” of the Heisenberg limit. This result is
similar to the result given in a number of other works
[45, 46]. By choosing cn ∝ n−3/2, they obtain 〈N〉 < ∞
and 〈N2〉 = ∞, which gives ∆0

φΦ̂ ≥ 0. They further claim

in Sec. V of Ref. [13] that this lower bound is achievable
(i.e., that the uncertainty can be zero for finite 〈N〉).
An interesting feature of their result is that the Fisher

information can be infinite for finite 〈N〉. Therefore, it
should not be expected that the QCRB can give a non-
trivial lower bound on the uncertainty for fixed 〈N〉. Fur-
thermore, the Fisher information is infinite for all φ.
However, there are some problems with the result pre-

sented. First, they give no proof that the lower bound
provided by the QCRB is achievable. In many cases
Fisher’s theorem [47] allows the QCRB to be achieved
asymptotically (i.e., with a scaling constant of 1/

√
m for

m probe states). However, Fisher’s theorem is not uni-
versally applicable, because it requires a unique maxi-
mally likely estimate [48]. In contrast, here the measure-
ments will yield multiple maximally likely estimates.
Second, the form of the QCRB given is for unbiased

measurements, but it is unclear how to perform an un-
biased measurement here. For biased measurements this
lower bound does not hold. In fact, the obvious measure-
ment technique is biased, and will only yield zero error
for φ = 0 and π, similar to the example in Sec. VIII C.
This can be achieved with a very simple choice of state.
However, measurements that yield zero error only for

isolated values of φ will not be useful. Further, based
on the results presented here, the average performance
of any two-mode MZI estimate must satisfy

δΦ̂ ≥ kA
〈Na + 1〉 , (99)

as a consequence of Eq. (42).

C. Rivas and Luis

Rivas and Luis [14] consider a linear phase estimation
procedure that employs as the probe state the coherent
superposition

|ψ〉 = µ|0〉+ ν|ξ〉 (100)

of the vacuum |0〉 and a squeezed state |ξ〉. The authors
consider the case with ν ≪ 1, µ ≃ 1 and also assume that
the phase shift is known to be small: φ ≪ 1. The fixed
mean photon number of the probe state is then given by

〈N〉 = ν2n̄ξ , (101)

where n̄ξ is the (average) number of photons in the
squeezed state. Using conventional error propagation ar-
guments, they find for this state

(∆0
φΦ̂)

2 ≥ ν2

4m〈N〉2 , (102)
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where m is the number of repetitions of the measure-
ment. The lower bound here is arbitrarily below the usual
Heisenberg limit by a factor O(ν2).
We note that similar results can be obtained in a sim-

plified scenario by employing the probe state

|ψ〉 = µ|0〉+ ν|n̄ξ〉 , (103)

where |n̄ξ〉 denotes a number state with n̄ξ photons.
The interference fringes obtained from this state are
high frequency, but low visibility. A calculation using
the error propagation formula based on the observable
X = |0〉〈n̄ξ|+ |n̄ξ〉〈0| yields

(∆0
φΦ̂)

2 =
(δX)2

|d〈X〉/dφ|2 ≈ ν2

4〈N〉2 . (104)

Taking ν ∝ 〈N〉1−p gives

∆0
φΦ̂ ∝ 1

〈N〉p , (105)

which, in principle, gives an accuracy that scales arbi-
trarily well with 〈N〉 (for large p).
The problem with this scheme is that the high accuracy

predicted by the error propagation formula is given by
high frequency fringes with low visibility. It would take
a great deal of additional phase information to resolve
the ambiguity in the fringes, as well as many repetitions
of the measurement to obtain a reasonable estimate of
the observable X so that the error propagation formula
would become accurate.
The scheme presented in Ref. [14] is a little more com-

plicated (including an analysis of the efficiency), but sim-
ilar considerations apply. A quadrature measurement is
considered for a fixed phase, which means that the anal-
ysis essentially gives an estimate of the uncertainty for a
given value of the phase. As we have noted above, it is
possible to obtain higher accuracy for a particular value
of the phase shift. For example, it is trivial to design a
measurement that gives zero error for a single value of the
phase shift. The bound (42) must hold when averaging
over the phase shift.

D. Nonlinear interferometry

A qualitatively different type of proposal for beating
the Heisenberg limit is that based on nonlinear interfer-
ometry [15, 16]. The basis of these proposals is that the
generator of the phase shifts is nonlinear in the num-
ber operator. For example, G = N q for some q > 1.
It is then found that the phase uncertainty can scale as
1/〈N〉q. Subtleties involved in achieving such scalings
are discussed in Ref. [27].
These proposals do not contradict the results presented

here; they are just using the terminology differently [7].
In Refs. [15, 16], the Heisenberg limit is given as 1/〈N〉,
where N is the number of particles. In contrast, here we

give the Heisenberg limit in terms of the generator of the
phase shifts. That is, the bound is

δΦ̂ ≥ k

〈G+ 1〉 =
k

〈N q + 1〉 , (106)

which typically scales as k/〈N〉q. Therefore the results
do not violate the Heisenberg limit (106) given here. In
Refs. [15, 16], they call this limit the “quantum limit”,
rather than the Heisenberg limit.

VIII. LIMITATIONS OF THE CRAMÉR-RAO
BOUND

The Cramér-Rao bound for the RMSE ∆0
φΦ̂ is often

used as motivation for the Heisenberg limit, but it has
limitations which mean that it does not provide a rigor-
ous basis for the Heisenberg limit. There are a number
of different variations of the way the Cramér-Rao bound
is used. First, the classical Cramér-Rao bound (CRB),

1/
√

mFC(φ), is in terms of the classical Fisher informa-
tion FC(φ) of a specific probability distribution, so in
quantum mechanics it is calculated for a given state and
measurement.

Second, the quantum Cramér-Rao bound (QCRB) re-
places FC(φ) by the quantum Fisher information, FQ(φ)
(corresponding to the classical Fisher information opti-
mised over all quantum measurements), but is still calcu-
lated for a given state [49]. Third, the Helstrom-Holevo
bound (HHB), as in Eq. (89), is optimised over both
the quantum measurement and the quantum state, with
the optimisation being for a given ∆N . Because these
bounds use successively more optimisation, one has the
ordering CRB ≥ QCRB ≥ HHB. In particular, for any
estimate that is unbiased for phase shift φ, one has

∆0
φΦ̂ ≥ 1

√

mFC(φ)
≥ 1
√

mFQ(φ)
≥ 1

2
√
m∆N

. (107)

The most obvious limitation in using the HHB is that
it is a limit in terms of ∆N , whereas the Heisenberg limit
is in terms of 〈N〉. This means that, for states with large
uncertainty in N as compared to the mean value, the
HHB does not imply the Heisenberg limit. This is taken
advantage of in Refs. [13, 14].

A fixed value of ∆N is just a choice of constraint.
One could also consider optimisation for fixed 〈N〉, as
a method to obtain the Heisenberg limit. However, it is
easily seen that there is no upper bound on the Fisher
information for a given 〈N〉. In the example of Zhang
et al., they find a state with infinite Fisher information
for finite 〈N〉 (see Sec. VII B). Note also that if there
were such a bound, then the CRB would imply a 1/

√
m

scaling for fixed 〈N〉, whereas we have found that such
scaling is impossible (see Sec. VI). The difficulty of using
the CRB was also noted in Ref. [28].
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A. Bias in phase estimation

Another major factor that needs to be taken into ac-
count when considering the CRB and related bounds is
that of bias. Note, for example, that the value of ∆N
in Eq. (107) can be arbitrarily small, whereas the RMSE
cannot be larger than π. It follows that any phase esti-
mate must be biased for sufficiently small ∆N . In fact,
one can show that covariant phase measurements can-
not be unbiased for every phase shift value, in the sense
needed for the QCRB and HHB.
In particular, when considering the RMSE with refer-

ence phase φr, ∆
φr

φ Φ̂, one needs to define the bias func-
tion

bφr
(φ) := 〈Φ̂〉φr

φ − φ, (108)

with

〈Φ̂〉φr

φ :=

∫ φr+π

φr−π

dφ̂ φ̂ p(φ̂|φ). (109)

Then the CRB with bias is [50]

(∆φr

φ Φ̂)2 ≥
[1 + b′φr

(φ)]2

mFC(φ)
+ bφr

(φ)2. (110)

The QCRB and HHB in Eq. (107) similarly generalise
(see also [51]).
If one is to use the form of the CRB without bias,

then one needs bφr
(φ) = 0 and b′φr

(φ) = 0. This is highly
problematic if one is to consider the full range of values of

φ with a fixed reference phase φr. This is because 〈Φ̂〉φr

φ
would need to change discontinuously at φ = φr + π.

But, for finite 〈N〉, it is easily shown that 〈Φ̂〉φr

φ is a

continuous function of φ (see Appendix F). Therefore it
is not possible for the phase to be globally unbiased unless
〈N〉 is infinite. Moreover, there must be a region of size
scaling as 1/〈N〉 where the measurement is biased [this
follows from Eq. (F14)].
On the other hand, one can consider applying the CRB

to ∆φΦ̂ in Eq. (3); that is, to the RMSE modulo (−π, π].
Because ∆φΦ̂ ≤ ∆0

φΦ̂ (see Sec. II A), using the CRB to

bound ∆φΦ̂ also yields a bound on ∆0
φΦ̂. Also, because

∆φΦ̂ ≡ ∆φ
φΦ̂, the conditions for the measurement to be

unbiased become bφ(φ) = 0 and b′φ(φ) = 0. It is impor-

tant to note that b′φ(φ) is not the same as d
dφbφ(φ). In

fact, the restriction d
dφbφ(φ) = 0 implies

0 =
d

dφr
bφr

(φ)

∣

∣

∣

∣

φr=φ

+ b′φ(φ)

= 2πp(φ+ π|φ) + b′φ(φ). (111)

That is, if bφ(φ) = 0, then d
dφbφ(φ) will automatically be

zero, but b′φ(φ) will only be zero if p(φ + π|φ) = 0. In

fact, for bφ(φ) = 0, the condition b′φ(φ) = 0 is equivalent

to p(φ+ π|φ) = 0.

The conditions for the measurement to be unbiased
(when applying the CRB to the RMSE modulo (−π, π])
can therefore be given as bφ(φ) = 0 and p(φ + π|φ) = 0.
The condition bφ(φ) = 0 can be satisfied relatively eas-
ily, because it will be satisfied whenever the probability
distribution for the error in the phase estimate is sym-
metric, so p(φ + θ|φ) = p(φ − θ|φ). However, it is not
possible to satisfy p(φ + π|φ) = 0 for all φ when 〈N〉 is
small. This is also the parameter regime where the HHB
without bias must break down, because it would predict
an impossibly large uncertainty.

Hence, the bias of a given estimate is crucial in any
application of the Cramér-Rao bound to the RMSE. This
is in strong contrast to the Heisenberg-type bounds for
the RAMSE derived in this paper, which are independent
of the bias function.

B. Asymptotic achievability

It is often stated that the CRB (and QCRB and HHB)
is asymptotically achievable in the limit of many probe
states, without any further qualification. However, for
example, it is important to note from Eq. (110) that, in
the asymptotic limit m → ∞, the RMSE does not ap-
proach zero for a biased estimate — it is always bounded
below by |bφr

(φ)|.
Furthermore, Fisher’s theorem that Eq. (110) is itself

asymptotically achievable, as m → ∞, does not hold
in all cases of physical interest [48]. In particular, this
theorem assumes that there is a unique maximally likely
estimate [47]. However, this is not the case for many
states considered in quantum phase estimation, including
the NOON states as per Eq. (97), which are the states
that minimize the QCRB. The reason is of course that
there is nothing to distinguish phase shifts modulo 2π/n,
regardless of the number of samples, unless the phase
shift is in fact already known to this accuracy. That
is, there are n maximally likely estimates, so Fisher’s
theorem does not apply.

In contrast, the above qualifications do not apply to
the Heisenberg-type bounds for the RAMSE derived in
this paper, which are independent of the bias of the es-
timate, and which are asymptotically achievable in the
sense described in Sec. VI.

C. Example

There are obvious phase estimates that are not unbi-
ased, where the RMSE obtained is qualitatively differ-
ent from what would be expected from the Cramér-Rao
bound without correcting for bias. Consider a simple
measurement with a single photon in a MZI, in the state

ρφ =
1

2
(|0〉〈0|+ |1〉〈1|)+ v

2
(eiφ|0〉〈1|+e−iφ|1〉〈0|), (112)
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with visibility v < 1. The photon-counting measurement
at the output of the interferometer gives probabilities of
measurement results

p(±|φ) = (1± v cosφ)/2. (113)

For the + measurement result, the optimal (least-square-

error) estimate is φ̂ = 0, and for the − measurement re-

sult the optimal estimate is φ̂ = π. With these estimates,
the RMSE is given by

∆φΦ̂ =
√

φ2(1 + v cosφ)/2 + (π − |φ|)2(1− v cosφ)/2.
(114)

The absolute value of φ is taken above to take account of
the fact that the difference should be determined modulo
2π. For v = 1, the error is zero at φ = 0 and φ = π.
In contrast, using the inverse square-root of the Fisher

information (as for the CRB without correcting for bias)
would give the lower bound

∆φΦ̂ ≥
√

1− v2 cos2 φ

v| sinφ| . (115)

In the limit v → 1, the uncorrected CRB gives a result
exactly equal to 1. This is already greater than the actual
RMSE for some φ. For imperfect visibility, the contrast
is even stronger. The uncorrected bound diverges at φ =
0 and π, even though the actual measurement error is
a minimum there. This result is illustrated in Fig. 4.
It is therefore clear that the CRB can give completely
misleading results if it is not corrected for bias. On the
other hand, correcting the CRB for bias, via Eq. (110),
yields a bound exactly equal to the RMSE (114).
The QCRB in Eq. (107), which assumes zero bias, gives

1/v, and is also violated near φ = 0 and φ = ±π by
the biased measurements considered here. Similarly, the
HHB in Eq. (107) yields a lower bound of 1 (the same
as the QCRB for v = 1), which is also violated by the
biased measurements considered here. Thus we can see
that caution needs to be employed in using Eq. (107), be-
cause it requires unbiased measurements. Such measure-
ments are impossible in some cases, and even reasonable
measurements can give highly biased estimates, resulting
in a violation of the QCRB and HHB in Eq. (107).
It is also interesting to compare these results to the er-

ror propagation formula, which is often used to estimate
the measurement error. The error propagation formula
leads to the estimate of the error (using measurement
operator X = |0〉〈1|+ |1〉〈0|),

∆φΦ̂ ≈

√

〈X2〉φ − 〈X〉2φ
∣

∣

∣

d
dφ〈X〉φ

∣

∣

∣

=

√

1− v2 cos2 φ

v| sinφ| . (116)

Thus the error propagation formula gives an estimate
of the uncertainty that is identical to the uncorrected
Cramér-Rao bound.
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FIG. 4: MSE for phase measurements with a single photon
using an interferometer with visibility v = 0.99 and photon
counting at the outputs. The actual MSE, as well as the
Cramér-Rao bound with the correction for bias, is given by
the solid curve (black). The uncorrected Cramér-Rao bound,
as well as the estimate given by the error propagation formula,
is given as the dashed curve (dark blue). The horizontal dash-
dotted line (green) is the conjectured bound on the AMSE,
k2

C/〈N + 1〉2. The horizontal solid line (light blue) is the
actual AMSE for these measurements (obtained by averaging
the MSE over φ), and the horizontal dotted line (red) is the
Helstrom-Holevo bound, which in this case is only slightly
smaller than the quantum Cramér-Rao bound of 1/v.

IX. CONCLUSIONS

We have rigorously proven that the square root of the
average mean-square error (RAMSE) of phase measure-
ments is lower bounded by the Heisenberg limit k/〈G+1〉
[Eq. (1)]. The inequality with k = kA ≈ 0.56 holds in the
case where the generator of the phase shifts has nonneg-
ative integer eigenvalues. We obtain a very similar result
in the case where G also has negative integer eigenvalues.
The result is as in Eq. (46), where the absolute value of
G is used, and the scaling constant is again kA.

These results mean that the accuracy of super-
Heisenberg measurement schemes is essentially illusory.
They may work for a small range of phases, but if one
considers the additional resources needed to locate an
unknown phase to within the required range, the overall
measurement will not violate the Heisenberg limit.

A new feature of our form of the Heisenberg limit is
that it holds for all 〈G〉, not just in the asymptotic limit of
large 〈G〉. We achieve this by adding 1 to the denomina-
tor. This modification is necessary, because otherwise the
inequality would indicate that the error must approach
infinity in the limit 〈G〉 → 0. This is impossible because
phase has a bounded range.

As well as the analytical result stated above, we have
very powerful evidence for a stronger bound with kA re-
placed by kC ≈ 1.38. We have provided extensive numer-
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ical evidence that the inequality holds with this larger
scaling constant, both in the case of the RAMSE and for
the square root of the Holevo variance. In the case where
G has negative eigenvalues, the numerical results indicate
that Eq. (46) holds with the scaling constant k′C ≈ 0.79,
which is again larger than kA.

These stronger lower bounds are also supported by
asymptotic expansions of the exact solution for minimal
Holevo variance, both for generators with nonnegative
eigenvalues and generators without this restriction. A
similar result for the RAMSE has also been obtained,
via an asymptotic expansion of a lower bound for this
quantity, for the case of a generator that is not restricted
to nonnegative eigenvalues. The case where the eigen-
values of G are restricted to nonnegative eigenvalues is
a possible area for future study. The asymptotic expan-
sions also enable us to show that these stronger lower
bounds are asymptotically achievable. That is, the min-
imum RAMSE is equal to the lower bounds to leading
order.

We showed how various schemes that have been pro-
posed to break the Heisenberg limit do not break our
bound on the RAMSE. The primary reason for this is
that they can only violate the Heisenberg limit scaling
if the phase shift is already known, not when averaging
over the phase shift. Another factor is that they typically
consider the Cramér-Rao bound, which is problematic for
the Heisenberg limit. It cannot provide a nontrivial lower
bound for fixed mean photon number, as is required for
the Heisenberg limit. In addition, it requires knowledge
of the bias. Our alternative approach circumvents these
limitations.

Our bound also differs from the Cramér-Rao bound
in that it scales as 1/m in the number of copies of the
state. The Cramér-Rao bound scales as 1/

√
m, but we

have found that such scaling is impossible for a fixed
〈N〉. This indicates that it is fundamentally impossible to
obtain the Heisenberg limit from the Cramér-Rao bound.
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Appendix A: Details for the proof of Lemma 2

There are two results used in the proof of Lemma 2,
which are proven here. First, we show that for this opera-
tor the distribution of G(s) is the same as the distribution
ofG for ρ0. The normalisation condition for the covariant
measurement gives

11 =

∫

dθ e−iGθM0e
iGθ, (A1)

so

δn,n′δd,d′ =

∫

dθ 〈n, d|e−iGθM0e
iGθ|n′, d′〉

=

∫

dθ ei(n
′−n)θ〈n, d|M0|n′, d′〉

= 2πδn,n′〈n, d|M0|n′, d′〉. (A2)

This means that 〈n, d|M0|n, d′〉 = δd,d′/2π. Then, eval-

uating the distribution for G(s) gives

〈n|ρ(s)0 |n〉 = 2π
∑

d,d′≤D(n)

〈n, d′|ρ0|n, d〉 〈n, d|M0|n, d′〉

= 2π
∑

d,d′≤D(n)

〈n, d|ρ0|n, d′〉 (2π)−1δd,d′

= Tr(ρ0Pn), (A3)

where Pn :=
∑

d |n, d〉〈n, d| denotes the projection onto
eigenvalue n of G. The expression in the last line is the
distribution of G for ρ0.

Second, we must show that ρ
(s)
0 is positive and has

trace one, and is therefore a valid density operator. Note
one can always write the positive operators ρ0 andM0 as
sums of (not necessarily normalised or orthogonal) kets:

ρ0 =
∑

λ

|λ〉〈λ|, M0 =
∑

µ

|µ〉〈µ|. (A4)

Hence, for any state |ψ〉 =
∑

n ψn|n〉,

〈ψ|ρ(s)0 |ψ〉 = 2π
∑

n,n′∈S,d≤D(n),d′≤D(n′)

ψnψ
∗
n′

× 〈n′, d′|ρ0|n, d〉〈n, d|M0|n′, d′〉
= 2π

∑

λ,µ

|Xλ,µ|2 ≥ 0, (A5)

where

Xλ,µ :=
∑

n∈S,d≤D(n)

ψn〈λ|n, d〉〈n, d|µ〉. (A6)

Hence ρ
(s)
0 ≥ 0, as required. Summing Eq. (A3) over n

yields Tr(ρ
(s)
0 ) = 1, so ρ

(s)
0 is a valid density operator.

Appendix B: Details for Eq. (45)

Here we give the details of the derivation of Eq. (45).
First, variation of Eq. (44) gives the optimising distribu-
tion

pn = e−(α+1)e−β|n−g|, (B1)

which is the double exponential (Laplace) distribution
found in [23]. In Ref. [23] it was assumed that g was an
integer, but here we consider the more general case that
g is an arbitrary real number.



18

We require β > 0 in order for the distribution to be
normalisable. Then normalisation gives the restriction

e−βr + e−β(1−r)

1− e−β
= eα+1, (B2)

where r = ⌈g⌉ − g. We then find that the mean value is

〈|G− g|〉 = (eβr + e−βr)(1− r) + (eβ(1−r) + e−β(1−r))r

(1− e−β)(eβr + eβ(1−r))
,

(B3)
and

H(G) = (α+ 1) + β〈|G− g|〉

= ln

(

e−βr + e−β(1−r)

1− e−β

)

+ β〈|G − g|〉. (B4)

Without loss of generality we take r ∈ [0, 1/2]. The
problem is symmetric about r = 1/2, so these results
also apply to r > 1/2. Then we obtain

2〈|G− g|〉+1− exp

[

βr + ln

(

e−βr + e−β(1−r)

1− e−β

)]

=
(eβ − e2βr)[1 + e2βr + 2r(eβ − 1)]

(eβ − 1)(eβ + e2βr)
≥ 0. (B5)

This then yields

βr + ln

(

e−βr + e−β(1−r)

1− e−β

)

≤ ln(2〈|G− g|〉+ 1). (B6)

It can be shown that

eβ − (1 + β)− e2βr[e−β(1 + 2βr) + β − 1− 2βr]

= (1 + βr − β〈|G− g|〉)(1 − e−β)(eβ + e2βr). (B7)

Next, for β > 0 and r ≥ 0 we have

0 < β(1− 2r)2 + 4r

= 1 + β(1− 2r)− [1 + 2(β − 2)r − 4βr2]

≤ eβ(1−2r) − [1 + 2(β − 2)r − 4βr2]. (B8)

This means that

d

dβ

{

eβ − (1 + β)− e2βr[e−β(1 + 2βr) + β − 1− 2βr]
}

= (1 − e−β)e2βr
{

eβ(1−2r) − [1 + 2(β − 2)r − 4βr2]
}

> 0 (B9)

for β > 0. This implies that

eβ−(1+β)−e2βr [e−β(1+2βr)+β−1−2βr] > 0, (B10)

for β > 0, because the left-hand side is zero for β = 0,
and has positive slope for β > 0. Using Eq. (B7), this
gives

− βr + β〈|G− g|〉 < 1. (B11)

Now adding Eqs. (B6) and (B11) yields

ln

(

e−βr + e−β(1−r)

1− e−β

)

+β〈|G−g|〉 < ln(2〈|G−g|〉+1)+1,

(B12)
and substitution into Eq. (B4) gives Eq. (45) as required.

Appendix C: Inequality proofs

To prove θ2 ≤ f3(θ), consider the function

∆(θ) =
√

(π2/2)(1− cos θ)− (π2/4− 1)(1− cos 2θ)/2

− θ. (C1)

Taking the derivative with respect to θ and solving to find
the turning points of ∆(θ) yields only two in the range
[0, π]. One is at θ = 0, and the other is at θ ≈ 2.23. As
∆(θ) > 0 for θ ≈ 2.23, and ∆(θ) = 0 for θ = 0 or π, we
have ∆(θ) ≥ 0 for θ ∈ [0, π]. This proves Eq. (79) for
θ ∈ [0, π], and the result for θ ∈ [−π, 0] follows because
Eq. (79) is symmetric.
Next, to prove a lower bound on δΦ, we use Eq. (20),

which was

〈cosΘ〉 ≥ cos
√

〈Θ2〉. (C2)

Using this, we have

δΦ̂ =
√

〈Θ2〉 ≥ arccos〈cosΘ〉 = arccos[1− (δ1Φ̂)
2/2].
(C3)

Now note that, if we have a state that minimises δΦ̂, then
it can not give a value of arccos(1 − (δ1Φ̂)

2/2) smaller

than that for the minimum value of δ1Φ̂. This means
that we can lower bound δΦ̂ by the minimum value of
arccos[1 − (δ1Φ̂)

2/2]. This is a tighter lower bound on

δΦ̂ than δ1Φ̂, because arccos(1 − x2/2) = x + x3/24 +

O(x5). Unfortunately arccos[1 − (δ1Φ̂)
2/2] can still be

below kC/〈N + 1〉.

Appendix D: Asymptotic behaviour for Holevo
variance

Here we derive the asymptotic results for the variance
given in Sec. V. Using Eq. (12) of Ref. [52] (with q =
p+ 1), one has

∞
∑

k=1

Jx+k(z)Jx+k+1(z) =
z

2

[

J2
x+1(z)− Jx(z)Jx+2(z)

]

=
z

2
[Jx+1(z)]

2, (D1)

where the second equality follows from Eq. (73).
Second, from Eq. (32) of Ref. [52], one has

∞
∑

k=1

[Jx+k(z)]
2 =

z

2

[

Jx+1(z)
∂Jx(z)

∂x
− Jx(z)

∂Jx+1(z)

∂x

]

=
z

2
Jx+1(z)

∂Jx(z)

∂x
, (D2)

where the second equality similarly follows via Eq. (73).
We therefore have

〈eiΘ〉 = Jx+1(z)

[∂Jx(z)/∂x]
. (D3)
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Using Eq. (77) then yields

〈N + 1〉 = zJx+1(z)

[∂Jx(z)/∂x]
− x. (D4)

There are a number of asymptotic results that we can
use. From [53, 54]

z = x+ γx1/3 +
3γ2

10x1/3
+

5− γ3

350x
− 479γ4 + 20γ

63000x5/3

+
20231γ5 − 27550γ2

8085000x7/3
+O(x−3), (D5)

where γ = |zA|/21/3, and zA is the first zero of the Airy
function. We can invert this relation to give

x = z − γz1/3 +
γ2

30z1/3
− 5− γ3

350z
+

281γ4 − 5220γ

567000z5/3

+
73769γ5 − 3312450γ2

654885000z7/3
+O(z−3). (D6)

Now from Eq. (9.3.23) of [55] we have, for z = x+ yx1/3,

Jx(x+ yx1/3) ∼ 21/3

x1/3
Ai(−21/3y)

(

1 +

∞
∑

k=1

fk(y)

x2k/3

)

+
22/3

x
Ai′(−21/3y)

∞
∑

k=0

gk(y)

x2k/3
. (D7)

The functions are given by

f1(y) = −1

5
y, (D8)

f2(y) = − 9

100
y5 +

3

35
y2, (D9)

f3(y) =
957

7000
y6 − 173

3150
y3 − 1

225
, (D10)

f4(y) =
27

20000
y10 − 23573

147000
y7 +

5903

138600
y4 +

947

346500
y,

(D11)

g0(y) =
3

10
y2, (D12)

g1(y) = −17

70
y3 +

1

70
, (D13)

g2(y) = − 9

1000
y7 +

611

3150
y4 − 37

3150
y, (D14)

g3(y) =
549

28000
y8 − 110767

693000
y5 +

79

12375
y2. (D15)

Using Eq. (D5) we have

y = (z − x)/x1/3

= γ +
3γ2

10x2/3
+

5− γ3

350x4/3
− 479γ4 + 20γ

63000x2

+
20231γ5 − 27550γ2

8085000x8/3
+O(x−3). (D16)

We can then substitute Eq. (D6), which gives

y − γ =
3γ2

10z2/3
+

5 + 69γ3

350z4/3
+

9361γ4 + 1180γ

63000z2

+
8691349γ5 + 1484550γ2

72765000z8/3
+O(z−3). (D17)

Now to take the derivative with respect to the order,
we can use

∂

∂x
Jx(z) =

d

dx
Jx(x+ yx1/3) +

dy

dx

d

dy
Jx(x+ yx1/3)

=
d

dx
Jx(x+ yx1/3)

−
(

z

3x4/3
+

2

3x1/3

)

d

dy
Jx(x+ yx1/3).

(D18)

In the resulting expression it is possible to expand in a
series for y about γ, then expand in a series about z.
It is possible to determine a series in z for

zJx+1(z)

[∂Jx(z)/∂x]
− x. (D19)

We can then invert this series, finding a series in 〈N +1〉
for z. Similarly, it is possible to find a series in z for

Jx+1(z)

[∂Jx(z)/∂x]
. (D20)

Then we can express
(

Jx+1(z)

[∂Jx(z)/∂x]

)−2

− 1, (D21)

as a series in z. Substituting the series for z in 〈N + 1〉,
the overall result is as in Eq. (78), with

b2 =
4|zA|3
27

= k2C ≈ 1.8936, (D22)

b4 =
16|zA|6
1215

≈ 2.1514, (D23)

b6 =
16|zA|6(27 + 40|zA|3)

688905
≈ 2.0424, (D24)

b8 =
256|zA|9(3 + |zA|3)

4428675
≈ 1.9050, (D25)

b10 =
64|zA|9(2673 + 9252|zA|3 + 1120|zA|6)

21483502425
≈ 1.8906.

(D26)

Next, to place an upper bound on the RAMSE for this
state, we use Eq. (79). This equation gives

〈Θ2〉 ≤ (π2/2)(1− 〈cosΘ〉)− (π2/4− 1)(1− 〈cos 2Θ〉)/2.
(D27)

To find the expectation value 〈ei2Θ〉, we use

〈ei2Θ〉 = A2
∞
∑

n=0

Jx+n+1(z)Jx+n+3(z)

=

∑∞
k=1 Jx+k(z)Jx+k+2(z)
∑∞

k=1[Jx+k(z)]2
. (D28)
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Again using Eq. (12) of Ref. [52], but now with q = p+2,
we have

∞
∑

k=1

Jx+k(z)Jx+k+2(z)

=
z

4
[Jx+1(z)Jx+2(z)− Jx(z)Jx+3(z)]

=
z

4
Jx+1(z)Jx+2(z). (D29)

That then gives

〈ei2Θ〉 = Jx+2(z)

2[∂Jx(z)/∂x]
. (D30)

Using this expression, and expanding the Bessel func-
tion solution in a series as above, we obtain

〈Θ2〉 ≤ (π2/2)(1− 〈cosΘ〉)− (π2/4− 1)(1− 〈cos 2Θ〉)/2

=
4|zA|3

27〈N + 1〉2 +
(π2 − 4)|zA|3
54〈N + 1〉3 +O

(

1

〈N + 1〉4
)

.

(D31)

This results in the inequality given in Eq. (80).
Expanding in a series also gives

(arccos〈cosΘ〉)2 =
4|zA|3

27〈N + 1〉2 − 16|zA|6
10935〈N + 1〉4

+O

(

1

〈N + 1〉6
)

. (D32)

Using Eq. (C3), we therefore have the upper and lower

bounds on (δΦ̂)2,

k2C
〈N + 1〉2 −O

(

1

〈N + 1〉4
)

≤ (δΦ̂)2

≤ k2C
〈N + 1〉2 +O

(

1

〈N + 1〉3
)

. (D33)

Appendix E: Asymptotic behaviour for variance
with fixed 〈|J |〉

The normalization constraint yields, using Eq. (32) of
Ref. [52],

A−2 = [Jx(z)]
2 + 2

∞
∑

j=1

[Jx+j(z)]
2

= [Jx(z)]
2 + z

[

Jx+1(z)
∂Jx(z)

∂x
− Jx(z)

∂Jx+1(z)

∂x

]

.

(E1)

We also have

〈|J |〉 = 2A2
∞
∑

j=0

j [Jx+j(z)]
2,

〈eiΘ〉 = A2



2Jx(z)Jx+1(z) + 2

∞
∑

j=1

Jx+j(z)Jx+j+1(z)



 .

(E2)

Using Eq. (12) of [52] we have

〈eiΘ〉 = A2
[

2Jx(z)Jx+1(z) + zJ2
x+1(z)

−zJx(z)Jx+2(z)] . (E3)

In this case we have

〈eiΘ〉 = (α+ β〈|J |〉) = (x+ 〈|J |〉)/z, (E4)

so

〈|J |〉 = z〈eiΘ〉 − x. (E5)

The first zero of the derivative of the Bessel function
is given by [53, 54]

z = x+ γ′x1/3 +

(

3γ′2

10
− 1

10γ′

)

1

x1/3

−
(

γ′3

350
+

1

25
+

1

200γ′3

)

1

x

− 958γ′9 − 2036γ′6 − 84γ′3 + 63

126000γ′5x5/3
+O(x−7/3). (E6)

We have corrected an error in Ref. [53] where “840” was
given instead of “84”. Here γ′ = |z′A|/21/3, where z′A is
the first zero of the derivative of the Airy function. In-
verting this series, and performing series expansions sim-
ilar to that for the first case, gives the series in Eq. (86)
with

d2 =
16|z′A|3

27
= k′C

2 ≈ 0.6266, (E7)

d3 =
32|z′A|3

27
≈ 1.2533, (E8)

d4 =
16|z′A|3(111− 4|z′A|3)

1215
≈ 1.4868, (E9)

d5 =
64|z′A|3(21− 4|z′A|3)

1215
≈ 0.9341, (E10)

d6 =
16|z′A|3(−63− 40488|z′A|3 + 160|z′A|6)

1148175
≈ −0.6292.

(E11)

To determine an upper bound, we need to determine

〈ei2Θ〉 = A2
[

J2
x+1(z) + 2Jx(z)Jx+2(z)

+2
∞
∑

j=1

Jx+j(z)Jx+j+2(z)





= A2
{

J2
x+1(z) + 2Jx(z)Jx+2(z)

+
z

2
[Jx+1(z)Jx+2(z)− Jx(z)Jx+3(z)]

}

. (E12)

Expanding in a series then gives

〈Θ2〉 ≤ 16|z′A|3
27〈2|J |+ 1〉2 +

32|z′A|3
27〈2|J |+ 1〉3

+O

(

1

〈2|J |+ 1〉4
)

. (E13)
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Therefore, the MSE is upper and lower bounded as

k′C
2

〈2|J |+ 1〉2 +O

(

1

〈2|J |+ 1〉3
)

≤ (δΦ̂)2

≤ k′C
2

〈2|J |+ 1〉2 +O

(

1

〈2|J |+ 1〉3
)

. (E14)

Appendix F: Continuity of the expected phase
estimate

Here we show that 〈Φ̂〉φr

φ is a continuous function of φ.
Defining

Xφr
:=

∫ φr+π

φr−π

dφ̂ φ̂Mφ̂, (F1)

we have

〈Φ̂〉φr

φ = Tr(Xφr
ρφ). (F2)

The expectation value of the phase estimate at φ+ ǫ is

〈Φ̂〉φr

φ+ǫ = Tr(Xφr
e−iGǫρφe

iGǫ). (F3)

The difference is

|〈Φ̂〉φr

φ+ǫ − 〈Φ̂〉φr

φ | = |Tr[Xφr
(e−iGǫρφe

iGǫ − ρφ)]|. (F4)

Take |ξj〉 to be the eigenbasis of Xφr
. Then

|〈ξj |Xφr
|ξj〉| ≤

∫ φr+π

φr−π

dφ̂ |φ̂| 〈ξj |Mφ̂|ξj〉

≤ 2π

∫ φr+π

φr−π

dφ̂ 〈ξj |Mφ̂|ξj〉

= 2π〈ξj |11|ξj〉 = 2π. (F5)

Using this, we find

|Tr[Xφr
(e−iGǫρφe

iGǫ − ρφ)]|

=

∣

∣

∣

∣

∣

∣

∑

j

〈ξj |Xφr
|ξj〉〈ξj |(e−iGǫρφe

iGǫ − ρφ)|ξj〉

∣

∣

∣

∣

∣

∣

≤ 2π
∑

j

∣

∣〈ξj |(e−iGǫρφe
iGǫ − ρφ)|ξj〉

∣

∣ . (F6)

Take |ζj〉 to be the eigenbasis of e−iGǫρφe
iGǫ − ρφ. Then

∑

j

∣

∣〈ξj |(e−iGǫρφe
iGǫ − ρφ)|ξj〉

∣

∣

=
∑

j

∣

∣

∣

∣

∣

∑

k

|〈ξj |ζk〉|2〈ζk|(e−iGǫρφe
iGǫ − ρφ)|ζk〉

∣

∣

∣

∣

∣

≤
∑

k

∣

∣〈ζk|(e−iGǫρφe
iGǫ − ρφ)|ζk〉

∣

∣

= ‖e−iGǫρφe
iGǫ − ρφ‖1. (F7)

Hence

|Tr[Xφr
(e−iGǫρeiGǫ − ρφ)]| ≤ 2π‖e−iGǫρφe

iGǫ − ρφ‖1 .
(F8)

Take the state to be given by

ρφ =
∑

j

pj |ψj〉〈ψj |. (F9)

For |ψj〉,

〈ψj |e−iGǫ|ψj〉 =
∑

k

|ψjk|2e−ikǫ

= 1−
∑

k

|ψjk|2(1− e−ikǫ). (F10)

Evaluating the distance from 1 gives

∣

∣

∣

∣

∣

∑

k

|ψjk|2(1− eikǫ)

∣

∣

∣

∣

∣

≤
∑

k

|ψjk|2|1− e−ikǫ|

≤
∑

k

|ψjk|2|kǫ|

= 〈ψj ||G||ψj〉|ǫ|, (F11)

so

D(|ψj〉, e−iGǫ|ψj〉) = 2
√

1− |〈ψj |e−iGǫ|ψj〉|2

≤ 2
√

1− |1− 〈ψj ||G||ψj〉|ǫ||2

≤ 2
√

2〈ψj ||G||ψj〉|ǫ|. (F12)

By the convexity of trace distance

‖e−iGǫρφe
iGǫ − ρφ‖1 ≤

∑

j

pjD(|ψj〉, e−iGǫ|ψj〉)

≤
∑

i

pi2
√

2〈ψj ||G||ψj〉|ǫ|

≤ 2
√

2〈|G|〉|ǫ|, (F13)

where 〈|G|〉 = Tr(|G|ρ). Hence

|〈Φ̂〉φr

φ+ǫ − 〈Φ̂〉φr

φ | ≤ 4π
√

2〈|G|〉|ǫ|. (F14)

Thus the expectation value of the phase estimate must
be a continuous function of φ unless 〈|G|〉 is infinite.
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