
Trap escape for local search by
backtracking and conflict reverse

Huu-Phuoc DUONG b , Thach-Thao DUONG c , Duc Nghia PHAM c ,
Abdul SATTAR c , Anh Duc DUONG a

a University of Information Technology, Ho Chi Minh city, Vietnam
b Faculty of Information Technology, University of Science, Ho Chi Minh city, Vietnam

c Institute for Integrated and Intelligent Systems, Griffith University & NICTA Australia

Abstract. This paper presents an efficient trap escape strategy in stochastic local
search for Satisfiability. The proposed method aims to enhance local search by pro-
viding an alternative local minima escaping strategy. Our variable selection scheme
provides a novel local minima escaping mechanism to explore new solution areas.
Conflict variables are hypothesized as variables recently selected near local min-
ima. Hence, a list of backtracked conflict variables is retrieved from local min-
ima. The new strategy selects variables in the backtracked variable list based on
the clause-weight scoring function and stagnation weights and variable weights as
tiebreak criteria. This method is an alternative to the conventional method of se-
lecting variables in a randomized unsatisfied clause. The proposed tiebreak method
favors high stagnation weights and low variable weights during trap escape phases.
The new strategies are examined on verification benchmark and SAT Competi-
tion 2011 and 2012 application and crafted instances. Our experiments show that
proposed strategy has comparable performance with state-of-the-art local search
solvers for SAT.

Keywords. SAT, local search, trap escape, stagnation

Introduction

Stochastic Local Search (SLS) is a competitive and an efficient approach to find the
optimal or approximately optimal solutions for very large and complex combinatorial
problems. Some examples of practical combinatorial problems which have been solved
efficiently by SLS under Satisfiability (SAT) framework are hardware verification and
planning problems. SLS for SAT has been improved from the prior work of the GSAT
algorithm [1].

Despite this significant progress since GSAT, SLS solvers still have limitations
compared with systematic solvers in practical and structured SAT problems as evident
through the series of SAT competitions. 1. Especially for local search algorithms, one of
the limitations is local minima stagnation. Because structured and practical SAT prob-
lems have tighter constraints than randomized SAT problems, SLS algorithms are easily
trapped in local minima and have trouble escaping from stagnation. This problem does

1http://www.satcompetition.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Griffith Research Online

https://core.ac.uk/display/143888039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


not exist for systematic search algorithms because of the nature of complete searching
strategies.

Local search algorithms for Satisfiability (SAT) usually have two phases: greedy
phases and stagnation phases. Greedy phases intend to intensively improve solution qual-
ity or the chances of finding a solution in the near future. Greedy phases are evaluated by
an objective function and break ties by variables’ properties. Stagnation phases happen
when the local search can not perform any greedy move to improve the candidate solu-
tion. In general, the enhancements in local search focuses on improving intensification
during greedy phases and diversify the search during stagnation phases. Most improve-
ments in local search solvers focus on greedy phases and stagnation phases to balance
between intensification and diversification.

Most popular techniques to escape local minima are derived from WalkSAT strategy.
The WalkSAT strategy is based on the idea of selecting an unsatisfied clause randomly. A
variable in that clause is selected to turn the clause into a satisfied one. The improvement
of the Novelty+ [2] strategy over WalkSAT is the noise-based switching between the best
and second best variables in the selected clause according to their score function. That
efficient mechanism to escape local minima is used by many solvers such as gNovelty+

[3], PAWS [4], CCASat [5]. Furthermore, Hybrid [6,7], TNM [8] and CCASat [5] pro-
posed a noised-based switching mechanism between two escaping strategies. Hybrid and
TNM regulate the switching by the ratio between the average and the maximum variable
weights. Sparrow [9] proposed a new probability-based scoring function in the exponen-
tial formula. Thus, small difference of variables’ properties causes large changes in for-
mula’s value. Recently, stagnation weights were introduced as a new diversification cri-
terion to avoid local minima in gNovelty+PCL [10]. Stagnation weights are considered
as an extension of variable weights because they record the frequencies of variables in-
volved in stagnation paths [11]. Stagnation weights are extended to duplication weights
in order to focus on avoiding selecting duplicative variables [12].

In addition, there are some effective techniques during greedy phases to improve
diversification of local search. The improvements of diversification during greedy phases
are considered as an indirect method to keep the search away from local minima because
it assists the search to explore the search space widely. There are some diversification
boosting methods such as variable weighting [13] or clause weighting [4,3,14]. As re-
ported in [15], the clause weighting scheme is able to escape the local minima by focus-
ing on satisfying long-time unsatisfied clauses. Variable weights are reported to improve
the diversification of local search [13]. Hybrid used the variable weight as a tiebreak cri-
terion in selecting variables. TNM used variable weights to control the noise switching
mechanism to even the variable selection distribution.

Although there have been improvements in local minima escape, most of these meth-
ods select an unsatisfied false clause first and then perform their strategies. As WalkSAT
is the strategy of selecting clauses based on randomization, this paper focuses on investi-
gating a stagnation escaping method that is not based on randomization and inherits the
information from previous searching trails. The goal of our stagnation escaping mecha-
nism is to help the search slightly redirect away from stagnation and maintain exploration
of the current search path. The strategy performs a backtracking retrieval of variables
during stagnation phases and selects the best variable within the backtracked variable
list. Additionally, to improve diversification, we apply variable weights and stagnation
weights during both greedy phases and stagnation phases.



The remaining of this paper is divided into three parts. Section 1 presents a review
about background knowledge. Section 2 contains four sub-sections describing our new
heuristics. Section 2.1 presents the backtracking strategy. Section 2.2 presents the vari-
able properties as tiebreak criteria. Section 2.3 and 2.4 explain the mechanism of the
heuristics under pseudo-code algorithms. Section 3 reports the experiments with veri-
fication benchmarks and SAT 2011 and 2012 Competition instances in the Application
and the Crafted categories. Finally, our conclusion is presented in Section 4.

1. Preliminaries

1.1. gNovelty+PCL : Trap escape strategy by pseudo-conflict learning

gNovelty+PCL is an integrated algorithm of trap avoidance heuristics by pseudo-conflict
learning and gNovelty+. The purpose of stagnation prevention heuristics is to assist lo-
cal search algorithms to intelligently avoid high potential trap areas by exploiting expe-
rience information from previous stagnation. Conflicts between the assignment of vari-
ables and constraints between clauses often drive the search trajectory into stagnation
areas. Simple conflicts can be resolved by a small change or a stagnation jump; but hard
conflicts are more difficult and might lead to another local minima. Conflict reasons are
hypothesized to occur strongly in stagnation paths which are sequences of flipped vari-
ables backtracked from the local minima [10]. gNovelty+PCL focuses on learned infor-
mation about variables in stagnation paths. The proposed learning information is stag-
nation weights which are occurrence frequencies of variables in stagnation areas. High
stagnation weights indicate potential likelihood of leading to trap areas if the variable
is flipped. For that reason, variables having low stagnation weights are preferred to be
selected.

The algorithm gNovelty+PCL is illustrated in Algorithm 1. The trap prevention
strategy of gNovelty+PCL has two behaviors: learning behavior and prevention behavior.
The learning behavior is invoked when the search encounters local minima. Prevention
behavior is performed at the phases of selecting the variable to be flipped. In the initial-
ization steps , the stagnation weights of all variables are set to zero (line 3). The variable
history H is initialized to be empty . Local minima are considered at the steps when there
is no promising variable (i.e. variables that are able to improve the score if being flipped).
In that circumstance, the pseudo-conflict learning strategy PCL is performed as in line
13. The procedure PCL will be explained in section 1.2 in Algorithm 2. The prevention
strategy is performed in the selecting variable phases, which is choosing among promis-
ing variables during greedy phases and the Novelty+ escaping strategy during stagna-
tion phases. Afterward, the algorithm selects the flipped variable according to Novelty+

scheme. Specifically, the algorithm selects the best and the second best variables within
an unsatisfied clause in terms of the scoring function. If the two variables have the same
scoring function (i.e. a tie happens), the algorithm prefers the variable with the lowest
stagnation weight. Finally, the selected variable var is pushed into the history stack H as
in line 16.



Algorithm 1: gNovelty+PCL(k,sp)
Input : A formula Θ,smooth probability sp, tenure k, random walk probability wp = 0.01
Output: Solution α (if found) or TIMEOUT

1 randomly generate a candidate solution α;
2 set up flipping history stack H =�;
3 initialized stagnation weight of all variables to 0;
4 while not timetout do
5 if α satisfied the formula Θ then return α ;
6 if in the random walk probability wp then
7 randomly pick up a variable in a unsatisfied clause;
8 else
9 if there exist promising variables then

10 select most promising variable, breaking ties by the least stagnation weight;
11 else Stagnation happens: perform pseudo-conflict learning
12 update (and smooth in probability sp) clause weight;
13 PCL(k,H);
14 var = select variable according to Novelty+ but break ties by stagnation weights;
15 update candidate solution α with the flipped variable var;
16 H← push stack(H,var);
17 return TIMEOUT;

1.2. PCL heuristics at stagnation phases

The pseudo-conflict learning mechanism is described under pseudo-code in Algorithm 2.
This learning mechanism is invoked during stagnation phases (i.e. when local minima is
encountered). Based on the assumption that the reasons for stagnation derived from local
areas around stagnation points, a stagnation path is defined as a sequence of flipped vari-
ables backtracked from the local minima. The variables in stagnation paths are hypothe-
sized as pseudo-conflicts. The input of the function is the length of tenure k to restrict the
stagnation paths and the history of flipped variable H to retrieve pseudo-conflicts. When
the local search reaches a local minimum, a list of recent flipped variable are extracted
from the history of flipping H. That list of flipped variable is stored in stagnation path P.
After identifying affected stagnation paths, the stagnation weights of the pseudo-conflict
variables are increased by one as line 5. Stagnation weights are assumed as reasons for
stagnation during the search progress. The list of pseudo-conflict variables is returned
for further processing.

Algorithm 2: Pseudo-conflict learning strategy PCL(k,H)
Input : tenure k, flipped variable history stack H

1 stagnation path P = � ;
2 for i← 1 to k do
3 v← pop stack(H) ;
4 P← push stack(P,v) ;
5 for all variable v in P do stagnation weight[v]++;
6 return P;

2. Trap escaping strategy by backtracking retrieval to reverse pseudo conflicts

2.1. Backtracking retrieval

Local search is a search strategy based on randomization and perturbation. Hence, local
search makes decisions from local knowledge during exploration of the search space. It



is hard for a local search to obtain an over-all view of the search space like a system-
atic search. Therefore, escaping local minima is always a challenge for local search. The
causes of stagnation in searching are probably conflicts between previous variable flip-
ping, the problem’s constraints and the current assignment. Because the nature of local
search, identifying the real reason for conflicts is difficult.

We hypothesize that when the local search gets trapped in local minima, the previ-
ous flipping actions influence the current stagnation. The closer of flipping actions to the
stagnation point, the more influence on the trap circumstance. Therefore, we retrieve a
stagnation path as a list of consecutive flipped variables backtracked from the stagnation
point. Variables in stagnation paths are hypothesized as causes of stagnation. Flipping
these variables probably constructs conflicts between current assignment and the prob-
lem’s constraints. By re-flipping the conflicted variables, the conflicts are probably re-
solved and enable the search to jump out of the local minima and converge into solu-
tion areas. This strategy is contrast with the Tabu search mechanism in stagnation phases
since Tabu forbids flipping the recent variables within a tenure. Whereas our proposed
strategy selects variables within a recent tenure of stagnation points.

2.2. Variable-weighting schemes for tiebreaks

In local search, the objective functions have an important role in selecting variables. Be-
side the objective functions, it is crucial to decide the tiebreak criteria to improve the
efficiency of local search. The most common tiebreak criteria are variable ages. Variable
weights were proposed by [13] and proved by experiments to provide better diversifi-
cation [6,7]. Variable weights are the frequencies of associated variable’s being flipped.
Stagnation weights are recently proposed as variable properties describing frequencies of
variables involved in stagnation phases [10,11]. It is reported that the stagnation weights
assist the local search to escape the local minima efficiently on structured instances. In
this study, we decided to use both variable weights and stagnation weights as tiebreak
criteria.

According to the fact that high stagnation weights are assumed to have high frequen-
cies of involving in stagnation occurrences, we prefer high stagnation weights during
stagnation phases. As a result, they are considered as part of the conflicts leading to stag-
nation. By reversing the according flipping, the conflicts can be resolved and the local
search can jump out of stagnation. During stagnation phases, the algorithm prefers high
stagnation weights first and then low variable weights. In contrast with stagnation phases,
low stagnation weights are preferred in greedy phases in order to prevent the local search
from falling into other traps. Low stagnation weights indicate that the variables are less
likely to lead to stagnation. In addition, low variable weights are selected to improve the
capability of diversification and maintain the even distribution of being flipped between
variables.

2.3. NoveltyE: A trap escape strategy by backtracked variable retrieval

Our new trap escape strategy NoveltyE is described in Algorithm 3. NoveltyE is based
on Novelty+. The NoveltyE procedure has three inputs: stagnation path P, probability-
based noise γ , and conventional Novelty noise p. The probability noise parameter named
γ controls the switching between selecting variables in stagnation paths or in unsatisfied



clauses. Within probability of γ , the algorithm selects areas for variable retrieval accord-
ing to the Novelty+ scheme. More specifically, after an unsatisfied clause c is selected,
the best and second best variables in clause c are extracted in terms of scoring function
and ties are broken by high stagnation weights and then low variable weights. Otherwise,
the best and second best variable are retrieved in the stagnation path P in terms of the
score and breaks ties by high stagnation weights and then low variable weights (line 5).
The tie breaking orders are high stagnation weights first and then low variable weights
in order to escape local minima first and then maintain the even variable selection distri-
bution (lines 4 and 7). Similar to Novelty+ scheme, within the noise p , the algorithm se-
lects the best variable otherwise selects the second best variable (line 14). The algorithm
returns the selected variable v.

Algorithm 3: NoveltyE(P, γ , p)
Input : stagnation path P, probability-based noise γ , Novelty noise p
Output: Solution α (if found) or TIMEOUT

1 if within probability of γ then
// Novelty+

2 c = select a randomly unsatisfied clause;
3 for all variables in clause c do
4 Select the best variable and the second best variable in terms of the score and break ties by high stagnation weights and

then low variable weights;
5 else

// retrieve variables in the backtracked stagnation path
6 for all variables in stagnation path P do
7 Select the best variable and the second best variable in terms of the score and break ties by high stagnation weights and

then low variable weights;
8 if within probability of p then v = the best variable;
9 else v = the second best variable;

10 return v;

2.4. Our Algorithm: NovEsc

To evaluate the efficiency of the proposed escaping strategy, we implement the new es-
cape mechanism in a local search algorithm called NovEsc, which is described in Al-
gorithm 4. NovEsc is based on the clause-weighting scheme of the gNovelty+PCL plat-
form. NovEsc has three parameters: tenure k defining the length of backtracked stagna-
tion paths, probability noise γ defining the degree of switching between escaping strate-
gies and probability noise sp for the smoothing of clause weights.

During greedy phases, if there are promising variables to improve the objective func-
tion, the best variable is selected according to their score on the objective function. The
algorithm breaks ties by low stagnation weights (line 10). If two variables have the same
score then the algorithm breaks ties by stagnation weights preferring low values. This is
similar to greedy phases of gNovelty+PCL when tiebreak is for preventing stagnation.

During stagnation phases, the algorithm updates and smooths clause weights. Af-
terward, stagnation paths are retrieved via the PCL procedure . The difference be-
tween NovEsc and gNovelty+PCL are the trap escape procedure and tiebreak criteria.
gNovelty+PCL, the stagnation phases invoke Novelty+ scheme to escape local minima.
Our algorithm uses a noise-based method to switch between the variable retrieval strat-
egy and the Novelty+ strategy. In line 14, the algorithm calls the procedure NoveltyE.



Algorithm 4: NovEsc(γ ,k,sp)
Input : A formula Θ, random walk probability wp = 0.01, smooth probability sp, tenure k, probability-based noise γ

Output: Solution α (if found) or TIMEOUT

1 randomly generate a candidate solution α;
2 set up flipping history stack H =�;
3 initialized stagnation weight of all variables to 0;
4 while not time out do
5 if α satisfied the formula Θ then return α ;
6 if in the random walk probability wp then
7 randomly pick up a variable in a false clause;
8 else
9 if there exists promising variables then

10 select most promising variable, breaking tie by low stagnation weights;
11 else
12 update (and smooth in probability sp) clause weights;
13 stagnation path P = PCL(k,H);
14 var = NoveltyE(P,γ ,sp);
15 update candidate solution α with the flipped variable var;
16 H← push stack(H,var);
17 return TIMEOUT;

3. Experiments

3.1. Experiment set up

The experiments were conducted on three verification problems (cbmc, swv, and sss-
sat-1.0), application and crafted instances of SAT Competition 2011 and 2012. The
first two verification problem sets were software verification problems: (i) 39 cbmc in-
stances generated by a bounded model checking tool and (ii) 75 swv instances gener-
ated by the CALYSTO checker 2. The third one was Velev’s sss-sat-1.0 which contains
100 instances encoding verification of super-scalar microprocessors 3. Application and
crafted instances are available to download from the SAT 2011 and 2012 competitions
(www.satcompetition.org). In our experiments, the time limit is set up at 600 seconds.
Numbers of runs are 50 times for verification benchmarks and 10 times for SAT Compe-
tition instances. Experiments were conducted on Cluster Intel(R) Xeon(R) CPU X5650
2.67GHz. The experiments are comparisons of our proposed strategy with seven SLS
solvers:

• gNovelty+PCL : We use gNovelty+PCL as our platform. It is the original solver
employing stagnation weights to prevent local minima.

• VW2 : is the original solver using variable weights. It gains the second place on
SAT competition 2005.

• CCASat, Sparrow2011 [16] , TNM, sattime2011, EagleUP : are amongst the top-
3 best solvers of the previous SAT competition.

3.2. Result Analysis

Table 1 summarizes the results on two verification benchmarks: cbmc and sss-sat-1.0.
The results are reported in four columns of data. The success rate and average median
CPU times are reported on the first and second columns (titles of %sr and #secs). The

2The test instances of cbmc and swc are available at http://people.cs.ubc.ca/davet/papers/sat10-dave-
instances.zip

3Available at http://www.miroslav-velev.com/sat benchmarks.html



Table 1. Success rate and average of median time in cbmc and sss-sat-1.0 dataset

Instances cbmc (39) sss-sat-1.0 (100)

%sr #secs #flips #lm %sr #secs #flips #lm

TNM 92% 76.599 79.955 58.779 18% 517.709 274.499 153.547

CCASat 54% 276.196 - - 68% 193.682 - -

Sparrow2011 51% 384.359 - - 7% 572.993 - -

sattime 54% 322.528 367.813 290.949 20% 497.736 337.899 210.100

VW2 31% 439.128 - - 24% 481.357 - -

gNovelty+PCL 100% 1.453 1.287 0.152 100% 2.721 2.140 0.447

NovEsc 100% 1.144 0.868 0.128 100% 1.732 1.305 0.383

number of flips and the number of encountered local minima are reported in thousands
on the third and forth columns (titles of #flips and #lm). The success rate of the whole
problem set is the ratio of solved instances over the number of instances in the problem
set. An instance is counted as solved if its success rate is larger than 50%. In table 1, the
flips and local minima of VW2, Sparrow2011 and CCASat are not written because the
procedures of counting flip on VW2 and Sparrow2011 are overloaded and the executive
binary files of CCASat does not report that information. As seen on the table, NovEsc and
gNovelty+PCL outperformed other common SAT solvers in terms of success rate and
other reported criteria. It is clear that NovEsc improved on gNovelty+PCL. In terms of
numbers of local minima, it can be seen from the table that NovEsc and gNovelty+PCL
encountered less local minima than other solvers, and NovEsc had less local minima than
gNovelty+PCL because of the benefit of the new trap escape strategies.

Figure 1 illustrates the comparison of common SLS solvers for swv and SAT 2011
and 2012 application and crafted instances. The comparison is presented in the log-log
scale cactus plot showing the distribution of the numbers of solved runs when the time
limit increases. A run unit on a specific instance of a solver is considered as solved run
if it produces a solution within the given time limit. The X-axis corresponds to the time
limit in seconds to solve the instances and the Y-axis presents numbers of solved runs
within the corresponded time limit. The data points in these figures are plotted in every
50 seconds.

In figure 1(a) and 1(c), the improvement of NovEsc over gNovelty+PCL is consis-
tently steady as the time limit increases. Additionally, it is clear that NovEsc outper-
formed other solvers in swv and SAT2011 Application datasets. Moreover, in Figure
1, the performances of solvers are in consistent order of NovEsc, gNovelty+PCL, sat-
time2011, CCASat, TNM, Sparrow2011 and EagleUP. As seen in the figure, the gap of
improvement between TNM and Sparrow2011 is small.

In figure 1(b) for SAT 2011 application instances, NovEsc is slightly less good than
gNovelty+PCL in approximately the first 50 seconds. After 50 seconds, NovEsc signifi-
cantly excels gNovelty+PCL as the time limits increase. In this figure, the ranks of other
solvers are not explicitly stated. The plotted lines of these solvers crossed over each oth-
ers. However, from 300 seconds, the rank is clearly CCASat, sattime2011, TNM, Spar-
row2011, and VW2.



100 200 300 400 600

10
3

(a) swv

n
u

m
b

e
r 

o
f 

s
o

lv
e

d
 r

u
n

s

 

 

NovEsc gNovelty
+
PCL sattime2011 CCASat Sparrow2011 TNM VW2 EagleUP

100 200 300 400 600

10
1

(b) SAT 2011 Application

100 200 300 400 600

10
2.4

10
2.6

10
2.8

(c) SAT2011 Crafed

time

n
u

m
b

e
r 

o
f 

s
o

lv
e

d
 r

u
n

s

100 200 300 400 600

10
2.7

10
2.8

time

(d) SAT 2012 Crafted

Figure 1. Log-log scale plot of distribution graph of solved runs over time of swv, SAT 2011 Application
&Crafted and SAT 2012 Crafted

Table 2. NovEsc parameters settings trained by PARAMILS

Parameters cbmc swv sss-sat-1.0 SAT 2011 SAT2012

γ 0.1 0.7 0.4 0.3 0.9

k 15 10 30 30 10

sp 0.4 0.1 0.05 0 0

In figure 1(d) for SAT 2012 crafted instances, NovEsc is worse than sattime2011
in the first 50 seconds. Subsequently, its performance substantially increased over sat-
time2011 and surpassed other solvers. The ranks between sattime2011, TNM, CCASat
and Sparrow2011 is clearly noticed. The performance of gNovelty+PCL is worse than
CCASat in the first 50 seconds and then surpasses CCASat. It was not as good as TNM
in the first 300 seconds but then notably improved upon TNM. Similar, gNovelty+PCL
surpasses sattime2011 from 400 seconds.

3.3. Discussion about parameter configurations

Table 2 reports the parameter settings for NovEsc, which were optimized by ParamILS
[17], which is a local search optimization tool for parameterized algorithms. The γ value
reveals the probability of switching to the conventional Novelty+. In cbmc, sss-sat-1.0
and SAT 2011, the fact that γ < 0.5 means that NovEsc is invoked more than Novelty+.
For the case of swv, γ = 0.7, which means that NovEsc performed 30% of the new
trap escape. From the value of γ in Table 2, it is obviously that the proposed stagnation
escaping contributed to the improvement of the new heuristics.



4. Conclusion

In this paper, we introduced a method to escape local minima by retrieving backtracked
variables. The target of this method is to redirect the search from local minima and still
keep it exploring current searching trails. Our new algorithm NovEsc, which is a hybrid
of conventional Novelty and our new trap escape strategy, is used during the stagna-
tion phases. We employ probability noise to switch between two trap escape strategies.
We assemble two tiebreak criteria into the new strategy: variable weights and stagnation
weights. To prevent future stagnation, we prefer to break ties by low stagnation weight
during greedy phases. In contrast, to escape local minima, the algorithm prefers high
stagnation weights and low variable weights. The experiments show that NovEsc per-
formed well compared with common local search solvers on structured instances. The
results proved that our new strategy is efficient for trap escape in structured instances.

References

[1] Bart Selman, Hector J. Levesque, and David G. Mitchell. A new method for solving hard satisfiability
problems. In AAAI, pages 440–446, 1992.

[2] Holger H. Hoos. An adaptive noise mechanism for WalkSAT. In Proceedings of the 18th National
Conference on Artificial Intelligence (AAAI-02), pages 635–660, 2002.

[3] Duc Nghia Pham, John Thornton, Charles Gretton, and Abdul Sattar. Combining adaptive and dynamic
local search for satisfiability. JSAT, 4(2-4):149–172, 2008.

[4] John R. Thornton, Duc Nghia Pham, Stuart Bain, and Valnir Ferreira Jr. Additive versus multiplicative
clause weighting for SAT. In (AAAI-04), pages 191–196, 2004.

[5] Shaowei Cai and Kaile Su. Configuration checking with aspiration in local search for sat. In AAAI,
2012.

[6] Wanxia Wei, Chu Min Li, and Harry Zhang. Switching among non-weighting, clause weighting, and
variable weighting in local search for sat. In CP, pages 313–326, 2008.

[7] Wanxia Wei, Chu Min Li, and Harry Zhang. A switching criterion for intensification and diversification
in local search for SAT. JSAT, 4(2-4):219–237, 2008.

[8] Wanxia Wei and Chu Min Li. Switching between two adaptive noise mechanisms in localsearch. In
Booklet of the 2009 SAT Competition, 2009.

[9] Adrian Balint and Andreas Fröhlich. Improving stochastic local search for sat with a new probability
distribution. In SAT, pages 10–15, 2010.

[10] Duc Nghia Pham, Thach-Thao Duong, and Abdul Sattar. Trap avoidance in local search using pseudo-
conflict learning. In AAAI, pages 542–548, 2012.

[11] Thach-Thao Duong, Duc Nghia Pham, and Abdul Sattar. A study of local minimum avoidance heuristics
for sat. In ECAI, pages 300–305, 2012.

[12] Thach-Thao Duong, Duc Nghia Pham, and Abdul Sattar. A method to avoid duplicative flipping in local
search for sat. In Australasian Conference on Artificial Intelligence, pages 218–229, 2012.

[13] Steven Prestwich. Random walk continuously smoothed variable weights. In Proceedings of SAT-05,
pages 203–215, 2005.

[14] Thach-Thao Nguyen Duong, Duc Nghia Pham, Abdul Sattar, and M. A. Hakim Newton. Weight-
enhanced diversification in stochastic local search for satisfiability. In IJCAI, pages 524–530, 2013.

[15] Bart Selman and Henry A. Kautz. Domain-independent extensions to gsat: Solving large structured
satisfiability problems. In IJCAI, pages 290–295, 1993.

[16] Adrian Balint, Andreas Fröhlich, Dave A.D. Tompkins, and Holger H. Hoos. Sparrow2011. In Booklet
of SAT-2011 Competition, 2011.

[17] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils: An automatic
algorithm configuration framework. J. Artif. Intell. Res. (JAIR), 36:267–306, 2009.


