
Diversify intensification phases in local search
for SAT with a new probability distribution

Thach-Thao Duong, Duc-Nghia Pham, and Abdul Sattar

Queensland Research Laboratory, NICTA and
Institute for Integrated and Intelligent Systems, Griffith University, QLD, Australia

{t.duong,d.pham,a.sattar}@griffith.edu.au

Abstract. A key challenge in developing efficient local search solvers is
to intelligently balance diversification and intensification. This study pro-
poses a heuristic that integrates a new dynamic scoring function and two
different diversification criteria: variable weights and stagnation weights.
Our new dynamic scoring function is formulated to enhance the diversifi-
cation capability in intensification phases using a user-defined diversifica-
tion parameter. The formulation of the new scoring function is based on
a probability distribution to adjust the selecting priorities of the selection
between greediness on scores and diversification on variable properties.
The probability distribution of variables on greediness is constructed to
guarantee the synchronization between the probability distribution func-
tions and score values. Additionally, the new dynamic scoring function
is integrated with the two diversification criteria. The experiments show
that the new heuristic is efficient on verification benchmark, crafted and
random instances.

1 Introduction

Stochastic Local Search (SLS) is a competitive and an efficient approach to
find the optimal solution or the approximately optimal solution for very large
and complex combinatorial problems. Some examples of practical combinatorial
problem instances that have been solved efficiently by SLS under the Satisfi-
ability (SAT) framework are hardware verification and planning. Despite this
significant progress, SLS solvers still have limitations compared with systematic
solvers in practical and structured SAT problems as evident through the series of
SAT competitions. Because structured and practical SAT problems have tighter
constraints than randomized SAT problems, SLS algorithms are easily trapped
in local minima and have difficulty to escape from stagnation. This problem
does not exist in systematic search algorithms because of the nature of complete
searching strategies.

Since the introduction of the GSAT algorithm [15], there have been huge im-
provements in developing efficient SLS algorithms for SAT. These improvements
need to properly regulate diversification and intensification in local search. There
are some common techniques to boost diversification such as random walk [10]
and Novelty+ [8]. In addition, some diversification boosting methods includes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Griffith Research Online

https://core.ac.uk/display/143888038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


variable weighting [13] or clause weighting [16, 12, 6]. As reported in [14], the
clause weighting scheme is able to escape the local minima by focusing on sat-
isfying long-time unsatisfied clauses. The Hybrid [18] and TNM [17] algorithms
exploit variable weight distribution to regulate the two noise heuristics but do
not directly exploit variable weights to select variables. Recently, stagnation
weights were introduced as a new diversification criterion to avoid local minima
in gNovelty+PCL [11]. Stagnation weights can be considered as an extension to
variable weights because they record frequencies of variables involved in stag-
nation paths [5]. Sparrow2011 [1], the winner of the SAT competition 2011, is
based on gNovelty+ [12] framework but instead of using the Novelty+ strategy
at stagnation phases, it employs its own dynamic scoring function to escape
from local minima. Recently, CCASat [3], the winner of SAT Challenge 2012,
heuristically switches between two greedy modes and one diversification mode,
and uses configuration checking to prevent the blind unreasonable greedy search.

In terms of intensification enhancement, the majority of local search solvers
greedily explore the search space. More specifically, a local search will choose
the most decreasing variable (i.e. a variable that leads to the most decrease in
the number of unsatisfied clauses if being flipped). If there is more than one best
decreasing variable, the algorithm prefers the variable with better diversification
(i.e the least recently flipped or the lowest variable weight). The diversification
mode is invoked when the search cannot greedily explore the search space. During
the intensification mode, the scoring function (i.e. objective function) is very im-
portant. The drawback of most scoring function and variable selection methods
is a lack of compromise between scores and tiebreak criteria. Mostly the tiebreak
criteria are variable properties such as variable ages in most SLS solvers and vari-
able weights in VW2 or stagnation weights in gNovelty+PCL. The tiebreak crite-
ria are considered as diversification boosting properties. Despite the fact that the
current gradient-based scoring function (i.e. score in G2WSAT) in greedy phases
works efficiently with current SLS solvers, a more advanced scoring function is
needed to balance the score and the diversification tiebreaks. It motivates us to
develop a single scoring function that combines greedy scores and diversification
criteria.

In this work, we present a new SLS solver which uses an integration of a
new probability-based dynamic scoring function as the objective function and
two diversification criteria. The proposed dynamic function is controlled by a
diversification noise α and is designed as a combination of clause-weighting score
function and diversification criteria. The remainder of this paper is structured
as follows. Section 2 summaries the background of SLS in developing objective
functions. The motivation and construction of the probability-based dynamic
formula are presented in section 3. Section 4 describes our algorithm, named
PCF. The experiments on verification, crafted and random instances of SAT
competitions are reported in section 5. This section also discusses the coverage
of optimal diversification parameters. Section 6 concludes the paper and outlines
the future work.



2 Preliminaries

Most modern SLS solvers operate in two modes : greedy (or intensification) mode
and random (or diversification) mode. Starting from a randomized candidate so-
lution, the solver computes the objective function for each variable. The function
reflects the improvements in regards to the decrease in the number of the num-
ber of unsatisfied clauses when a variable is flipped. The most basic objective
function (or scoring function) is computed as the decrease in the number of un-
satisfied clauses. While this traditional score was used by TNM, sattime2011,
the most up-to-date dynamic scoring function is the additive clause-weighting
score used by many SLS solvers (e.g. gNovelty+, Sparrow, EagleUP, CCASat ).

In the greedy mode, if there exist variables with positive scores, the solver
will select the variable with the highest score, breaking ties by the least recently
flipped variables. Otherwise, the local search resides in a local minimum in which
there is no possible greedy move. In such cases, it selects variables according
to the random mode. There are numerous heuristics for the variable selection
at the random mode. Most of them randomly pick an unsatisfied clause and
select variables within that clause. Random walk is the simplest way of selecting
variables randomly from the selected clauses. Novelty+ is the most common and
efficient scheme integrated in adaptG2WSAT, gNovelty+.

2.1 Basic scoring function

The most basic scoring function for SAT is proposed by GSAT. It defines the
number of unsatisfied clauses. Afterwards, the score is computed in an alterna-
tive objective function of the decrease in the number of unsatisfied clauses in
G2WSAT. Eq. 1 expresses the score computed in G2WSAT.

score(v) =
∑

c
(Cls′(c, α, v)− Cls(c, α)) (1)

where score(v) is the decrease in the number of unsatisfied clauses if variable v is
flipped. Cls(c, α) is the value of clause c under the candidate solution assignment
α. If clause c is satisfied, Cls(c, α) = 1, else Cls(c, α) = 0. Given an circumstance
of assignment α, Cls′(c, α, v) is the value of clause c after variable v is flipped.

2.2 Dynamic scoring function

To prevent the search from getting trapped in local minima, other dynamic
penalties of clauses are integrated into the objective function of the search. The
SLS using dynamic scoring functions is named the dynamic local search. This
method is based on modifying the scoring function at each search step to re-
evaluate the objective function in conjunction with changed circumstances. The
purpose of the dynamic scoring function is to adjust the circumstance of local
minima from the static method of computing an objective function. Because the
dynamic scoring function can adjust the objective function, it assists the local
search to dynamically avoid failing into previous stagnation.



Clause-weighting The state-of-the-art dynamic scoring function is based on
the clause weighting scheme. This scheme typically associates weights with clauses.
At each step, clause weights are adjusted according to truth value of correspond-
ing clauses. Then instead of minimising the number of false clauses, the algo-
rithms minimise the sum of clause weights. Eq. 2 expresses the clause-weighting
score.

scorew(v) =
∑

c
Wgh(c)× (Cls′(c, α, v)− Cls(c, α)) (2)

where Wgh(c) is the clause weight of clause c.

VW2 Another way of computing dynamic scoring function based on variable
weights is firstly proposed in VW1 and VW2 [13]. The dynamic scoring function
of VW2 uses variable weights as diversification properties involved in the score.
The scoring function of VW2 is computed as follows:

scoreVW2(v) =
(∑

c
break(c, α, v)

)
+
(
b× (vw(v)− vw)

)
(3)

where break(c, α, v) is set to one if clause c becomes unsatisfied when variable
v is flipped in the candidate solution α; otherwise its value is set to zero. vw(v)
is the weight of variable v. vw denotes the average of variable weights across all
variables. b is a pre-defined parameter. The update and continuous smoothing
procedure on variable weights vw is described in [13].

Sparrow introduced a dynamic scoring function to overcome local minima.
Its scoring function is modeled under a probability distribution and computed
based on scorew and variable ages. The variable selection is still based on the
scorew in the greedy mode. However, this dynamic scoring function is employed
at stagnation phases only. The solver selects randomly one of the yet unsatisfied
clauses at random. The selected clause is notated as ui = (xi1 ∨ .. ∨ xik). The
probability distribution to select variables in clause ui is computed as the Eq. 4
.

p(xij ) =
ps(xij )× pa(xij )∑k
l=1 ps(xil)× pa(xil)

(4)

with ps(xij ) = a
scorew(xil )

1 , and pa(xij ) = (
age(xil )

a3
)a2

The constant a1, a2, a3 are experimentally determined and reported in [1].

3 Probability-based dynamic scoring function

3.1 Motivation

As mentioned in the previous sessions, few solvers have addressed the issue of
combining greediness and diversification criteria into a single function. One draw-
back of variable selections of most SLS solvers is the fact that algorithms greedily
select the most promising variable in terms of scores as the first priority. In case



two variables have the same score, the algorithms will consider about tiebreak
criteria (e.g. variable age). The scores and variable ages are considered separately
in variable selection. Moreover, scores have greater priority than variable ages.

In order to construct a single scoring function as a trade-off between scores
and tiebreaks, we decided to use probability knowledge to formulate a new dy-
namic scoring function. The idea of using a probability-based dynamic scoring
function was firstly introduced in Sparrow [1]. Sparrow2011 and EagleUP [7]
won the first and third places respectively in the SAT 2011 competition in Ran-
dom track. These two solvers are efficient on random instances, which was at-
tributed to their probability-based scoring function. However, their probability-
based scoring function is restricted to stagnation phases whereas the conventional
clause-weighting score is still used during intensification phases. We decided to
approach the problem differently from the Sparrow formula by using additive
formulation opposed to multiplicative formulation (Eq. 4). One reason for creat-
ing additive formulation is to modify the function gradually instead of adjusting
rapidly as the multiplicative formulation. Additionally, we preferred to employ
fewer parameters for users to regulate the scoring function more easily.

3.2 Defining a probability distribution

The proposed dynamic scoring function is formulated as Eq. 5. The scoring
function is a summary of greediness and diversification probability distribution.
The probability of diversification contribution is regulated by a user-defined
parameter α. Thus, greediness probability contribution is regulated by (1− α).

P (vi) = (1− α)× Pg(vi) + α× Pd(vi) (5)

where vi is the i-th variable and P (vi) is the probability of selecting variable
vi. The higher the value of P (vi), the more likelihood vi is selected. Pg(vi) is
the probability of greediness and Pd(vi) is the probability of diversification for
variable vi. In accordance to the fact that P (vi), Pg(vi), Pd(vi) are probability
distribution functions (pdf), their values are scaled in the range of [0,1].

Probability Distribution on Greediness In this work, we chose scorew in
Eq. 2 to compute Pg(vi). scorew(vi) is firstly scaled into the range [0,maxscorew
- minscorew ] to satisfy the condition that the probability distribution function is
non-negative. The adjusted scoring function for vi is calculated by Eq. 6.

score′w(vi) = scorew(vi)−minscorew (6)

where minscorew and maxscorew is the minimum and maximum scorew across all
variables. Afterwards, the scoring function is normalized to satisfy the condition
of a probability distribution function (i.e. probability distribution functions are
in the range [0,1] and summarized to one) as follows:

Pg(vi) = N (score′w(vi)) =
score′w(vi)∑
j score

′
w(vj)

(7)



Probability Distribution on Diversification In this work, we chose two
diversification properties separately to compute the probability distribution of
diversification Pd(vi) in order to investigate the effect of different diversification
properties. These properties are variable weights and stagnation weights.

Variable weights are first used in the work VW1 and VW2. To improve the
diversification capacity, the variables with low flipped frequencies (i.e. low vari-
able weights) are preferred to be selected. It was reported that variable weights
improved the diversification capacity of SLS solvers [13].

Stagnation weights are presented in the work [12] as diversification criteria
with the purpose of preventing local minima. The stagnation weight of a variable
is computed as the frequency of its occurrences in stagnation paths. A stagnation
path within a given tenure k is defined as a list of k consecutively flipped variables
leading to a local minimum [4].

In order to compute Pdv (vi), vw(vi) and sw(vi) are scaled into [0,maxvw −
minvw], [0,maxsw −minsw] and transferred to vw′(vi), sw

′(vi) respectively as
follows:

vw′(vi) = maxvw − vw(vi) (8)

sw′(vi) = maxsw − sw(vi) (9)

where vw(vi) and sw(vi) are variable weights and stagnation weights respec-
tively. minvw and maxvw are the minimum and maximum variable weights.
minsw and maxsw are the minimum and maximum stagnation weights.

The functions Pdvw(vi) and Pdsw(vi) are the diversification probability distri-
butions of variable weights and stagnation weights respectively. The formulas to
compute the scaled diversification criteria Pdvw(vi) and Pdsw(vi) are presented
as follows:

Pdvw(vi) = N (vw(vi)) =
vw′(vi)∑
j vw

′(vj)
(10)

Pdsw(vi) = N (sw(vi)) =
sw′(vi)∑
j sw

′(vj)
(11)

The probability distributions Pdvw(vi) and Pdsw(vi) grant bigger values to vari-
ables with higher scores and low variable weights and low stagnation weights
respectively (e.g. preferring the least frequent flipped variables and least stag-
nated variables).

3.3 Diversification parameter α

According to the probabilistic scoring function (Eq. 5), α is a pre-defined di-
versification parameter. It specifies the contribution of distribution probabilities
in the scoring function in Eq. 5, whereas (1 − α) takes charge of the degree of
intensification. In conventional clause-weighting, the objective function scorew
is maximized in order to greedily exploit the current searching position. In this
case, the degree of intensification is 100% and the diversification parameter α is
zero.



4 The PCF algorithm

This section describes our proposed SLS solver, named PCF. It is based on
gNovelty+ and employs the new probability-based scoring function. gNovelty+

is the state-of-the-art framework for SLS solvers and some currently superior
SLS algorithms for SAT (e.g. Sparrow, CCASat) are tightly correlated with
gNovelty+ framework. The adjustment of PCF with the gNovelty+ are listed
below:

– Scoring function:
• Instead of using the scorew, PCF applies the new scoring function P

described in section 3.2 for both greedy and diversification phases.
• Re-usage of the additive weighting-scheme for the greediness distribution

function Pg
– Diversification criteria:
• Applying variable weights and stagnation weights as tiebreaks of the

scoring function.
• Variable weights and stagnation weights are contributed in computing

the scoring function.

The algorithm PCF is presented in Algorithm 1. PCF utilities a probabilis-
tic objective function to determine search directions. The new heuristics PCF
has one extra parameter, the diversification probability α. We use the clause-
weighting scoring function in Eq. 2 as the greediness function. According to the
diversification criteria of variable weights and stagnation weights respectively,
we named the two variants of PCF as PCFvand PCFs.

At the initialization stage, clause weights are initiated to one; variable weights
and stagnation weights are set at zero (line 2). If promising variables exist, the
promising variable with the maximum probabilistic distribution value P is se-
lected to be flipped, breaking ties by diversification criteria (line 9). Promising
variables are defined as the variables whose scorew are positive. If there is no
promising variable, the Novelty strategy is invoked to escape from local min-
ima. The procedure of updating stagnation weights is performed according to
the original work gNovelty+PCL [12, 5] (line 11). Afterwards, weights of unsat-
isfied clauses are increased by one according to the additive weighting-scheme
in gNovelty+. More specifically, with probability sp, weights of weighted clauses
are decreased by one. Weighted clauses are declared as clauses whose weights are
larger than one [12]. The variable weight of the selected variable var is increased
by one (line 17).

5 Experiments

The experiments were conducted on cbmc 1(a set of software verification prob-
lems), crafted instances of the SAT 2012 competition and medium-sized random

1 http://people.cs.ubc.ca/davet/papers/sat10-dave-instances.zip



Algorithm 1: PCF(Θ, sp)
Input : A formula Θ, wp = 0.01, diversification parameter α, smooth probability sp
Output: Solution σ (if found) or TIMEOUT

randomly generate a candidate solution σ;1
initiate all clause weights to 1, stagnation weights and variable weights to 0;2
while not timetout do3

if σ satisfied the formula Θ then return σ ;4
if within the random walk probability wp then5

var = Random Walk in an unsatisfied clause;6
else7

if there exists promising variable then8
var = variable maximized P function, breaking ties by diversification9
criteria;

else10
Update stagnation weights;11
var = Novelty Escape with P function, breaking ties by diversification12
criteria;
Increase the weights of unsatisfied clauses by 1;13
if within smooth probability sp then14

Decrease clause weights of weighted clauses;15

Update candidate solution σ with the selected variable var;16
Increase the variable weight of var and adapt Novelty noise;17

return TIMEOUT;18

instances of the SAT 2011 competition 2. In our experiments, the time limit
was set at 600 seconds. The number of runs per solver are 50 times for cbmc
and 10 times for SAT Competition instances. The two PCF variants in the ex-
periments are PCFv and PCFs, which employ variable weights and stagnation
weights as the diversification criteria. The experiments were conducted on Grif-
fith University Gowonda HPC Cluster Intel(R) Xeon(R) CPU X5650 2.67GHz.
Our proposed algorithms PCFv and PCFs were compared with seven common
SLS solvers:

– VW2, gNovelty+PCL: originally uses variable weights and stagnation weights.
– gNovelty+, sattime2011, EagleUP, Sparrow2011 [2], CCASat: are the top-3

best solvers of SAT competitions.

Table 1. Results on the cbmc, Crafted 2012

Instances VW2 gNovelty+ sattime2011 EagleUP Sparrow2011 gNovelty+PCL CCASat PCFv PCFs

cbmc 31% 85% 54% 0% 51% 100% 54% 100% 100%

(39) 439.128 247.997 322.528 600.000 384.359 1.453 276.196 0.634 1.013

- 230, 030 354, 874 544, 647 - 1, 287 - 523 782

Crafted 0% 88% 84% 23% 70% 88% 82% 93% 95%

(74) 600.000 91.896 107.680 464.004 230.463 128.590 115.210 73.552 70.377

- 22, 476 22, 784 142, 440 - 38, 067 - 13, 725 13, 234

Table 1 and Table 2 present the results on structured instances (cbmc and
crafted 2012) and medium-sized random instances of SAT 2011. Performance of

2 http://www.satcompetition.org



a solver for a specific dataset are reported in three rows. The first and second
rows indicate the success rate and the average of median CPU times. The third
row specifies the number of flips in thousands. The number of flips of VW2,
Sparrow2011 and CCASat are not reported because of the over-flown counted
number of flipped in the VW2 , Sparrow2011; and CCASat did not provide that
information in the output.

As presented in Table 1, gNovelty+PCL , PCFv and PCFs are the three
solvers gaining a success rate of 100%. Among them, two variants of PCF per-
formed better than gNovelty+PCL. In regards to crafted instances, the two PCF
variants gained better results than other solvers in terms of success rate, CPU
time and flips.

Table 2. Results on SAT2011 Medium size

Instances VW2 gNovelty+ sattime2011 EagleUP Sparrow2011 gNovelty+PCL CCASat PCFv PCFs

3-SAT 1% 50% 100% 100% 100% 93% 98% 100% 100%

(100) 595.033 336.962 0.880 6.471 20.498 52.893 9.691 1.378 1.966

- 445, 280 1, 504 9, 631 - 98, 343 - 1, 863 2, 688

5-SAT 36% 98% 100% 100% 100% 98% 100% 100% 100%

(50) 410.750 48.136 3.815 30.260 55.846 27.300 7.199 2.889 3.277

- 20, 391 2, 275 14, 925 - 15, 134 - 1, 280 1, 473

7-SAT 37% 100% 100% 100% 98% 100% 94% 100% 100%

(51) 400.219 20.026 9.454 23.917 65.350 22.152 51.236 7.944 7.439

- 3, 360 2, 255 5, 301 - 4, 874 - 1, 250 1, 203

Random 19% 75% 100% 100% 100% 96% 98% 100% 100%

Medium 499.761 184.698 3.785 16.815 40.671 38.726 19.613 3.420 3.681

(201) - 227, 457 1, 887 9, 849 - 53, 928 - 1, 562 2, 009

The medium-sized random instances in Table 2 are categorized into three
subsets: 3-SAT, 5-SAT and 7-SAT 3. On random 3-SAT instances, sattime2011,
Sparrow2011, PCFv and PCFs are the four solvers having a success rate of 100%.
Among the four solvers, sattime2011 is the best solver in terms of the average
time of 0.88 seconds and the number of flips. Although PCF is not the best
solver on 3-SAT instances, the two PCF variants performed well compared with
other solvers on 5-SAT and 7-SAT. More specifically, in random 5-SAT, PCFv is
the best solver with an average time of 2.899 seconds. On the other hand, PCFs
performed better than PCFv with an average time of 7.439 seconds. For the
whole dataset, PCFv is considered better than PCFs in terms of average CPU
time of 3.42 and 3.681 respectively. It is clear from the Table 2, the two PCF
variants generally performed well in medium-sized random instances compared
with other solvers in the experiments.

Figure 1 illustrates the comparison of solvers for cbmc and SAT 2011 Random
Medium and SAT 2012 Crafted instances. The comparison is plotted in the log-
log scale cactus presenting the distribution of the number of solved runs when
the time limit increases. A run of an instance with a solver is defined as solved if

3 random k-SAT instances consistently have k variables in every clause



it produces a solution within the given time limit. The x-axis corresponds to the
time limit in seconds and the y-axis presents the number of solved runs within
the corresponding time limit. The data points in these figures are plotted in
every 50 seconds.

According to Figure 1(a) on the cbmc dataset, PCFv, PCFs and gNovelty+PCL
are outperformed other solvers. In the SAT 2011 Random Medium dataset,
PCFs, PCFv and sattime2011 were consistently better than other solvers as
displayed in Figure 1(b). The plot displayed in Figure 1(c) indicates that PCFs
and PCFv steadily improved upon other solvers in crafted instances of the SAT
2012 competition. More specifically, PCFs was not as good as PCFv until 150
seconds but surpasses PCFv thereafter.

100 200 300400 600

10
3

(a) cbmc

time

n
u

m
b

e
r 

o
f 

s
o

lv
e

d
 r

u
n

s

 

 

PCF
v

PCF
s

gNovelty
+
PCL

sattime2011

CCASat

Sparrow2011

VW2

EagleUP

100 200 300400 600

10
3.22

10
3.23

10
3.24

10
3.25

10
3.26

10
3.27

10
3.28

10
3.29

10
3.3

(b) SAT 2011 Random Medium

time
100 200 300400 600

10
2.6

10
2.7

10
2.8

time

(c) SAT 2012 Crafted

Fig. 1. Log-log scale plot of distribution graph of solved runs over time of
cbmc, SAT 2011 medium size random and SAT 2012 Crafted

5.1 Analysis of parameter configurations

The parameter configurations for PCF variants were optimized separately on
each instance set within {0.5;1;1.5;2;2.5;3} days by ParamILS with its default



setting. ParamILS is a local search optimization tool for parameterized algo-
rithms [9]. The best parameter settings of PCF variants are reported in Table
3. The sets for training and testing were divided half and separately from the
original sets.

Table 3. PCF parameters trained by ParamILS

Solvers cbmc Crafted Random

tenure α sp tenure α sp tenure α sp

PCFv n/a 0.5 0.1 n/a 0.05 0.30 n/a 0.15 0.30

PCFs 30 0.5 0.1 30 0.05 0.3 15 0.05 0.35

As can be seen in Table 3 for cbmc, the α values are high. In contrast, for
crafted and random instances, α converges to low values (i.e. 5% for crafted in-
stances for two PCF variants and 15% and 5% for PCFv and PCFs for random
instances). The α values for cbmc instances are high to keep the diversifica-
tion probability high, whereas the diversification probability should be set low
for random and crafted instances. This situation probably arises because cbmc
instances are highly-constrained problems. In such instances, local minima are
results of the conflicts between constraints and the current solution candidate.
For this reason, too much greedy exploration in local searching areas will lead
search trajectory to trapped areas. This situation, however, is not as problematic
as random instances because random instances are formulated by randomization
mechanism and are not embedded highly-constrained information in the struc-
tures. Therefore, the search trajectory is able to sufficiently overcome the traps
and archive the optimal solution.

6 Conclusion and future work

In summary, we proposed a new local search solver for SAT named PCF, which
integrates our new probability-based scoring function and variable diversifica-
tion criteria. The dynamic scoring function is a combination of greediness and
diversification capability. The main contribution of this study is modeling the
probability distribution for each variable as a dynamic scoring function. An ad-
ditional contribution of this work is to examine the effect of two diversification
criteria of variable properties (e.g variable weights and stagnation weights) in the
new scoring function. The probabilistic function is the new regulation between
intensification in terms of the clause-weighting score and diversification in terms
of variable properties.

The experiments showed that the new solver PCF significantly improved on
the performance of other solvers. Comparative experiments demonstrated that
the proposed approach outperformed original solvers (e.g. gNovelty+, VW2 and
gNovelty+PCL). Furthermore, PCF outperformed other contemporary solvers



on structure problems and medium-sized random instances. Our observation
from optimization parameters suggests that the diversification parameter α for
the verification benchmark and structure instances should be assigned high. In
contrast, for random and crafted instances, diversification probability should be
defined low.

In future, we plan to apply the probability-based scoring function to other
solvers and self-tune the parameters α. Additionally, the intuitive research on
the different performance of PCFv and PCFs should be investigated thoroughly
on different benchmarks.

References

1. Balint, A., Fröhlich, A.: Improving stochastic local search for sat with a new prob-
ability distribution. In: SAT. pp. 10–15 (2010)

2. Balint, A., Fröhlich, A., Tompkins, D.A., Hoos, H.H.: Sparrow2011. In: Booklet of
SAT-2011 Competition (2011)

3. Cai, S., Su, K.: Configuration checking with aspiration in local search for sat. In:
AAAI (2012)

4. Duong, T.T., Pham, D.N., Sattar, A.: A method to avoid duplicative flipping in
local search for sat. In: Australasian Conference on Artificial Intelligence. pp. 218–
229 (2012)

5. Duong, T.T., Pham, D.N., Sattar, A.: A study of local minimum avoidance heuris-
tics for sat. In: ECAI. pp. 300–305 (2012)

6. Duong, T.T.N., Pham, D.N., Sattar, A., Newton, M.A.H.: Weight-enhanced diver-
sification in stochastic local search for satisfiability. In: IJCAI. pp. 524–530 (2013)

7. Gableske, O., Heule, M.: Eagleup: Solving random 3-sat using sls with unit prop-
agation. In: SAT. pp. 367–368 (2011)

8. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of AAAI-
02. pp. 635–660 (2002)

9. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: An automatic
algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 36, 267–306 (2009)

10. McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for invariants in local search.
In: AAAI/IAAI. pp. 321–326 (1997)

11. Pham, D.N., Duong, T.T., Sattar, A.: Trap avoidance in local search using pseudo-
conflict learning. In: AAAI. pp. 542–548 (2012)

12. Pham, D.N., Thornton, J., Gretton, C., Sattar, A.: Combining adaptive and dy-
namic local search for satisfiability. JSAT 4(2-4), 149–172 (2008)

13. Prestwich, S.: Random walk continuously smoothed variable weights. In: Proceed-
ings of SAT-05. pp. 203–215 (2005)

14. Selman, B., Kautz, H.A.: Domain-independent extensions to gsat: Solving large
structured satisfiability problems. In: IJCAI. pp. 290–295 (1993)

15. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satis-
fiability problems. In: AAAI. pp. 440–446 (1992)

16. Thornton, J.R., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplica-
tive clause weighting for SAT. In: Proceedings of AAAI-04. pp. 191–196 (2004)

17. Wei, W., Li, C.M.: Switching between two adaptive noise mechanisms in lo-
calsearch. In: Booklet of the 2009 SAT Competition (2009)

18. Wei, W., Li, C.M., Zhang, H.: A switching criterion for intensification and diver-
sification in local search for SAT. JSAT 4(2-4), 219–237 (2008)


