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Abstract. The notion of uniform interpolation for description logic 𝒜ℒ𝒞 has
been introduced in [9]. In this paper, we reformulate the uniform interpolation
for 𝒜ℒ𝒞 from the angle of forgetting and show that it satisfies all desired prop-
erties of forgetting. Then we introduce an algorithm for computing the result of
forgetting in concept descriptions. We present a detailed proof for the correct-
ness of our algorithm using the Tableau for 𝒜ℒ𝒞 . Our results have been used to
compute forgetting for 𝒜ℒ𝒞 knowledge bases.

1 Introduction

The Web Ontology Language (OWL) [15] provides a construct owl:imports for import-
ing and merging Web ontologies by referencing axioms contained in another ontology
that may be located somewhere else on the Web. This construct is very limited in that
it can only merge some linked ontologies together but is unable to resolve conflicts
among merged ontologies or to filter redundant parts from those ontologies. However,
an ontology is often represented as a logical theory, and the removal of one term may
influence other terms in the ontology. Thus, more advanced methods for dealing with
large ontologies and reusing existing ontologies are desired.

It is well-known that OWL is built on description logics (DLs) [1]. Recent efforts
show that the notions of uniform interpolation and forgetting are promising tools for
extracting modular ontologies from a large ontology. In a recent experiment reported in
[5], uniform interpolation and forgetting have been used for extracting modular ontolo-
gies from two large medical ontologies SNOMED CT [16] and NCI [17]. SNOMED
CT contains around 375,000 concept definitions while NCI Thesaurus has 60,000 ax-
ioms. The experiment result is promising. For instance, if 2,000 concepts definitions are
forgotten from SNOMED CT, the success rate is 93% and if 5,000 concepts definitions
are forgotten from NCI, the success rate is 97%.

Originally, interpolation is proposed and investigated in pure mathematical logic,
specifically, in proof theory. Given a theory 𝑇 , ordinary interpolation for 𝑇 says that if
𝑇 ⊢ 𝜙 → 𝜓 for two formulas 𝜙 and 𝜓, then there is a formula 𝐼(𝜙, 𝜓) in the language
containing only the shared symbols, say 𝑆, such that 𝑇 ⊢ 𝜙 → 𝐼(𝜙, 𝜓) and 𝑇 ⊢
𝐼(𝜙, 𝜓) → 𝜓. Uniform interpolation is a strengthening of ordinary interpolation in
that the interpolant can be obtained from either 𝜙 and 𝑆 or from 𝜓 and 𝑆. Uniform
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interpolation for various propositional modal logics have been investigated by Visser
[10] and Ghilardi [3]. A definition of uniform interpolation for the description logic
𝒜ℒ𝒞 is given in [9] and it is used in investigating the definability of TBoxes for 𝒜ℒ𝒞 .

On the other hand, (semantic) forgetting is studied by researchers in AI [8, 7, 2].
Informally, given a knowledge base𝐾 in classical logic or nonmonotonic logic, we may
wish to forget about (or discard) some redundant predicates but still preserve certain
forms of reasoning. Forgetting has been investigated for DL-Lite and extended ℰℒ in
[11, 6, 5] but not for expressive DLs. Forgetting for modal logic is studied in [13].

Forgetting and uniform interpolation have different intuitions behind them and are
introduced by different communities. Uniform interpolation is originally investigated
as a syntactic concept and forgetting is a semantic one. However, if the axiom system
is sound and complete, they can be characterized by each other.

In this paper, we first reformulate the notion of uniform interpolation for
𝒜ℒ𝒞 studied in [9] from the angle of forgetting and show that all desired properties
of forgetting are satisfied. We introduce an algorithm for computing the result of for-
getting in concept descriptions and, a novel and detailed proof for the correctness of the
algorithm is developed using the Tableau for 𝒜ℒ𝒞 . We note that a similar algorithm for
uniform interpolation is provided in [9] in which it is mentioned that the correctness of
their algorithm can be shown using a technique called bisimulation that is widely used
in modal logic4. In a separate paper [12], we use the results obtained in this paper to
compute forgetting for 𝒜ℒ𝒞 knowledge bases.

Due to space limitation, proofs are omitted in this paper but can be found at http:
//www.cit.gu.edu.au/˜kewen/Papers/alc_forget_long.pdf.

2 Preliminaries

We briefly recall some basics of 𝒜ℒ𝒞 . Further details of 𝒜ℒ𝒞 and other DLs can be
found in [1].

First, we introduce the syntax of concept descriptions for 𝒜ℒ𝒞 .
Elementary concept descriptions consist of both concept names and role names. So

a concept name is also called atomic concept while a role name is also called atomic
role. Complex concept descriptions are built inductively as follows:𝐴 (atomic concept);
⊤ (universal concept); ⊥ (empty concept); ¬𝐶 (negation); 𝐶 ⊓𝐷 (conjunction); 𝐶 ⊔𝐷
(disjunction); ∀𝑅.𝐶 (universal quantification) and ∃𝑅.𝐶 (existential quantification).
Here, 𝐴 is an (atomic) concept, 𝐶 and 𝐷 are concept descriptions, and 𝑅 is a role.

An interpretation ℐ of 𝒜ℒ𝒞 is a pair (𝛥ℐ , ⋅ℐ) where 𝛥ℐ is a non-empty set called
the domain and ⋅ℐ is an interpretation function which associates each (atomic) concept
𝐴with a subset𝐴ℐ of𝛥ℐ and each atomic role𝑅with a binary relation𝑅ℐ ⊆ 𝛥ℐ×𝛥ℐ .
The function ⋅ℐ can be naturally extended to complex descriptions:

⊤ℐ = 𝛥ℐ ⊥ℐ = ∅
(¬𝐶)ℐ = 𝛥ℐ − 𝐶ℐ (𝐶 ⊓𝐷)ℐ = 𝐶ℐ ∩𝐷ℐ

(𝐶 ⊔𝐷)ℐ = 𝐶ℐ ∪𝐷ℐ

4 An email communication with one of the authors of [9] shows that they have not got a complete
proof yet.



(∀𝑅.𝐶)ℐ = {𝑎 ∈ 𝛥ℐ : ∀𝑏.(𝑎, 𝑏) ∈ 𝑅ℐ implies 𝑏 ∈ 𝐶ℐ}
(∃𝑅.𝐶)ℐ = {𝑎 ∈ 𝛥ℐ : ∃𝑏.(𝑎, 𝑏) ∈ 𝑅ℐ and 𝑏 ∈ 𝐶ℐ}

An interpretation ℐ satisfies an inclusion (or subsumption) of the form 𝐶 ⊑ 𝐷
where 𝐶,𝐷 are concept descriptions, denoted ℐ ∣= 𝐶 ⊑ 𝐷, if 𝐶ℐ ⊆ 𝐷ℐ . We write
∣= 𝐶 ⊑ 𝐷 if ℐ ∣= 𝐶 ⊑ 𝐷 for all ℐ. Similarly, ∣= 𝐶 ≡ 𝐷 is an abbreviation of
∣= 𝐶 ⊑ 𝐷 and ∣= 𝐷 ⊑ 𝐶. ℐ satisfies an assertion of the form form 𝐶(𝑎) or 𝑅(𝑎, 𝑏),
where 𝑎 and 𝑏 are individuals, 𝐶 is a concept description and 𝑅 is a role name, if,
respectively, 𝑎ℐ ∈ 𝐶ℐ and (𝑎ℐ , 𝑏ℐ) ∈ 𝑅ℐ .

The signature of a concept description 𝐶, written sig(𝐶), is the set of all concept
and role names in 𝐶.

3 Forgetting in Concept Descriptions

In this section, we discuss the problem of forgetting about a concept/role in description
logic 𝒜ℒ𝒞 . In the rest of this paper, by a variable we mean either a concept name
or a role name. Intuitively, the result 𝐶 ′ of forgetting about a variable from a concept
description 𝐶 may be weaker than 𝐶 (w.r.t. subsumption) but it should be as close to 𝐶
as possible. For example, after the concept Male is forgotten from a concept description
for “Male Australian student” 𝐶 = Australians ⊓ Students ⊓ Male, then we should
obtain a concept description 𝐶 ′ = Australians ⊓ Students for “Australian student”.

3.1 Semantic Forgetting

Let 𝐶 be a concept description that contains a variable 𝑉 . If we want to forget (or
discard) 𝑉 from 𝐶, intuitively, the result of forgetting about 𝑉 in 𝐶 will be a concept
description 𝐶 ′ that satisfies the condition: 𝐶 ′ defines a minimal concept among all
concepts that subsumes 𝐶 and is irrelevant to 𝑉 (i.e. 𝑉 does not appear in the concept
description).

Definition 3.1. (Forgetting for concept descriptions) Let 𝐶 be a concept description in
𝒜ℒ𝒞 and 𝑉 be a variable. A concept description 𝐶 ′ on the signature sig(𝐶) ∖ {𝑉 } is
a result of forgetting about 𝑉 in 𝐶 if the following conditions are satisfied:

(RF1) ∣= 𝐶 ⊑ 𝐶 ′.
(RF2) For all concept description 𝐶 ′′ on sig(𝐶) ∖ {𝑉 }, ∣= 𝐶 ⊑ 𝐶 ′′ and ∣= 𝐶 ′′ ⊑ 𝐶 ′

implies ∣= 𝐶 ′′ ≡ 𝐶 ′, i.e., 𝐶 ′ is the strongest concept description weaker than 𝐶
that does not contain 𝑉 .

Notice that we can forget about a set of concept names and role names in a concept
description by a straightforward generalization of Definition 3.1. The above (RF1)
and (RF2) correspond to the conditions (2) and (3) of Theorem 8 in [9] 5, and gen-
eralize them by allowing 𝑉 to be a role name.

A fundamental property of forgetting in 𝒜ℒ𝒞 concept descriptions is that the result
of forgetting is unique under concept description equivalence.

5 The correspondence between (RF2) and (3) of Theorem 8 can be seen from this: ∣= 𝐶 ⊑ 𝐶′

and ∣= 𝐶 ⊑ 𝐶′′ implies ∣= 𝐶 ⊑ 𝐶′ ⊓ 𝐶′′. It implies by (RF2), ∣= 𝐶′ ⊓ 𝐶′′ ≡ 𝐶′, which
equals ∣= 𝐶′ ⊑ 𝐶′′ in (3).



Theorem 3.1. For any concept description 𝐶 and variable 𝑉 , if 𝐶1 and 𝐶2 are results
of forgetting about 𝑉 in 𝐶, then ∣= 𝐶1 ≡ 𝐶2.

As all results of forgetting are equivalent, we write forget(𝐶, 𝑉 ) to denote an arbi-
trary result of forgetting about 𝑉 in 𝐶.

We use the following examples of concept descriptions to illustrate our semantic
definitions of forgetting for 𝒜ℒ𝒞 . We will introduce an algorithm later and explain
how we can compute a result of forgetting through a series of syntactic transformations
of concept descriptions.

Example 3.1. Suppose the concept “Research Student” is defined by 𝐶 = Student ⊓
(Master⊔PhD)⊓∃supervised .Professor where “Master”, “PhD” and “Professor” are
all concepts; “supervised” is a role and supervised(𝑥, 𝑦) means that 𝑥 is supervised by
𝑦. If the concept description 𝐶 is used only for students, we may wish to forget about
Student : forget(𝐶,Student) = (Master ⊔ PhD) ⊓ ∃supervised .Professor . If we do
not require that a supervisor for a research student must be a professor, then the filter
“Professor” can be forgotten: forget(𝐶,Professor) = Student ⊓ (Master ⊔ PhD) ⊓
∃supervised .⊤.

3.2 Properties of Semantic Forgetting

The semantic forgetting for description logic possesses several important properties.
The following result, which is not obvious, shows that forgetting distributes over
union ⊔.

Proposition 3.1. Let 𝐶1, . . . , 𝐶𝑛 be concept descriptions in 𝒜ℒ𝒞 . For any variable
𝑉 , we have

forget(𝐶1 ⊔ ⋅ ⋅ ⋅ ⊔ 𝐶𝑛, 𝑉 ) = forget(𝐶1, 𝑉 ) ⊔ ⋅ ⋅ ⋅ ⊔ forget(𝐶𝑛, 𝑉 )

However, forgetting for 𝒜ℒ𝒞 does not distribute over intersection ⊓. For example, if
the concept description 𝐶 = 𝐴 ⊓ ¬𝐴, then forget(𝐶,𝐴) = ⊥, since ∣= 𝐶 ≡ ⊥.
But forget(𝐴,𝐴) ⊓ forget(¬𝐴,𝐴) = ⊤. So forget(𝐴 ⊓ ¬𝐴,𝐴) ∕= forget(𝐴,𝐴) ⊓
forget(¬𝐴,𝐴).

On the other hand, forgetting for 𝒜ℒ𝒞 does preserve the subsumption relation be-
tween concept descriptions.

Proposition 3.2. Let 𝐶1 and 𝐶2 be concept descriptions in 𝒜ℒ𝒞 , and ∣= 𝐶1 ⊑ 𝐶2.
For any variable 𝑉 , we have ∣= forget(𝐶1, 𝑉 ) ⊑ forget(𝐶2, 𝑉 ).

As a corollary of Proposition 3.2, it is straightforward to show that semantic forgetting
also preserves the equivalence of concept descriptions.

Proposition 3.3. Let 𝐶1 and 𝐶2 be concept descriptions in 𝒜ℒ𝒞 , and ∣= 𝐶1 ≡ 𝐶2.
For any variable 𝑉 , we have forget(𝐶1, 𝑉 ) ≡ forget(𝐶2, 𝑉 ).

Satisfiability is key reasoning task in description logics. We say a concept 𝐶 is sat-
isfiable if 𝐶ℐ ∕= ∅ for some interpretation ℐ. 𝐶 is unsatisfiable if ∣= 𝐶 ≡ ⊥. Forgetting
also preserves satisfiability of concept descriptions.



Proposition 3.4. Let 𝐶 be a concept description in 𝒜ℒ𝒞 , and 𝑉 be a variable. Then
𝐶 is satisfiable iff forget(𝐶, 𝑉 ) is satisfiable.

When we want to forget about a set of variables, they can be forgotten one by one since
the ordering of forgetting is irrelevant to the result.

Proposition 3.5. Let 𝐶 be a concept description in 𝒜ℒ𝒞 and let 𝒱 = {𝑉1, . . . , 𝑉𝑛}
be a set of variables. Then forget(𝐶,𝒱) = forget(forget(forget(𝐶, 𝑉1), 𝑉2), . . .), 𝑉𝑛).

The next result shows that forgetting distributes over quantifiers.

Proposition 3.6. Let 𝐶 be a concept description in 𝒜ℒ𝒞 , 𝑅 be a role name and 𝑉 be
a variable. Then
(1) forget(∀𝑉.𝐶, 𝑉 ) = ⊤ where 𝑉 is a role name, and forget(∀𝑅.𝐶, 𝑉 ) =
∀𝑅.forget(𝐶, 𝑉 ) if 𝑉 ∕= 𝑅;
(2) forget(∃𝑉.𝐶, 𝑉 ) = ⊤ where 𝑉 is a role name, and forget(∃𝑅.𝐶, 𝑉 ) =
∃𝑅.forget(𝐶, 𝑉 ). if 𝑉 ∕= 𝑅.

4 Computing the Result of Forgetting

In this section we introduce an intuitive algorithm for computing the result of forgetting
through rewriting of concept descriptions (syntactic concept transformations). Given
a concept description 𝐶 and a variable 𝑉 , this algorithm consists of two stages: (1)
𝐶 is first transformed into an equivalent disjunctive normal form (DNF), which is a
disjunction of conjunctions of simple concept descriptions; (2) the result of forgetting
about 𝑉 in each such simple concept description is obtained by removing some parts of
the conjunct.

We call an atomic concept𝐴 or its negation ¬𝐴 a literal concept or simply literal. A
pseudo-literal with role𝑅 is a concept description of the form ∃𝑅.𝐹 or ∀𝑅.𝐹 , where𝑅
is a role name and 𝐹 is an arbitrary concept description. A generalized literal is either
a literal or a pseudo-literal.

First, each arbitrary concept description can be equivalently transformed into a dis-
junction of conjunctions of generalized literals. This basic DNF for 𝒜ℒ𝒞 is well known
in the literature [1] and thus the details of the transformation are omitted here.

Definition 4.1. (Basic DNF) A concept description 𝐷 is in basic disjunctive normal
form or basic DNF if 𝐷 = ⊥ or 𝐷 = ⊤ or 𝐷 is a disjunction of conjunctions of
generalized literals 𝐷 = 𝐷1 ⊔ ⋅ ⋅ ⋅ ⊔𝐷𝑛, where each 𝐷𝑖 ∕≡ ⊥ and 𝐷𝑖 is of the formd

𝐿 ⊓ d
𝑅∈ℛ[∀𝑅.𝑈𝑅 ⊓ d

𝑘 ∃𝑅.𝐸(𝑘)
𝑅 ]

where each 𝐿 is a literal, ℛ is the set of role names that occur in 𝐷𝑖, 𝑘 ≥ 0, and each
𝑈𝑅 or 𝐸(𝑘)

𝑅 is a concept description in basic DNF.

The reason for transforming a concept description into its basic DNF is that for-
getting distributes over ⊔ (Proposition 3.1). When a concept description is in its basic
DNF, we only need to compute the result of forgetting in a conjunction of general-
ized literals. It can be shown that the result of forgetting about an atomic concept 𝐴
in a conjunction 𝐵 of literals can be obtained just by extracting 𝐴 (or ¬𝐴) from the



conjuncts (extracting a conjunct equals replacing it by ⊤). Unlike classical logics and
DL-Lite, the basic DNF in 𝒜ℒ𝒞 is not clean in that a generalized literal (i.e. pseudo-
literal) can still be very complex. When 𝐶 is a conjunction containing pseudo-literals,
it is not straightforward to compute the result of forgetting about 𝐴 in 𝐶. For example,
let 𝐶 = ∀𝑅.𝐴 ⊓ ∀𝑅.¬𝐴. Through simple transformation we can see 𝐶 ≡ ∀𝑅.⊥ is the
result of forgetting about 𝐴 in 𝐶, while simply extracting 𝐴 and ¬𝐴 results in ⊤. A
similar example is when 𝐶 = ∀𝑅.(𝐴 ⊔ 𝐵) ⊓ ∃𝑅.(¬𝐴 ⊔ 𝐵), the result of forgetting is
∃𝑅.𝐵 rather than ∃𝑅.⊤ (note that ∀𝑅.𝐶1 ⊓ ∃𝑅.𝐶2 ⊑ ∃𝑅.(𝐶1 ⊓ 𝐶2)). For this reason,
the following key step in obtaining a DNF is required for computing forgetting:

∀𝑅.𝐶1 ⊓ ∃𝑅.𝐶2 ↝ ∀𝑅.𝐶1 ⊓ ∃𝑅.(𝐶1 ⊓ 𝐶2)

By applying this transformations to a concept description in its basic DNF, each
𝒜ℒ𝒞 concept description can be transformed into the DNF as defined below.

Definition 4.2. (Disjunctive Normal Form or DNF)
A concept description 𝐷 is in disjunctive normal form if 𝐷 = ⊥ or 𝐷 = ⊤ or 𝐷 is

a disjunction of conjunctions of generalized literals 𝐷 = 𝐷1 ⊔ ⋅ ⋅ ⋅ ⊔ 𝐷𝑛, where each
𝐷𝑖 ∕≡ ⊥ (1 ≤ 𝑖 ≤ 𝑛) is a conjunction

d
𝐿 of literals or in the form ofl

𝐿 ⊓
l

𝑅∈ℛ

[
∀𝑅.𝑈𝑅 ⊓

l
𝑘

∃𝑅.(𝐸(𝑘)
𝑅 ⊓ 𝑈𝑅)

]
where each 𝐿 is a literal, ℛ is the set of role names that occur in 𝐷𝑖, 𝑘 ≥ 0, and each
𝑈𝑅 or 𝐸(𝑘)

𝑅 ⊓ 𝑈𝑅 is a concept description in DNF.

For convenience, each 𝐷𝑖 is called a normal conjunction in this paper. The disjunctive
normal form is a bit different from the normal form in [1] but they are essentially the
same.

Once a concept 𝐷 is in the normal form, the result of forgetting about a variable 𝑉
in 𝐷 can be obtained from 𝐷 by simple symbol manipulations.

Obviously, the major cost of Algorithm 1 is from transforming the given concept
description into its normal form. For this reason, the algorithm is exponential time in
the worst case. However, if the input concept description 𝐶 is in DNF, Algorithm 1
takes only linear time (w.r.t. the size of 𝐶).

Example 4.1. Given a concept 𝐷 = (𝐴 ⊔ ∃𝑅.¬𝐵) ⊓ ∀𝑅.(𝐵 ⊔ 𝐶), we want to forget
about concept name 𝐵 in 𝐷. In Step 1 of Algorithm 1, 𝐷 is firstly transformed into its
DNF 𝐷′ = [𝐴⊓∀𝑅.(𝐵⊔𝐶)]⊔ [∀𝑅.(𝐵⊔𝐶)⊓∃𝑅.(¬𝐵⊓𝐶)]. Note that ∃𝑅.(¬𝐵⊓𝐶)
is transformed from ∃𝑅.[¬𝐵 ⊓ (𝐵 ⊔ 𝐶)]. Then in Step 2, each occurrence of 𝐵 in 𝐷′

is replaced by ⊤, and ∀𝑅.(⊤ ⊔ 𝐹 ) is replaced with ⊤. We obtain CForget(𝐷,𝐵) =
𝐴 ⊔ ∃𝑅.𝐶. To forget about role 𝑅 in 𝐷, Algorithm 1 replaces each pseudo-literals in
𝐷′ of the form ∀𝑅.𝐹 or ∃𝑅.𝐹 with ⊤, and returns CForget(𝐷,𝑅) = ⊤.

Indeed we can prove that Algorithm 1 is sound and complete w.r.t. the semantic
definition of forgetting for 𝒜ℒ𝒞 in Definition 3.1.

Theorem 4.1. Let 𝑉 be a variable and 𝐶 a concept description in 𝒜ℒ𝒞 . Then

∣= CForget(𝐶, 𝑉 ) ≡ forget(𝐶, 𝑉 ).



Algorithm 1
Input: A concept description 𝐶 in 𝒜ℒ𝒞 and a variable 𝑉 in 𝐶.
Output: The result of forgetting about 𝑉 in 𝐶.
Method CForget(𝐶, 𝑉 ):
Step 1. Transform 𝐶 into its DNF 𝐷. If 𝐷 is ⊤ or ⊥, return 𝐷; otherwise, let 𝐷 = 𝐷1⊔⋅ ⋅ ⋅⊔𝐷𝑛

as in Definition 4.2.
Step 2. For each conjunct 𝐸 in each 𝐷𝑖, perform the following transformations:

– if (𝑉 is a concept name and) 𝐸 is a literal equals 𝑉 or ¬𝑉 , replace 𝐸 with ⊤;
– if (𝑉 is a role name and) 𝐸 is a pseudo-literal of the form ∀𝑉.𝐹 or ∃𝑉.𝐹 , replace 𝐸 with ⊤;
– if 𝐸 is a pseudo-literal in the form of ∀𝑅.𝐹 or ∃𝑅.𝐹 where 𝑅 ∕= 𝑉 , replace 𝐹 with

CForget(𝐹, 𝑉 ), and replace each resulting ∀𝑆.(⊤ ⊔𝐺) with ⊤.

Step 3. Return the resulting concept description as CForget(𝐶, 𝑉 ).

Fig. 1. Forgetting in concept descriptions.

Theorem 4.1 and Proposition 3.6 can be immediately derived from some lemmas in the
next section and the validity of these lemmas is established by using the Tableau for
𝒜ℒ𝒞 .

5 Proof of Theorem 4.1

Proofs of Proposition 3.6 and Theorem 4.1 (i. e. the correctness of Algorithm 1) heavily
rely on the Tableau theory for 𝒜ℒ𝒞 and thus we first briefly introduce it.

Given two concept descriptions 𝐶0 and 𝐷0, the Tableau theory states that ∣= 𝐶0 ⊑
𝐷0 iff no (finite) interpretation ℐ can be constructed such that ℐ satisfies concept
𝐶0 ⊓ ¬𝐷0, i.e., there is an individual 𝑥0 with 𝑥ℐ0 ∈ (𝐶0 ⊓ ¬𝐷0)

ℐ . Equivalently, ABox
𝒜0 = {(𝐶0 ⊓ ¬𝐷0)(𝑥0)} must be inconsistent for an arbitrary individual 𝑥0. And by
transforming 𝐶0 ⊓ ¬𝐷0 into its Negation Normal Form (NNF) and applying Tableau
transformation rules to the ABox, clashes of the form 𝐴(𝑥),¬𝐴(𝑥) must occur.

The 𝒜ℒ𝒞 Tableau transformation rules are as follows:
- {(𝐶1 ⊓ 𝐶2)(𝑥), . . .} →⊓ {(𝐶1 ⊓ 𝐶2)(𝑥), 𝐶1(𝑥), 𝐶2(𝑥), . . .}.
- {(𝐶1⊔𝐶2)(𝑥), . . .} →⊔ {(𝐶1⊔𝐶2)(𝑥), 𝐶1(𝑥), . . .} and {(𝐶1⊔𝐶2)(𝑥), 𝐶2(𝑥), . . .}.
- {(∃𝑅.𝐶)(𝑥), . . .} →∃ {(∃𝑅.𝐶)(𝑥), 𝑅(𝑥, 𝑦), 𝐶(𝑦), . . .}.
- {(∀𝑅.𝐶)(𝑥), 𝑅(𝑥, 𝑦)} →∀ {(∀𝑅.𝐶)(𝑥), 𝑅(𝑥, 𝑦), 𝐶(𝑦)}.

Conversely, if clashes occur in each resulting ABox after applying Tableau rules,
then 𝒜0 must be inconsistent and ∣= 𝐶0 ⊑ 𝐷0 holds.

Before presenting the proofs, we first show a useful lemma, whose correctness can
be immediately obtained using the Tableau.

Lemma 5.1. Let 𝐶𝑖’s be concepts and 𝑅 a role name. Then, for every 𝑗(1 ≤ 𝑗 ≤ 𝑚)
or 𝐶𝑗 = ⊥, ∣= ∀𝑅.(⊔𝑚

𝑖=1 𝐶𝑖) ⊑ ∀𝑅.𝐶𝑗 ⊔
⊔𝑚

𝑖 ∕=𝑗 ∃𝑅.𝐶𝑖.

Lemma 5.2. Let 𝑈,𝐸𝑖’s be concepts with ∣= 𝐸𝑖 ⊑ 𝑈 , and 𝑅 a role name. Denote
𝐷 = ∀𝑅.𝑈 ⊓ d∃𝑅.𝐸𝑖 with ∕∣= 𝐷 ≡ ⊥. Suppose 𝐷′ =

⊔∀𝑅.𝐶𝑗 ⊔ ∃𝑅.𝐶 ⊔ ⊔
𝐿𝑘,

where 𝐶 and 𝐶𝑗’s are concepts, and 𝐿𝑘’s are generalized literals not containing 𝑅.



Then ∣= 𝐷 ⊑ 𝐷′ implies that at least one of the following three holds:
(1) ∣= 𝐷′ ≡ ⊤; or
(2) ∣= 𝐸𝑖 ⊑ 𝐶 for some 𝑖, and ∣= 𝐷 ⊑ ∃𝑅.𝐶 ⊑ 𝐷′; or
(3) ∣= 𝑈 ⊑ 𝐶 ⊔ 𝐶𝑗 , and ∣= 𝐷 ⊑ ∀𝑅.(𝐶 ⊔ 𝐶𝑗) ⊑ 𝐷′ for some 𝑗.

Proof For simplicity, we discuss the case of 𝑚 = 2 and 𝑛 = 2, that is, 𝐷 =
∀𝑅.𝑈 ⊓ ∃𝑅.𝐸1 ⊓ ∃𝑅.𝐸2 and 𝐷′ = ∀𝑅.𝐶1 ⊔ ∀𝑅.𝐶2 ⊔ ∃𝑅.𝐶 ⊔⊔

𝐿𝑘. Other cases can
be proved in the same way.

According to the Tableau, the ABox {𝐷(𝑥),¬𝐷′(𝑥)} is in-
consistent, which can be transformed through Tableau rules into
{ (∀𝑅.𝑈)(𝑥), (∃𝑅.𝐸1)(𝑥), (∃𝑅.𝐸2)(𝑥), (∃𝑅.¬𝐶1)(𝑥), (∃𝑅.¬𝐶2)(𝑥), (∀𝑅.¬𝐶)(𝑥),
¬(⊔𝐿𝑘)(𝑥) }

It can be further transformed into

𝒜 = { 𝑅(𝑥, 𝑦1), 𝐸1(𝑦1), 𝑅(𝑥, 𝑦2), 𝐸2(𝑦2), 𝑅(𝑥, 𝑧1), ¬𝐶1(𝑧1), 𝑅(𝑥, 𝑧2),
¬𝐶2(𝑧2), (∀𝑅.𝑈)(𝑥), 𝑈(𝑦1), 𝑈(𝑦2), 𝑈(𝑧1), 𝑈(𝑧2), (∀𝑅.¬𝐶)(𝑥),
¬𝐶(𝑦1), ¬𝐶(𝑦2), ¬𝐶(𝑧1), ¬𝐶(𝑧2), ¬(

⊔
𝐿𝑘)(𝑥), . . . }.

Note that 𝐿𝑘’s do not contain any pseudo-literal of the form ∀𝑅.𝐹 or ∃𝑅.𝐹 . Thus
there is no way to generate any new assertions about 𝑦𝑖 or 𝑧𝑗 from ¬(⊔𝐿𝑘)(𝑥) (𝑖, 𝑗 =
1, 2). Neither can 𝑅(𝑥, 𝑣) with 𝑣 ∕= 𝑦𝑖 and 𝑣 ∕= 𝑧𝑗 be generated from 𝒜. This means no
Tableau rule is applicable to 𝑅(𝑥, 𝑦𝑖), 𝑅(𝑥, 𝑧𝑗), (∀𝑅.𝑈)(𝑥) or (∀𝑅.¬𝐶)(𝑥) any more.
Thus we can ignore those assertions.

According to the Tableau, 𝒜 must be inconsistent for arbitrary instances
𝑥, 𝑦1, 𝑦2, 𝑧1, 𝑧2. Thus it is safe to assume that 𝑥, 𝑦1, 𝑦2, 𝑧1, 𝑧2 represent different in-
dividuals. Thus 𝒜 can be written as

{ ¬(⊔𝐿𝑘)(𝑥) } ∪ { 𝐸1(𝑦1), 𝑈(𝑦1), ¬𝐶(𝑦1) } ∪ { 𝐸2(𝑦2), 𝑈(𝑦2), ¬𝐶(𝑦2) }
∪{ 𝑈(𝑧1), ¬𝐶1(𝑧1), ¬𝐶(𝑧1) } ∪ { 𝑈(𝑧2), ¬𝐶2(𝑧2), ¬𝐶(𝑧2) }.

Consider three cases:
Case 1. {¬(⊔𝐿𝑘)(𝑥)} is inconsistent, then we have ∣= ⊔

𝐿𝑘 ≡ ⊤. That is, ∣= 𝐷′ ≡ ⊤.
Case 2. {𝐸𝑖(𝑦𝑖), 𝑈(𝑦𝑖),¬𝐶(𝑦𝑖)} (𝑖 = 1 or 2) is inconsistent, then ∣= 𝐸𝑖 ⊓ 𝑈 ⊑ 𝐶.
From ∣= 𝐸𝑖 ⊑ 𝑈 , it follows that ∣= 𝐸𝑖 ⊑ 𝐶. Thus ∣= 𝐷 ⊑ ∃𝑅.𝐸𝑖 ⊑ ∃𝑅.𝐶 ⊑ 𝐷′.
Case 3. {𝑈(𝑧𝑗),¬𝐶𝑗(𝑧𝑗),¬𝐶(𝑧𝑗)} (𝑗 = 1 or 2) is inconsistent, then ∣= 𝑈 ⊑ 𝐶 ⊔ 𝐶𝑗 .
Thus, by Lemma 5.1, we have ∣= 𝐷 ⊑ ∀𝑅.(𝐶 ⊔ 𝐶𝑗) ⊑ ∀𝑅.𝐶𝑗 ⊔ ∃𝑅.𝐶 ⊑ 𝐷′.

Now we can show a general property of forgetting w.r.t. quantifiers. Proposition 3.6
is just a special case of the following lemma.

Lemma 5.3. Let 𝑈,𝐸𝑖’s be concepts with ∣= 𝐸𝑖 ⊑ 𝑈 , 𝑅 be a role name, and 𝑉 be a
variable. Denote 𝐶 = ∀𝑅.𝑈 ⊓d

𝑖∈𝑀 ∃𝑅.𝐸𝑖 where𝑀 = {1, . . . ,𝑚} is a set of natural
numbers.

Suppose ∕∣= 𝐶 ≡ ⊥. If 𝑉 = 𝑅, then forget(𝐶, 𝑉 ) = ⊤. Otherwise, we have
forget(𝐶, 𝑉 ) = ∀𝑅.forget(𝑈, 𝑉 ) ⊓ d

𝑖∈𝑀 ∃𝑅.forget(𝐸𝑖, 𝑉 ).



Proof Set 𝐶 ′ = ∀𝑅.forget(𝑈, 𝑉 ) ⊓ d
𝑖∈𝑀 ∃𝑅.forget(𝐸𝑖, 𝑉 ).

(CF1): Obviously, ∣= 𝐶 ⊑ ⊤. And we have ∣= 𝐶 ⊑ 𝐶 ′, since ∣= ∀𝑅.𝑈 ⊑
∀𝑅.forget(𝑈, 𝑉 ) and ∣= ∃𝑅.𝐸𝑖 ⊑ ∃𝑅.forget(𝐸𝑖, 𝑉 ) for all 𝑖.
(CF2): Suppose that 𝐷 is a concept not containing 𝑉 and ∣= 𝐶 ⊑ 𝐷. We want to prove
∣= ⊤ ⊑ 𝐷 for 𝑉 = 𝑅, and otherwise, ∣= 𝐶 ′ ⊑ 𝐷.

Let 𝐷 =
d

𝑘∈𝑁 𝐷𝑘, and every 𝐷𝑘 is of the form
⊔∀𝑅.𝑈 ′

𝑗 ⊔ ∃𝑅.𝐸′ ⊔ 𝐵′ where
𝐸′ and 𝑈 ′

𝑗’s are concepts, 𝐵′ is a disjunction of generalized literals not containing 𝑅.
From ∣= 𝐶 ⊑ 𝐷, we have ∣= 𝐶 ⊑ 𝐷𝑘 for all 𝑘.

If 𝑉 = 𝑅, then each 𝐷𝑘 contains no disjunct of ∀𝑅.𝑈 ′
𝑗 , and ∣= 𝐸′ ≡ ⊥. By

Lemma 5.2, we have ∣= 𝐷𝑘 ≡ ⊤ for each 𝑘. In this case, ∣= ⊤ ⊑ 𝐷. We have shown in
this case, forget(𝐶, 𝑉 ) = ⊤.

Otherwise, suppose for some 𝐷𝑘, it does not contain any occurrence of 𝑅. In this
case, ∣= 𝐷𝑘 ≡ ⊤, and we can remove 𝐷𝑘 from the conjunction. In what follows, we
assume 𝐷𝑘 contains 𝑅 and ∕∣= 𝐷𝑘 ≡ ⊤ for each 𝑘 ∈ 𝑁 .

By Lemma 5.2, for some𝐷𝑘’s in𝐷 (denoted as 𝑘 ∈ 𝐾 ⊆ 𝑁 ), we always have some
𝐸𝑖 (𝑖 ∈ 𝑀 ) in 𝐶 such that ∣= 𝐸𝑖 ⊑ 𝐹ℰ𝑘

where ∃𝑅.𝐹ℰ𝑘
is the existential quantified

disjunct of 𝐷𝑘, and thus ∣= 𝐶 ⊑ ∃𝑅.𝐹ℰ𝑘
⊑ 𝐷𝑘. For the other 𝐷𝑘’s with 𝑘 ∈ 𝑁 −𝐾,

we always have ∣= 𝑈 ⊑ 𝐹𝒰𝑘
and ∣= 𝐶 ⊑ ∀𝑅.𝐹𝒰𝑘

⊑ 𝐷𝑘 for some concept 𝐹𝒰𝑘
not

containing 𝑉 . This is to say, we can always find
𝐷′ =

d
𝑘∈𝐾 ∃𝑅.𝐹ℰ𝑘

⊓ d
𝑙∈𝑁−𝐾 ∀𝑅.𝐹𝒰𝑙

such that 𝐷′ does not contain 𝑉 , and ∣= 𝐶 ⊑ 𝐷′ ⊑ 𝐷.
By the definition of 𝐾, for each 𝐹ℰ𝑘

(𝑘 ∈ 𝐾), we always have some 𝐸𝑖

(𝑖 ∈ 𝑀 ) in 𝐶 such that ∣= 𝐸𝑖 ⊑ 𝐹ℰ𝑘
. By the definition of c-forgetting, ∣=

forget(𝐸𝑖, 𝑉 ) ⊑ 𝐹ℰ𝑘
. That is, for each 𝑘 ∈ 𝐾, there always exists some 𝑖 ∈ 𝑀

such that ∣= ∃𝑅.forget(𝐸𝑖, 𝑉 ) ⊑ ∃𝑅.𝐹ℰ𝑘
. This implies ∣= d

𝑖∈𝑀 ∃𝑅.forget(𝐸𝑖, 𝑉 ) ⊑d
𝑘∈𝐾 ∃𝑅.𝐹ℰ𝑘

. Similarly, we have ∣= ∀𝑅.forget(𝑈, 𝑉 ) ⊑ ∀𝑅.d𝑙∈𝑁−𝐾 𝐹𝒰𝑙
. Thus, we

can conclude that
∣= ∀𝑅.forget(𝑈, 𝑉 ) ⊓ d

𝑖∈𝑀 ∃𝑅.forget(𝐸𝑖, 𝑉 ) ⊑ ∀𝑅.d𝑙∈𝑁−𝐾 𝐹𝒰𝑙
⊓ d

𝑘∈𝐾 ∃𝑅.𝐹ℰ𝑘
.

which is, ∣= 𝐶 ′ ⊑ 𝐷′. Hence, we have ∣= 𝐶 ′ ⊑ 𝐷.

Similar to the above lemma, we can show the following result. For a literal 𝐿, we
use 𝐿+ to denote the concept name in 𝐿.

Lemma 5.4. Let 𝐶 be a disjunct in DNF such that 𝐶 =
d
𝐿𝑖⊓

d
𝑅∈ℛ 𝐶𝑅, where each

𝐿 is a literal, concept 𝐶𝑅 is of the form ∀𝑅.𝑈 ⊓ d ∃𝑅.𝐸𝑘 with ∣= 𝐸𝑘 ⊑ 𝑈 for each 𝑘.
Then we have, forget(𝐶, 𝑉 ) =

d
𝐿+

𝑖 ∕=𝑉 𝐿𝑖 ⊓
d

𝑅∈ℛ forget(𝐶𝑅, 𝑉 ).

Since forgetting is distributive over disjunction, Theorem 4.1 is proven.

6 Conclusion

We have looked into the concept of uniform interpolation for 𝒜ℒ𝒞 from the angle of
variable forgetting. As a result, a theory of forgetting in 𝒜ℒ𝒞 concept descriptions is
developed, in which forgetting can be done for both concepts and roles. As well as
several important properties, we have developed algorithms for computing results of



forgetting and provide a novel proof for the correctness of the algorithm w.r.t. the se-
mantic definition of forgetting. Forgetting for 𝒜ℒ𝒞 concept descriptions has been im-
plemented in C++ as a new component of the DL reasoner FaCT++ [14] and it is avail-
able at http://www.cit.gu.edu.au/˜kewen/DLForget/. Such a forgetting
component can be used by an ontology editor to enhance its ability to partially reuse
existing ontologies and thus provides a flexible tool for tailoring large ontologies. Al-
though semantic forgetting can be easily adapted to most DLs, it is not straightforward
to generalize the algorithms for computing forgetting to other expressive DLs.
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