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The ultimate limits to estimating a fluctuating phase imposed on an optical beam can be found
using the recently derived continuous quantum Cramér-Rao bound. For Gaussian stationary statis-
tics, and a phase spectrum scaling asymptotically as ω−p with p > 1, the minimum mean-square
error in any (single-time) phase estimate scales as N−2(p−1)/(p+1), where N is the photon flux. This
gives the usual Heisenberg limit for a constant phase (as the limit p→ ∞) and provides a stochastic
Heisenberg limit for fluctuating phases. For p = 2 ( Brownian motion), this limit can be attained
by phase tracking.
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Estimating the phase imposed on an optical beam, by
nature or by an agent, is a key task in metrology and
communication respectively. One case of broad relevance
is that where the phase varies stochastically in time over
a wide range [1–8]. It is only very recently that it has
been possible to experimentally demonstrate the quan-
tum enhancement (by a constant factor) of the estimation
of such a strongly fluctuating phase, using nonclassical
(squeezed) light and homodyne detection with adaptive
phase tracking [1, 7].

Adaptive phase tracking is a sophisticated measure-
ment technique whereby the phase of the local oscilla-
tor (necessary for homodyne detection) is continuously
changed in time to follow an estimate of the true phase
[1–7]. This enables the phase quadrature of the beam
to be monitored at all times, to a good approximation,
maximizing the phase information obtained. Previously
it has been calculated that phase tracking with squeezed
light would enable an imposed phase to be estimated with
a mean square error (MSE) scaling as N−2/3 [2–4]. In
contrast, for coherent states (no squeezing) only a N−1/2
scaling can be achieved [2–4]. Here N is the mean flux
(photons per second) in the beam, and the imposed phase
is modeled by Brownian motion.

While experiments in optical phase tracking have not
yet demonstrated an improvement over the coherent state
scaling of N−1/2, the possibility of doing so in the near
future raises pressing theoretical questions: is the MSE
scaling of N−2/3, derived assuming adaptive estimation
[2–4], the best possible? If not, what is the the ultimate
limit to estimating a fluctuating phase and how can it be
achieved?

For measurement of a constant phase, the fundamental
bound is the Heisenberg limit [9, 10]: a phase estimate
MSE scaling as 〈N〉−2, where 〈N〉 is the mean number
of photons per estimate. This a quadratic improvement
over the 〈N〉−1 scaling achievable using coherent states
(the standard quantum limit, or SQL) [9, 10]. Hence,
if quantum mechanics similarly allowed a quadratic im-
provement in the case of a fluctuating phase, the corre-

sponding fundamental limit for the MSE would scale as
N−1.

Contrary to this intuition, we prove in this paper, with
only weak assumptions, that the fundamental bound to
estimating Brownian phase fluctuations is a MSE scaling
as N−2/3. This establishes that adaptive phase track-
ing can be a very effective measurement technique for
this problem, giving an uncertainty at most a constant
factor greater than the minimum allowed by quantum
mechanics (under our assumptions). This N−2/3 scal-
ing for Brownian fluctuations is just a special case of
our general stochastic Heisenberg limit, which allows for
any inverse power-law describing the phase fluctuation
spectrum at high frequencies, and which also yields the
constant-phase Heisenberg limit as a special case.

This paper is organised as follows. First we derive the
general stochastic Heisenberg limit, and the stochastic
SQL. Next we specialize to the scenario of Ref. [1]: a
squeezed beam comprising the output of an optical para-
metric oscillator (OPO) with an added mean field, and
a phase varying like damped Brownian motion. We con-
sider the ultimate limit, and find the same scaling as in
the general case, but with an explicit constant of propor-
tionality, consistent with the numerics of Ref. [4].

GENERAL PROOF

Our result applies to the situation of a continuous
beam [a one-dimensional quantum field b(t)], on which
there is an imposed phase ϕ(t). We require only three
conditions:

1. The statistics of the field quadratures and imposed
phase are stationary.

2. The statistics of the field quadratures and imposed
phase are Gaussian and time-symmetric.

3. The phase spectrum scales as |ω|−p for large |ω|,
for some p > 1.
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We now explain these conditions in more detail. The
instantaneous creation operator b†(t) of the beam obeys
[b(t), b†(t′)] = δ(t − t′), and 〈b†(t)b(t)〉 = N is the pho-
ton flux [10]. The stationarity of its statistics, and those
of ϕ(t), means that one-time expectation values are con-
stant, and two-time correlations depend only on the time
difference.

The assumed Gaussian statistics mean there is a Gaus-
sian Wigner functional for the quadratures [10]

X(t) := b†(t) + b(t), Y (t) := i[b†(t)− b(t)], (1)

and a Gaussian distribution for the phase ϕ(t). For a sin-
gle Gaussian variable, such as ϕ(t), the autocorrelation
function is automatically time-symmetric. However, the
beam quadratures X(t) and Y (t′) may be correlated, and
our derivation below requires that this cross-correlation
be time-symmetric (i.e. invariant under t↔ t′).

The third condition allows for a vast range of phase
fluctuation models. For p = 2 it means that at short
times the fluctuations are like Wiener noise [10] (Brow-
nian motion), which has the spectrum κ/ω2, where κ is
a constant with units of frequency. More generally, we
take the scaling constant to be κp−1, so κ still has units
of frequency. In the limit p→∞ the phase is effectively
constant.

In Ref. [11], a continuous form of the quantum Cramér-
Rao inequality was derived, giving a lower bound on the
MSE of any unbiased estimate, ϕ̂(t), of a time-varying
parameter ϕ(t),

〈[ϕ̂(t)− ϕ(t)]2〉 ≥ F−1(t, t). (2)

Here F (t, t′) is the Fisher information matrix (with con-
tinuous indices t and t′) of the phase of the beam, given
by a sum of quantum and classical contributions

F (t, t′) := F (Q)(t, t′) + F (C)(t, t′), (3)

and the (matrix) inverse in Eq. (2) is defined by∫
dsF−1(t, s)F (s, t′) = δ(t− t′). (4)

For the case where ϕ(t) is an imposed phase,

F (Q)(t, t′) := 4 〈∆n(t)∆n(t′)〉 , (5)

F (C)(t, t′) :=

∫
DϕP [ϕ]

δ lnP [ϕ]

δϕ(t)

δ lnP [ϕ]

δϕ(t′)
. (6)

In the above,
∫
Dϕ · · · denotes an integral over all possi-

ble functions ϕ(t), the functional P [ϕ] gives the prior
weight for each function, and δ/δϕ(t) is a functional
derivative. Also, ∆n(t) = n(t) − 〈n(t)〉, where n(t) :=
b†(t)b(t) is the generator of the phase shifts, the photon
flux operator. Because of the stationarity condition, all
quantities dependent on two times t and t′ are functions
only of t− t′. We will express these quantities explicitly

as functions of t − t′ from here on. In particular, the
lower bound in Eq. (2) will be denoted by F−1(0).

To determine F−1(0), substitute Eq. (3) into Eq. (4)
and take the Fourier transform, to give

F̃−1(ω) =
1

F̃ (C)(ω) + F̃ (Q)(ω)
, (7)

for the Fourier transform of F−1(t − t′). The value of
F−1(0) is then obtained by integrating this over ω. Our
aim is to determine the minimum possible scaling of this
value with the photon flux N = 〈n(t)〉.

As we assume the phase fluctuations are Gaussian,
we have F (C)(t − t′) = Σ−1(t − t′), with Σ(t − t′) :=
〈ϕ(t)ϕ(t′)〉 − 〈ϕ〉2 [12]. For the case Σ̃(ω) = κp−1/|ω|p,

F̃−1(ω) =
κp−1

|ω|p + κp−1F̃ (Q)(ω)
. (8)

More generally, we can obtain the result below with the
weaker requirement that the phase spectrum approaches
this scaling at high frequencies, i.e., Σ̃(ω) = Ω(κp−1/|ω|p)
as per condition 3 (see Appendix D).

Next we consider the quantity F (Q)(t − t′); this may
be simplified to (see Appendix A)

F (Q)(t− t′) = 4N δ(t− t′) + f(t− t′)− g(t− t′), (9)

where, in terms of the quadrature operators (1),

f(t− t′) :=
1

2
[〈: X(t)X(t′) :〉+ 〈: Y (t)Y (t′) :〉]2 (10)

g(t− t′) := 〈: X(t)X(t′) :〉〈: Y (t)Y (t′) :〉

− 1

2

(
〈: X(t)Y (t′) :〉2 + 〈: Y (t)X(t′) :〉2

)
+

1

2

(
〈X〉2 + 〈Y 〉2

)2
. (11)

Thus, from Eq. (8), we obtain

F̃−1(ω) =
κp−1

|ω|p + κp−1
[
4N + f̃(ω)− g̃(ω)

] . (12)

The photon flux can be written as

N =
1

4
(〈: X(t)X(t) :〉+ 〈: Y (t)Y (t) :〉) , (13)

and therefore f(0) = 8N 2. In addition, using a spec-
tral uncertainty principle and the assumption of time-
symmetric correlations, it can be shown that N/4 ≥
−g̃(ω) and f̃(ω) ≥ 0 (see Appendix B). Since it is easily
shown that F (Q)(t− t′) is a positive-definite function, by
Bochner’s theorem F̃ (Q)(ω) ≥ 0 [13], and thus the de-
nominator in Eq. (12) is positive. Consequently, replac-
ing −g̃(ω) with N/4 can only decrease the right-hand
side; that is, with ζ = 17/4,

F̃−1(ω) ≥ κp−1

|ω|p + κp−1
[
ζN + f̃(ω)

] . (14)
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Next, from the fact that f(0) = 8N 2, the integral of
f̃(ω) is I = 16πN 2. This means that f̃(ω) cannot be
larger than µ over a range greater than I/µ. To place
a lower bound on F−1(0), when integrating Eq. (14) we
may first omit the range of integration where f̃(ω) > µ,
and replace f̃(ω) by µ over the remaining portion. Sec-
ond, we can assume that the range of integration omitted
is for the smallest values of ω because that can only fur-
ther reduce the value of the integral. Since this range
can be at most I/µ in length, this yields

F−1(0) ≥ 1

π

∫ ∞
I/2µ

κp−1 dω

ωp + κp−1 (ζN + µ)

≥ 1

2π

∫ ∞
0

κp−1 dω

ωp + κp−1 (ζN + µ)

≥ κp−1

2π[κp−1(ζN + µ)]1−1/p
, (15)

where the inequality on the second line holds for
(I/µ)p ≤ κp−1 (ζN + µ) (see Appendix C).

To obtain the strongest lower bound on F−1(0) we
consider the smallest value of µ that we can take such
that (I/µ)p ≤ κp−1 (ζN + µ). This value is µ =
Θ(N (N/κ)(p−1)/(p+1)). We consider scaling for large
N/κ, in which case µ � N , and ζN can be ignored.
Equations (2) and (15) thus yield our main result, the
lower bound scaling for the MSE,

〈[ϕ̂(t)− ϕ(t)]2〉 = Ω
(

(κ/N )
2(p−1)/(p+1)

)
. (16)

Note this scaling cannot be achieved by a coherent-state
beam, for which F (Q)(t− t′) = 4N δ(t− t′). It is easy to
show, for this case, by taking f = g = 0 in Eq. (12), that

〈[ϕ̂(t)− ϕ(t)]2〉SQL = Ω
(

(κ/N )
(p−1)/p

)
. (17)

which we call the stochastic SQL scaling.
In the case of Wiener phase fluctuations (p = 2), the

stochastic Heisenberg scaling is (κ/N )2/3. A simplified
analysis in Ref. [2] found that adaptive homodyne mea-
surements can yield this scaling, but it took into account
neither the photon flux due to the squeezing nor the in-
formation in the photocurrent noise. A more complete
analysis, taking both of these terms into account, was
performed in Ref. [4] (correcting an error in the analysis
of Ref. [3]). This verified this scaling of (κ/N )2/3 for the
MSE. That is, the lower bound in Eq. (16) is attainable
by adaptive measurements for p = 2.

The limit p → ∞ gives a very slowly varying phase.
In that case Eq. (16) gives the expected constant-phase
Heisenberg limit scaling 〈[ϕ̂(t) − ϕ(t)]2〉 = Ω(〈N〉−2).
Similarly, Eq. (17) gives the expected SQL scaling
〈[ϕ̂(t) − ϕ(t)]2〉SQL = Ω(〈N〉−1). For all other p, the
quantum enhancement is less than quadratic, and as
p→ 1 there is no quantum advantage.

OPO SQUEEZING AND OU FLUCTUATIONS

Next we specialise to the model of squeezing used in
Refs. [1–3]—a coherent field of real amplitude α added to
an Optical Parametric Oscillator (OPO) output—and to
phase fluctuations modeled by Ornstein-Uhlenbeck (OU)
noise, with Σ̃(ω) = κ/(λ2 + ω2) as in Ref. [1]. Asymp-
totically this is identical to the Wiener phase spectrum
(p = 2) analysed above. For this beam we have 〈X〉 = 2α,
〈Y 〉 = 0, so Eq. (9) becomes

F (Q)(t− t′) = 4N δ(t− t′) + 4α2T+(t− t′)
+
{

[T+(t− t′)]2 + [T−(t− t′)]2
}
/2, (18)

where T±(t − t′) are the normally ordered correlation
functions for the quadrature fluctuations [1, 15]

T±(t− t′) = 〈: ∆Q±(t)∆Q±(t′) :〉, (19)

where Q+ := X and Q− := Y . They are given by

T±(t− t′) = (R± − 1)
(1∓ x)γ

4
e−(1∓x)γ|t−t

′|/2. (20)

In Eq. (20), R± are the antisqueezing and squeezing lev-
els, respectively, at the center frequency. For an OPO, γ
is the cavity’s decay rate [16] and x ∈ [0, 1) is the nor-
malized pump amplitude. In terms of these quantities,
the total photon flux is

N = α2 +
γ

16
[(R+ − 1)(1− x) + (R− − 1)(1 + x)]. (21)

Substituting these expressions in Eq. (18) and taking
the Fourier transform yields

F̃ (Q)(ω) = 4N + 4α2(R+ − 1)
(1− x)2γ2

(1− x)2γ2 + 4ω2

+
γ3

16

[
(R+ − 1)2(1− x)3

(1− x)2γ2 + ω2
+

(R− − 1)2(1 + x)3

(1 + x)2γ2 + ω2

]
. (22)

For a coherent state (R+ = R− = 1), we would just have
F̃ (Q)(ω) = 4N , and we would obtain κ/(2

√
4Nκ+ λ2) as

the lower bound on the MSE. This coherent state limit
was first derived by Tsang et al. (see Eq. (4.5) in Ref. [5])
and scales asymptotically as (κ/N )1/2 as expected [2].

Comparison with the Science experiment

It seems impossible to obtain an exact analytical so-
lution for F−1(0) in the case of general OPO squeezing.
However, a useful approximation is to just include the
terms in Eq. (22) that represent information available
from the mean field; that is, those terms proportional to
α2. As in the theory of Ref. [2], the estimation performed
in Ref. [1] only used the signal from the mean field, so
this approximation is relevant to those works. As in those



4

works we also express our results in terms of α2, rather
than N . Then we find

F−1(0) =
(κ/2)

(
1 + g2/

√
Ξ+Ξ−

)√
Ξ+ +

√
Ξ−

, (23)

where

Ξ± =
1

2

(
4α2κ+ λ2 + g2 ±

√
(4α2κ+ λ2 − g2)2 − 4d

)
,

(24)
with g = (1− x)γ/2 and d = 4κα2(R+ − 1)g2.

With further simplification this bound on the MSE is
comparable to the results given for adaptive measure-
ments on squeezed states in Ref. [1]. First we note that
a mixed squeezed state described by R±, γ and x can
be assumed to be a combination of a pure squeezed
state and classical amplitude noise (see Appendix E),

where the pure squeezed state is described by RQ− = R−,

RQ+ = 1/R−, xQ = (
√
R+ − 1)/(

√
R+ + 1), and γQ =

γ(1 + x)/(1 + xQ). Then one can determine F (Q) from
the parameters for the pure squeezed state.

Using this approach, in the limit of large bandwidth,
γ → ∞, we obtain κ/(2

√
4α2R−κ+ λ2) as the lower

bound on the MSE. This expression is that shown as
trace (iii) in Fig. 3 of Ref. [1], derived from Eq. (3) of
Ref. [1] by taking σf → 0 (the limit of perfectly accurate
feedback). Note that this is significantly below what was
observed in the experiment, because the mean-field adap-
tive algorithm used in the experiment was far from being
perfectly accurate.

Ultimate limit for OPO squeezing and p = 2

We have already shown that the lower bound to the
MSE for p = 2 scales as (κ/N )2/3. Now we show how
to determine the constant of the scaling for this model
assuming ideal OPO squeezing with R− = 1/R+. We
include all terms in Eq. (22) and express our results in
terms of N . We introduce dimensionless (starred) pa-

rameters via N = κN?, α2 = α2
?κN?, γ = γ?κN 5/6

? ,

R+ = R?N 1/3
? , and ω = ω?κN 2/3

? , where γ? > 0 and
R? > 0. Then we obtain in the limit N? → ∞ (see
Appendix F)

F−1(0) = N?−2/3
1

2π

∫ ∞
−∞

dω?

ω2
? + F̃

(Q)
? (ω?)

, (25)

with

F̃
(Q)
? (ω?) =

4γ2?α
2
?

γ2?/R? + ω2
?

+
γ3?
√
R?/2

4γ2?/R? + ω2
?

. (26)

From Eq. (21), the above dimensionless parameters are
related by α2

? = 1− γ?
√
R?/8. It is convenient to define

τ = γ?
√
R?/8, so the allowable values for τ range from 0

FIG. 1: Plot of C as a function of γ? and τ (all dimension-
less).

to 1. The value of C := N?2/3F−1(0) was calculated for
this range of τ , and γ? ∈ [0, 4]; the results are given in
Fig. 1. It can be seen that C is smallest for τ = 1, which
corresponds to a squeezed vacuum, and the minimum
is C0 = (587 − 143

√
13)1/6/(4

√
6) ≈ 0.20788 for γ? =

2[2(
√

13− 3)]1/3 ≈ 2.1319. That is,

〈[ϕ̂(t)− ϕ(t)]2〉 & C0 (κ/N )
2/3

, (27)

with C0 ≈ 0.20788. In this limit of a squeezed vacuum
it is only possible to obtain the estimate of the phase
modulo π. However, the shallowness of the plot with τ
shows that one can obtain close to the optimal value for
large coherent amplitude, so the phase can be measured
modulo 2π. The phase tracking simulations in Ref. [4]
showed that it is possible to estimate ϕ modulo 2π with

〈[ϕ̂(t)− ϕ(t)]2〉 ≈ (κ/N )
2/3

. Moreover those simulations
obtained ϕ̂(t) by filtering the data prior to t. By using
smoothing [14] of the data before and after t, one would
halve this MSE [1, 5–7].

CONCLUSION

In summary, we have found a stochastic form of the
Heisenberg limit for measurements of a fluctuating phase
imposed on a beam with time-invariant statistics. For
Wiener fluctuations, the scaling of (κ/N )2/3 is tight,
in that there is a known adaptive measurement scheme
that achieves it. Our bound also reproduces the (tight)
Heisenberg scaling of (κ/N )−1 for an effectively constant
phase. We thus conjecture our general bound to be tight
for all power-law phase spectra. We do note, however,
that we have assumed a beam with time-symmetric Gaus-
sian statistics, and it is an interesting open question to
prove (or disprove) our bound without this assumption.
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Supplemental Material

A: SIMPLIFYING THE FISHER INFORMATION
FOR GAUSSIAN STATES

Here we show how to obtain Eq. (9) from (5) in the
paper. To evaluate averages such as 〈X2(t)X2(t′)〉, note
that the operators for the different times commute, so
this is the same as a symmetrically ordered moment, and
we can use the Wigner function. This means that the
expectation values will satisfy the same rules as for prob-
ability distributions.

For Gaussian distributions, one finds that

〈x21x22〉 − 〈x21〉〈x22〉 = 2(〈x1x2〉2 − x̄21x̄22). (S1)

As a result,

〈Q2
±(t)Q2

±(t′)〉 = 〈Q2
±〉〈Q2

±〉+ 2〈Q±(t)Q±(t′)〉2

− 2〈Q±〉2〈Q±〉2, (S2)

where Q+ := X and Q− := Y . Note that for expectation
values at a single time, we can omit the time-dependence
due to stationarity. For t 6= t′, X(t) and Y (t′) commute,
so we can again use the Wigner function to take the av-
erage, giving

〈X2(t)Y 2(t′)〉 = 〈X2〉〈Y 2〉+ 2〈X(t)Y (t′)〉2

− 2〈X〉2〈Y 〉2. (S3)

On the other hand, to include the case t = t′, we
need to explicitly symmetrise. This is not needed for
〈X2(t)X2(t′)〉, because it is already symmetric, but it is
needed for 〈X2(t)Y 2(t′)〉.

Using the commutation relation [X(t), Y (t′)] = 2iδ(t−
t′) enables us to evaluate the symmetrised form〈

X2(t)Y 2(t′)
〉
S

=
〈
X2(t)Y 2(t′)

〉
− 4iδ(t− t′)

〈
X(t)Y (t′)

〉
− 2δ2(t− t′). (S4)

The subscript S indicates the expectation value of the
symmetrically ordered operator. We then obtain

〈X2(t)Y 2(t′)〉 = 〈X2(t)Y 2(t′)〉S + 4iδ(t− t′)〈X(t)Y (t′)〉
+ 2δ2(t− t′). (S5)

Similarly we obtain

〈Y 2(t)X2(t′)〉 = 〈Y 2(t)X2(t′)〉S − 4iδ(t− t′)〈Y (t)X(t′)〉
+ 2δ2(t− t′). (S6)

Then we get

〈X2(t)Y 2(t′)〉S = 〈X2〉〈Y 2〉+ 2〈X(t)Y (t′)〉2S
− 2〈X〉2〈Y 〉2

= 〈X2〉〈Y 2〉+ 2〈X(t)Y (t′)〉2

− 4iδ(t− t′)〈X(t)Y (t′)〉 − 2δ2(t− t′)
− 2〈X〉2〈Y 〉2, (S7)

and so the delta functions cancel out to give Eq. (S3)
even for t = t′. Similarly

〈Y 2(t)X2(t′)〉 = 〈Y 2〉〈X2〉+ 2〈Y (t)X(t′)〉2

− 2〈Y 〉2〈X〉2, (S8)

both for t = t′ and for t 6= t′.
We can write Eq. (5) in the form

F (Q)(t− t′) = 4
[
Re〈b†(t)b(t)b†(t′)b(t′)〉

−〈b†(t)b(t)〉〈b†(t′)b(t′)〉
]

=
1

4
〈[X2(t) + Y 2(t)][X2(t′) + Y 2(t′)]〉

− 1

4
〈X2 + Y 2〉2. (S9)

Using the above results for Gaussian states, Eqs. (S2),
(S3), (S8), this becomes

F (Q)(t, t′) =
1

2

[
〈X(t)X(t′)〉2 + 〈Y (t)Y (t′)〉2

+〈X(t)Y (t′)〉2 + 〈Y (t)X(t′)〉2 −
(
〈X〉2 + 〈Y 〉2

)2]
.

(S10)

Changing to the normally ordered form we obtain

F (Q)(t, t′) = 4N δ(t− t′)− 1

2

(
〈X〉2 + 〈Y 〉2

)2
+

1

2

[
〈: X(t)X(t′) :〉2 + 〈: Y (t)Y (t′) :〉2

+〈: X(t)Y (t′) :〉2 + 〈: Y (t)X(t′) :〉2
]
.
(S11)

Using the functions f and g, Eq. (S11) simplifies to
Eq. (9) in the paper.

B: BOUNDING g̃(ω) AND f̃(ω)

Let us define the 2-vector Z(t), 2×2 Hermitian matrix
function M(t, t′), and symmetrised correlation function
SAB(t, t′) by

Z(t) :=

(
X(t)
Y (t)

)
,

M(t, t′) := 〈Z(t)Z†(t′) + Z(t′)Z†(t)〉/2,
SAB(t, t′) := 〈A(t)B(t′) +B(t′)A(t) +A(t′)B(t)

+B(t)A(t′)〉/4. (S12)

Using the commutation relation [X(t), Y (t′)] = 2iδ(t −
t′), one can write M in the form

M =

(
SXX SXY + i11

SXY − i11 SY Y

)
, (S13)
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where 11(t, t′) := δ(t − t′). Note that M(t, t′) is positive
definite, in the sense that∫

dt dt′ ξ(t)M(t, t′)ξ†(t′) = 〈ℵ1ℵ†1 +ℵ2ℵ†2〉/2 ≥ 0 (S14)

for any 2-vector function ξ(t), with ℵ1 :=
∫
dt ξ(t)Z(t)

and ℵ2 :=
∫
dt ξ†(t)Z(t) (this is the continuous analog of

the Schrödinger-Robertson multimode uncertainty rela-
tion [17]). Stationarity implies further that M(t, t′) can
be written asM(t−t′). Hence, taking Fourier transforms,
Eq. (S14) is equivalent to the property∫

dω ξ̃(ω)M̃(ω)ξ̃†(ω) ≥ 0 (S15)

for all 2-vector functions ξ̃(ω), implying that the 2 × 2
matrix M̃ is positive; i.e., that(

S̃XX S̃XY + i

S̃Y X − i S̃Y Y

)
≥ 0 (S16)

(a two-dimensional form of Bochner’s theorem [13]). This
can equivalently be written as the three inequalities
S̃XX(ω) ≥ 0, S̃Y Y (ω) ≥ 0, and the spectral uncertainty
principle

S̃XX(ω)S̃Y Y (ω) ≥ [S̃XY (ω)]2 + 1. (S17)

Note that SXX , SY Y , and SXY are time symmetric by
construction, and so have real Fourier transforms.

Let us further define

ga(t− t′) := 〈: X(t)X(t′) :〉〈: Y (t)Y (t′) :〉

gb(t− t′) := −1

2

(
〈: X(t)Y (t′) :〉2 + 〈: Y (t)X(t′) :〉2

)
gc(t− t′) :=

1

2

(
〈X〉2 + 〈Y 〉2

)2
, (S18)

so from Eq. (11) of the paper, g(t − t′) = ga(t − t′) +
gb(t − t′) + gc(t − t′). Our first aim is to bound g̃(ω) in
terms of N using the inequality in Eq. (S17).

The inequality (S17) means that

[1 + h̃X(ω)][1 + h̃Y (ω)] ≥ [h̃XY (ω)]2 + 1, (S19)

where

hX(t− t′) := 〈: X(t)X(t′) :〉
hY (t− t′) := 〈: Y (t)Y (t′) :〉

hXY (t− t′) :=
1

2
[〈: X(t)Y (t′) + Y (t)X(t′) :〉] . (S20)

Because hX , hY , and hXY are time symmetric by con-
struction, h̃X , h̃Y and h̃XY are real. Further, the as-
sumption in the paper that the cross-correlation be-
tween the quadratures is time symmetric, i.e., that
the symmetrized (or Wigner) cross-correlations satisfy
1
2 〈X(t)Y (t′) +Y (t′)X(t)〉 = 1

2 〈X(t′)Y (t) +Y (t)X(t′)〉, is
equivalent to 〈: X(t)Y (t′) :〉 = 〈: X(t′)Y (t) :〉, implying

hXY (t− t′) = 〈: X(t)Y (t′) :〉. (S21)

Using the above relations, we can write the photon flux
as

N =
2

π

∫
dν
[
h̃X(ν) + h̃Y (ν)

]
=

2

π

∫
dν
[
h̃X(ω − ν) + h̃Y (ω − ν)

]
. (S22)

Similarly

g̃a(ω) =
1

2π

∫
dν h̃X(ν)h̃Y (ω − ν)

=
1

2π

∫
dν h̃X(ω − ν)h̃Y (ν), (S23)

and

g̃b(ω) = − 1

2π

∫
dν h̃XY (ν)h̃XY (ω − ν). (S24)

Equations (S22) and (S23) then give

πN + 4πg̃a(ω) =

∫
dν
{

[1 + h̃Y (ν)][1 + h̃X(ω − ν)] + [1 + h̃Y (ω − ν)][1 + h̃X(ν)]− 2
}
. (S25)

Replacing [1 + h̃X ] by the smaller expression [h̃2XY + 1]/[1 + h̃Y ] as per Eq. (S19) gives the inequality

πN + 4πg̃a(ω) ≥
∫
dν

{
[h̃Y (ν)− h̃Y (ω − ν)]2

[1 + h̃Y (ν)][1 + h̃Y (ω − ν)]
+ [h̃XY (ν)]2

1 + h̃Y (ω − ν)

1 + h̃Y (ν)
+ [h̃XY (ω − ν)]2

1 + h̃Y (ν)

1 + h̃Y (ω − ν)

}
.

(S26)

Each of the three terms here is positive. Dropping the first term and using the inequality a+ b ≥ 2
√
ab, gives

πN + 4πg̃a(ω) ≥ 2

∫
dν |h̃XY (ν)h̃XY (ω − ν)|. (S27)
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Because the absolute value cannot exceed the value, it
follows that N + 4g̃a(ω) + 4g̃b(ω) ≥ 0. Moreover, gc(t−
t′) is a positive constant by stationarity, and therefore
g̃c(ω) = 2πgc(0)δ(ω) ≥ 0. This means that N + 4g̃(ω) ≥
0.

Turning now to f̃(ω), from Eq. (10) we can similarly
write this as

f̃(ω) =

∫
dν
[
h̃X(ν) + h̃Y (ν)

] [
h̃X(ω − ν) + h̃Y (ω − ν)

]
.

(S28)
Using h̃X(ω) + h̃Y (ω) = h̃X(ω) + [1 + h̃Y (ω)] − 1 and
replacing 1 + h̃Y (ω) by the smaller term 1/[1 + h̃X(ω)],
as per the weaker version of Eq. (S19) with 1 on the
right-hand-side, and simplifying yields

h̃X(ω) + h̃Y (ω) ≥ [h̃X(ω)]2

1 + h̃X(ω)
≥ 0. (S29)

As f̃(ω) is thus an integral of a product of two non-
negative quantities, we immediately get f̃(ω) ≥ 0.

C: DETAILS OF THE INEQUALITIES IN EQ. (15)

The inequality in the second line of Eq. (15) of the
paper is because the integral over the interval [0, 2I/µ]
cannot be more than half that over the full range, as we
now prove. The integral over the full range [0,∞) is given
by

1

π

∫ ∞
0

κp−1 dω

ωp + κp−1 (ζN + µ)

=
κp−1

π[κp−1(ζN + µ)]1−1/p
1

sinc(π/p)

≥ κp−1

π[κp−1(ζN + µ)]1−1/p
. (S30)

In addition, if (I/µ)p ≤ κp−1 (ζN + µ), then

1

π

∫ I/2µ
0

κp−1 dω

ωp + κp−1 (ζN + µ)

≤ 1

π

∫ [κp−1(ζN+µ)]1/p/2

0

κp−1 dω

κp−1 (ζN + µ)

=
κp−1

2π[κp−1(ζN + µ)]1−1/p
, (S31)

Comparing this to Eq. (S30) gives the required result.

D: MORE GENERAL TYPES OF PHASE
FLUCTUATIONS

We allow for phase fluctuations satisfying the condition

∃β : ∀|ω| > κβ, F̃ (C)(ω) ≤ |ω|p/κp−1. (S32)

Note that we continue to assume that the correlations
are stationary, as per condition 1. For Gaussian phase
statistics, F̃ (C)(ω) = Σ̃−1(ω), although more generally
F̃ (C)(ω) ≥ Σ̃−1(ω) (since F (C)(t, t′)−Σ−1(t, t′) is a pos-
itive definite function [12]). Our condition means that,
for large ω, Σ̃(ω) is greater than or equal to a function
scaling as κp−1/|ω|p. We could also give the condition
directly in terms of Σ̃(ω) and it would be equivalent for
Gaussian phase statistics, but this form of the condition
also allows for non-Gaussian phase statistics in Eq. (7).
A particular example, for p = 2 (and Gaussian statistics),
is the case of phase fluctuations modelled by Ornstein-
Uhlenbeck noise, where Σ̃(ω) = κ/(λ2 + ω2).

Selecting a suitable value of β, then for |ω| > κβ,

F̃−1(ω) ≥ 1

|ω|p/κp−1 + F̃ (Q)(ω)
. (S33)

Following the same derivation as in the body of the paper,
we obtain

F−1(0) ≥ 1

π

∫ ∞
I/2µ+κβ

κp−1 dω

ωp + κp−1 (ζN + µ)
. (S34)

Here, we now omit the smallest range of integration con-
sistent with |ω| > κβ (as Eq. (S33) requires |ω| > κβ),
as well as the range |ω| ≤ κβ. As in the body of the
paper, omitting part of the range of the integral can only
further reduce the value of the integral.

As we take µ = Θ(N (N/κ)(p−1)/(p+1)) and consider
large N/κ, we obtain I/2µ > κβ, so we again obtain
Eq. (15) from the paper. Therefore the more general
type of phase fluctuations we have allowed do not alter
the scaling.

E: THE FISHER INFORMATION FOR MIXED
STATES

A mixed phase-dependent state can be written in the
form

ρ(ϕ) =
∑
`

p`ρ`(ϕ). (S35)

Consider the Fisher information for estimation of the un-
known phase shift ϕ via the optimal measurement with
positive operator-valued measure (POVM) {Mk}. We
use qk for the probability of measurement result k on
ρ(ϕ). To upper bound the Fisher information obtainable
by this POVM, we can always consider a more infor-
mative measurement described by POVM {|`〉〈`| ⊗Mk}
on the expanded state ρ(ϕ) =

∑
` p`|`〉〈`| ⊗ ρ`(ϕ). We

use pk` to indicate the probability of measurement re-
sult (k, `) with this expanded POVM, and pk|` = pk`/p`.
Because the expanded POVM cannot result in less infor-
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mation, we must have [18]

F (Q)(ρ(ϕ)) =
∑
k

qk

[
d

dϕ
log(qk)

]2
≤
∑
k`

pk`

[
d

dϕ
log(pk`)

]2
=
∑
`

p`
∑
k

pk|`

[
d

dϕ
log(pk|`)

]2
≤
∑
`

p`FQ(ρ`(ϕ)). (S36)

As a result, the Fisher information is no greater than
that for the individual states in the mixture.

When considering a mixture of phase-squeezed states,
we have no XY correlations, and therefore require
SXXSY Y ≥ 11. We are considering the case that the
Y quadrature is squeezed, and there is antisqueezing in
the X quadrature. For mixed squeezed states, we can
model the X fluctuations as a sum of classical and quan-
tum fluctuations. That is, we define SQXX := 11/SY Y and

SCXX := SXX − SQXX , so SXX = SQXX + SCXX . The
inequality SXXSY Y ≥ 11 means that SCXX is positive
semidefinite, and therefore represents valid classical fluc-
tuations.

Moreover, it is easily shown that the correlations SQXX
and SY Y correspond to a pure squeezed state. For this
pure squeezed state, we take RQ+ = 1/R−, and adjust the
values of x and γ to be consistent. That is, xQ and γQ

such that xQ is determined from RQ+ and R−, and γQ

satisfies γQ(1 + xQ) = γ(1 + x).

F: DERIVATION OF EQ. (25)

Substituting the equations with the starred quantities
into the equation for F−1(0), one obtains

F−1(0) = N?−2/3
1

2π

∫ ∞
−∞

dω?

ω2
? + [λ/κ+ F̃ (Q)(ω)]/κN 4/3

?

.

(S37)

We use Eq. (22) of the paper, and take R− = 1/R+ and
x = (

√
R+ − 1)/(

√
R+ + 1). In the limit of large R+

we have x = 1 − 2R
−1/2
+ + O(R−1+ ). Keeping only the

leading order term, we have 1 − x ≈ 2R
−1/2
+ . Similarly,

keeping only leading order terms we have R+ − 1 ≈ R+,
R−− 1 ≈ −1, and 1 + x ≈ 2. Then Eq. (22) simplifies to

F̃ (Q)(ω) ≈ 4N + 4α2R+
(4/R+)γ2

(4/R+)γ2 + 4ω2

+
γ3

16

[
8
√
R+

(4/R+)γ2 + ω2
+

8

4γ2 + ω2

]
. (S38)

For large R+ the second term in the square brackets
can be omitted. Substituting the starred quantities then
gives

F̃ (Q)(ω) ≈ 4κN? + 4α2
?κN

4/3
?

γ2?
γ2?/R? + ω2

?

+ γ3?κN
4/3
?

√
R?/2

4γ2?/R? + ω2
?

. (S39)

Now we take F̃
(Q)
? (ω?) := F̃ (Q)(ω)/κN 4/3

? , so that

F̃ (Q)(ω) ≈ 4N−1/3? +
4γ2?α

2
?

γ2?/R? + ω2
?

+
γ3?
√
R?/2

4γ2?/R? + ω2
?

. (S40)

The first term is higher order, and omitting it gives
Eq. (26) of the paper. Omitting the term in λ and using

F̃
(Q)
? (ω?) in Eq. (S37) then gives Eq. (25) of the paper.
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