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Abstract

The steady response of a fluid with two layers of different density in a porous medium
is considered during extraction through a point sink. Supercritical withdrawal in which
both layers are being withdrawn is investigated using a spectral method. We show that
for each withdrawal rate, there is a single entry angle of the interface into the point sink.
As the flow rate decreases the angle of entry steepens until it becomes almost vertical,
at which point the method fails. This limit is shown to correspond to the upper bound
on sub-critical (single-layer) flow.
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1. Introduction
As water resources in dry climates are stretched further by population growth and
rising salinity, it is of increasing importance to be able to manage water resources
better. One source of water that is becoming more important internationally is
underground aquifers, but as more pressure is placed on this resource the likelihood
of salt water contamination increases. In this paper we consider withdrawal through
a point sink from an unconfined aquifer containing two layers of different density
which may be considered as a salt water layer beneath a fresh water layer. Similarly,
increasing pressure on oil resources means more efficient withdrawal from oil
reservoirs is becoming necessary. The problem of withdrawal from a layer of oil over
water is mathematically identical to the problem of two layers of water of different
density [8].

The unique part of the present work is that the withdrawal is simultaneously from
both layers, that is, supercritical flow. Earlier work [3, 13, 17] has concentrated on
subcritical flows in which all of the extracted fluid comes from the layer adjacent to the
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Figure 1. Schematic of the flow into a point sink from two layers of different density—supercritical flow
rate.

point sink. The critical flow rate is defined as the maximum rate at which only the fluid
from the layer adjacent to the sink is withdrawn, and it is of great practical interest.

In order to consider this problem we treat the interface between the two fluids as a
sharp interface where the two fluids do not mix. The case of withdrawal through a line
sink (two-dimensional flow) began with the work of Muskat [15], and many scientists
have studied critical withdrawal for various aquifer configurations; see, for example,
[2, 6, 11, 14, 17, 18]. The case of supercritical flow, in which both layers are withdrawn
simultaneously through a sink, was considered by Yu [16] and Henderson et al. [7].
More recently, Hocking and Zhang [12] and Zhang et al. [19] found that supercritical
withdrawal into a line sink was possible over a range of different flow rates for a
given entry angle of the interface. This result is contrary to the analogous surface
water, supercritical case [4, 9, 10] in which solutions obtained with an integral equation
technique showed that each flow rate into a line sink produced a unique angle of entry.

There is less work available on the three-dimensional (point sink) case. Blake
and Kucera [3] and Lukas et al. [13] considered this problem, including flows with
multiple sinks and sources in an attempt to modify the critical flow rate to allow higher
withdrawal rates without breakthrough of salt water. Their work was restricted to the
subcritical case. Forbes and Hocking [5] found a very limited range of supercritical
solutions for surface water flow into a point sink.

In the present study, two homogeneous and isotropic aquifer layers separated by
an interface of infinitesimal thickness are considered. A point sink is located in the
upper layer and withdraws fluid at some constant rate (see Figure 1). The origin
is situated at a distance H directly beneath the sink at the level of the undisturbed
interface. We seek supercritical solutions in which fluid from both layers is flowing out
through the sink. Potential functions are chosen using appropriate eigenfunctions that
satisfy the flow equations except at the interface itself. Orthogonality and an iterative
scheme are exploited to compute series coefficients that satisfy the nonlinear boundary
conditions. In each case we find that as the flow rate decreases the interface at the sink
steepens until it becomes almost vertical, at which point the method fails. Thus, for
each value of entry angle there is a single, unique withdrawal rate. As this withdrawal
rate decreases the limiting flow approaches the single layer maximal coning flow.
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2. Formulation
2.1. Equations Consider a homogeneous and isotropic porous medium with
permeability κ. Two fluids of different density and dynamic viscosity are separated by
an interface of infinitesimal thickness into two homogeneous layers as seen in Figure 1.
A point sink, S , of strength, Q, is located at a distance, H, above the origin. The fluids
located beneath and above the interface are defined as fluid 1 and fluid 2, respectively.

We adopt a cylindrical polar coordinate system, and assume the flow to be
axisymmetric so that the flow is independent of angle, θ, and only depends on
horizontal distance from the sink, r, and elevation above the undisturbed level of the
interface, z. If z = η(r) is the equation of the interface, suppose the region below the
interface to have density ρ1 and dynamic viscosity µ1 and the region above the interface
to have density ρ2 and dynamic viscosity µ2. The velocity potentials in each region in
three-dimensional steady flow satisfy Darcy’s law:

Φ1(r, z) =
κ

µ1
(p + ρ1gz), z < η(r), (2.1)

Φ2(r, z) =
κ

µ2
(p + ρ2gz), z > η(r), (2.2)

where κ is the intrinsic permeability, p is the pressure at elevation z and g is
gravitational acceleration. Matching the pressure across the interface between the two
immiscible fluid regions gives a condition on the interface, z = η(r), that

Φ1 − γΦ2 = Kz where γ =
µ2

µ1
and K =

κg( ρ1 − ρ2)
µ1

. (2.3)

In porous media flow into a line sink the interface cannot level off because of the
logarithmic dependence of the sink potential and its relation to the interface condition.
However, in the case of a point sink the potential is of the order of 0(1/r) so that the
surface converges to horizontal as r→∞.

The solutions we seek are those in which the interface is drawn up a distance H to
a point where it enters a point sink with an angle α (defined positive downward) to the
horizontal, as shown in Figure 1. Since flux from each layer (see below) depends on
the angle of entry, α, the flux from the lower fluid is Q((π/2) − α)/π and from the upper
fluid it is Q((π/2) + α)/π. Fluid is withdrawn from both above and below the interface.
The velocity potentials of the separate flow fields below and above the interface must
satisfy Laplace’s equation,

∇2Φ1(r, z) = 0, z < η(r),
∇2Φ2(r, z) = 0, z > η(r), (2.4)

and the velocity potentials must be point-sink like as the outlet is approached, so that

Φ1 →
πQ1

4π[(π/2) − α]
1

[r2 + (z − H)2]1/2 as (r, z)→ (0,H), z ≤ η(r),

Φ2 →
πQ2

4π[(π/2) + α]
1

[r2 + (z − H)2]1/2 as (r, z)→ (0,H), z ≥ η(r),
(2.5)

where Q1 and Q2 are the respective total dimensional fluxes from within the two
regions. There is a relationship between these two values which must hold if the
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dynamic condition on the interface is to be satisfied. Applying Darcy’s law [1] to the
streamline along the interface and noting that for steady flow there must be no pressure
difference across the interface leads to

η =
1
K

[
Φ1(r, z) − γΦ2(r, z)

]
on z = η(r). (2.6)

Defining the dimensionless variables

z∗ =
z
H
, r∗ =

r
H
, Φ∗1 =

Φ1

γQ/4πH
, Φ∗2 =

Φ2

Q/4πH
,

the nondimensional form of the dynamic interface condition (2.6) becomes

η∗ = G(Φ∗1 − Φ∗2) where G =
Qγ

4πKH2 (2.7)

and
Φ∗1 →

1
R∗

as (r∗, z∗)→ (0, 1), z∗ ≤ η∗(x∗),

Φ∗2 →
1
R∗

as (r∗, z∗)→ (0, 1), z∗ ≥ η∗(r∗),
(2.8)

while in the far field it is required that
Φ∗1 → 0, Φ∗2 → 0 as R∗ →∞, (2.9)

where R∗ = [r∗2 + (z∗ − 1)2]1/2. The asterisk denotes dimensionless variables, and
henceforth will be dropped for simplicity. The quantity G is, therefore, a measure
of the flow strength. Another condition to be satisfied is that there be no flow across
the interface, and this can be ensured by enforcing the condition that the flow is along
the interface, that is,

Φ1z = η′(r)Φ1r on z = η(r),
Φ2z = η′(r)Φ2r on z = η(r).

(2.10)

2.2. Spectral method for supercritical withdrawal We now define potential
functions for each region and an interface function that build the correct limiting
behaviour both near the sink and in the far field, and then compute the corrections to
these. The potential functions will provide the appropriate sink behaviour and satisfy
Laplace’s equation (2.4), and an appropriate choice is

Φ1(r, z) = −
1
R

+

∞∑
k=1

akeλk(z−1)J0(λkr), z ≤ η(r),

Φ2(r, z) = −
1
R

+

∞∑
k=1

bke−λkzJ0(λkr), z ≥ η(r),

(2.11)

where ak, bk, k = 1, 2, . . . , are real coefficients to be computed, λk, k = 1, 2, . . . , are
appropriate eigenvalues, and J0 is a Bessel function of the first kind. This form
assumes that the series is valid over 0 < r < L and the truncation point, L, is chosen
to be large enough to provide converged solutions. The forms of Φ1 and Φ2 have the
correct 1/R behaviour in the far field, and so the correct boundary condition at r = L is
that the series terms make no additional contribution, so eigenvalues are chosen so that
J0(λkL) = 0. This choice makes no difference to the computed solutions (see below).



[5] Supercritical flow into a point sink 331

We also define

η(r) = η0(r) +

∞∑
k=1

ck J0(λkr), (2.12)

where the ck, k = 1, 2, . . . , are to be determined, and η0(r) is carefully chosen to have
the correct limiting behaviour as r→ 0 and r→∞ as

η0(r) =
Ar3 + (4 − tanα)r2 + (6 − 4 tanα)r + 1

(r + 1)4 . (2.13)

Note that η0(0) = 1, η′0(0) = −tan α and η0 → A/r as r → ∞, which means the
remaining terms in η(r) will enable the use of orthogonality to satisfy the conditions.
The constant A is to be determined as an output of the method, but gives the behaviour
of the potential (and hence interface) for large r.

At this point we might expect that we could substitute these series into (2.7) and
(2.10), and solve for the series coefficients by Newton’s method. However, this
procedure proves to be highly ill-conditioned. An approach that works is to exploit the
orthogonality of the eigenfunctions involved in each equation, producing an equation
for each of the series coefficients. These equations are nonlinear, but can still be solved
by an iterative method. Henceforth, we assume the value of γ = 1, but the procedure
if that is not the case is similar.

The equation (2.7) can be modified by invoking the orthogonality of the
eigenfunctions to give an equation for the coefficients,

ck −
2

L2J2
1(λk)

∫ L

0
[G(Φ1 − Φ2) − η0]rJ0(λkr) dr = 0, k = 1, 2, 3, . . . ,N, (2.14)

where L is the truncation point and λk, k = 1, 2, . . . , are the appropriate eigenvalues
of J0 for this value of L. The other conditions (2.10) can be dealt with similarly,
but one must be careful because the exponential terms (which make the orthogonality
inviolate) cannot be ignored, and consequently we add and subtract terms so that the
resulting equations for ak, bk, k = 1, 2, . . . , are

akλk −
2

L2J2
1(λk)

∫ L

0
η′0(r)rJ0(λkr) dr

−
2

L2J2
1(λk)

∫ L

0

∞∑
j=1

a jλ j[(eλ j(η−1) + 1)J0(λ jr) + eλ j(η−1)η′J1(λ jr))]rJ0(λkr) dr = 0,

(2.15)

bkλk −
2

L2J2
1(λk)

∫ L

0
η′0(r)rJ0(λkr) dr

+
2

L2J2
1(λk)

∫ L

0

∞∑
j=1

b jλ j[(e−λ jη − 1)J0(λ jr) − e−λ jηη′J1(λ jr)]rJ0(λkr) dr = 0,

(2.16)

for k = 1, 2, 3, . . . . The series can be truncated after N terms, giving 3N unknowns.
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If a “guess” is made for all series coefficients for k = 1, 2, . . . ,N, then (2.14)–(2.16)
can be evaluated along the interface using Gaussian quadrature with as many points
as we wish (here we use M = 15N points to ensure accurate representation of each
eigenfunction), and the error in each equation can be evaluated. Thus, we have 3N
equations for the 3N unknown series coefficients. This was programmed into Octave
and solved for the series coefficients (and hence the interface shape) using the fsolve
algorithm. The convergence was tested as the computational window L increased and
the number of coefficients was increased, and it was found that with L > 40, there was
no discernible graphical difference in solutions (note that changing L also changes
the eigenvalues). Similarly, increasing the number of coefficients in the series beyond
N = 200 made no discernible difference to the graphical solutions (or to the G flow
values beyond three decimal places). Thus, solutions with L = 50 and N = 250 were
used for most calculations. As the magnitude of the flow rate approached the limiting
value from above, a greater number of coefficients in the series was required to provide
suitable convergence.

It turns out that if entry angle α is an input, then flow rate G is an output of the
code, and so an extra equation is required to account for the extra unknown. The
last coefficient of η(r) was, therefore, neglected and replaced by G in the equations.
Also, the value of the constant A was required as an output to provide a smooth
solution near the truncation limit L, and so a simple extra equation that ensured
a smooth continuation from ηN−1 to ηN (using a one-term Taylor expansion) was
added. Solutions for small values of α were computed using a starting guess with
all coefficients being zero. The angle was then incremented using the smaller entry
angle solutions as a starting guess, providing rapid convergence in each case.

3. Results

Results for several different values of α are shown in Figure 2. It is clear that as the
flow rate decreases, the interface steepens at the entry point. The limiting case would
be α = π/2, but the method began to struggle for values of α ≥ 1.3, as can be seen
in Figure 2 for the case α = 1.35, where small wobbles can be seen on the interface.
However, in spite of this difficulty, the values of G for a given entry angle do seem to
converge as N is increased, so that with N = 250 they are accurate to 3 decimal places.
Figure 3 shows the flow rate computed at each angle. It is clear that as the entry angle
α steepens, G is approaching a value as the interface becomes vertical. Extrapolating
the curve in Figure 3 to α = π/2 using the curve-fitting “trend line” facility in Excel
gives G ≈ 0.167. The work of Lukas et al. [13] gave a limiting single-layer flow value
for G ≈ 0.163 using an integral equation approach. (Note that their definition of G is a
factor of 4π times bigger than that used here, and we have made the adjustment.) The
consistency of these values suggests that the limiting single-layer flow is very close to
this value.
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Figure 3. Flow rate value G plotted against entry angle of the interface into the sink. The limiting value
as α→ π/2 is about G ≈ 0.167.
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4. Conclusions

The supercritical withdrawal through a point sink from two layers of fluid
of different density in a homogeneous, isotropic two-dimensional aquifer was
investigated. We used a spectral method to compute the interface shapes for the
supercritical case in which both fluids, and consequently the interface, are drawn
directly into the point sink. The difficulty is that this leads to a singularity on the
interface itself. The method was able to deal with this singularity and is efficient and
relatively easy to implement, but was unable to compute solutions right up to an angle
of α ≈ π/2.

As the value of entry angle, α, steepens, the value of G decreases, seeming to close
in on a value near to G = 0.167, very close to the limiting single-layer flow solutions
(G = 0.163, [13]).

The results raise a clear point of difference between the withdrawal through a point
sink and the earlier work for a line sink [12, 17], in which there were multiple flow
rate values valid for each entry angle of the interface. As the entry angle steepened the
range of values of flow rate narrowed, seeming to approach a single value as α→ π/2.
The reason for this is not clear, but it would seem that it is due in part to the fact
that the logarithmic nature of the line sink potential does not allow the interface to
approach zero as one moves away from the sink. This makes the balance to obtain a
level interface in the far field very difficult and in some situations impossible, since
the elevation of the interface is proportional to Φ. On the other hand, Φ→ 1/R for the
point sink, simplifying the behaviour considerably as the surface elevation approaches
a horizontal level in all cases.

The spectral method has provided an effective method for the computation of a
supercritical, two-layer flow in three dimensions (point sink), in which there is a
singularity on the interface, and provides an effective method to find similar solutions
in other geometries.
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