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1 Introduction 5. Kernel function must be real, i.e.,
O(9,)=D*(—6,— 1), where “*” indicates the com-

Following on from a recent publicatidrusing the hyper- plex conjugate,

bolic signal detector for nonstationary signals, this paper
explores in detail characteristics of the hyperbolic kernel. A~ 6. (d/d7)®(8,7)|,-0=0, V¥,
cross-term effect in the power spectrum of multicomponent 7. (d/d8)®(0,7)|y—0=0, V~.
signals represents interactions among the individual com- ) )
ponent signals. This effect, sometimes called the “artifact,” ~ The spectrogram or short-time Fourier transfdSTFT)
is undesirable since the interactions among different mono- Method has been used very effectively to study nonstation-
component signals in a multicomponent signal provide no &Y Signals since the 1940 which detailed comparisons
useful physical interpretation of the individual signals. For of the spectrogram with tlme—frequency.dlstnbutlons can be
example, the artifact causes zero-valued regions of thefound-' However, the method has the disadvantage of com-
- ' . . promising time and frequency resolution, which heavily de-
original spectrum to be nonzero and complicates the inter- yo 4 o ‘the window size used in the transform. To further
pretation of the time-frequency power spectrum as will be ngerstand time-varying power spectra, several researchers
illustrated later. To eliminate artifacts, the modulus of cross gych as Page, Gabor, and Mileied to develop a joint
terms in the time-frequency power spectrum must be re- time-frequency distribution method. Later, CoAgeneral-
duced. However, cross terms cannot be completely elimi- ized the method by deriving the general formula for the
nated since a spectrum consists of both auto and crosdistribution. Each joint time-frequency distribution is
terms? One of the methods for reducing the effects of cross unique with a unique kernel function. It has also been re-
terms is to use an appropriate kernel for the computation of ported that the characteristics of the distribution depend
the power spectrum. A desirable property of a kernel is that Strongly on the kernel function. The first advantage of the
it supports auto terms and suppresses cross terms in thd0int distribution is that it does not compromise time and
time-frequency plane by multiplying them with its weight- reguency resolution. Secondly, itis flexible, i.e., by chang-
ing function. A kernel is an arbitrary function that must ing the kemel function, a new and unique distribution is

satisfy a number of admissibility constraints. These con- generated. Thirdly, certain distributions can be used to
. o o ' study certain types of signals whose power spectral auto
straints were studied in detail in Ref. 3 and are as follows:

terms lie within the supportive region of the kernel function
of the distribution. Fourthly, the Fourier transform tends to
average out fine details of the power spectrum and thus it is
not suitable in cases where the signal power spectrum var-
ies rapidly with frequency. Finally, new wavelet functions
are generated if new kernels are found. This diversifies and
links the time-frequency signal processing area together.
This paper does not discuss the spectrogram but explores
‘i ¢ address: Griffith University. Gold Coast C School of E joint time-frequency distributions only.

Curront addrces; Srifth Universy, Gold Coast Campus, School of£n ™" The main motivation in inventing new kemels is to more
E-mail: K.Le@griffith.edu.au effectively suppress cross terms in the time-frequency

1. Kernel function®(6,7), is independent of timg
2. Kernel function is independent of frequeney
3. ®(6,00=1 for all 6,

4, ®(0,7=1 for all 7,
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power spectrum of multicomponent signals. The Wigner- frequency distribution. The problem of first-power
Ville (WV) distribution or Wigner-Ville time-frequency  exponential kernels is that they are simple and thus some
power spectrum, which employs a unity kernel, was first desirable properties such as effective cross-term suppres-
proposed by Wigner in 1932 to solve problems in quantum sion and noise robustness are missing. Therefore, finding
mechanic$. Since then, the WV time-frequency distribu- the right kernel, which is easy to use and at the same time
tion has found many different applications including radar, effective, is a difficult task.

speech recognition, and loudspeaker deSigurther de- The purpose of this paper is to propose a new family of
tails on the WV distribution are provided in Refs. 3, 4, and kernels, the family of hyperbolic functiongsech@Bén]"

6 to 8. Since the WV kernel is unity, the cross terms in the wheren is the kernel family order, that can be used to
time-frequency plane are not suppressed, i.e., they aresuppress cross terms in the time-frequency power spectrum.
scaled down by a unity factor, which is the main disadvan- These kernels provide better results than the CW kernel for
tage of the WV distribution. These cross terms or “arti- well-chosen values of the kernel control paramgte8ince
facts” provide misleading information about the WV time- the MTE kernel is not Fourier transformable, it is not pos-
frequency power spectrum. It should also be noted that thesible to compare its cross-term suppression and noise ro-
terms “time-frequency distribution,” which was coined by  bustness with that of the hyperbolic and CW kernels. How-
Cohen?? and “time-frequency power spectrum,” which ever, various forms of the MTE kernel are studied by
was first used by Page and Rihac2ek' are identical. estimating their auto-term widths, then comparisons are
These terms have been extensively used by many differentmade among the MTE, hyperbolic, and CW kernels. The
authors in the field of time-frequency signal processing. In hyperbolic and CW kernels are compared in detail in terms
this paper, they will be interchangeably used without any of cross-term suppression, auto-term resolution, and noise
difference in their meanings. robustness.

Currently, there are two kernels that have been shownto  The paper is organized as follows. The proposed hyper-
be most useful and effective in time-frequency power spec- bolic kernel family is detailed in Sec. 3. Section 4 compares
trum analysis. The first kernel was the Choi-Willian@W) the weighting functions of the hyperbolic and CW kernels.
kernel, which was proposed in 1989 by Choi and Section 5 discusses cross-term suppression ability of the
Williams? The second kernel was the multiform tiltable hyperbolic and CW kernels using multicomponent chirped
exponential(MTE) kernel, which was found in 1995 by  and complex-exponential signals. Sections 6 and 7 compare
Costa and Boudreauz-BartéfsThe CW kernel is a special  the effectiveness of the CW, hyperbolic, and multiform tilt-
case of the MTE kernel for some special values of the able exponentiaMTE) kernels in terms of their auto-term
kernel parameters. The main problem of the MTE kernel is widths and noise robustness.
that some of the kernel types are not Fourier transformable,
which makes them difficult to use. The CW and MTE ker-

nels are given mathematically by Ed4) and (2), respec- 2 Background on Cohen’s Time-Frequency
tively, Distribution

- The general form of the time-frequency power spectrum in
Dew( 8, 7)=exp(— 07 o), Cohen’s class for nonstationary signals is definéd as

where ¢ is the control parameter, (1) 1 PR,
P(t,w)z—zf f f exp —jot—jrw+]jou)
4’“’ — 0 — 0 — 0

P 2 0 2\ a T 2\ a 7] 2
e I CUREIE
7ol \| 6o 7o bo -®(6,7)-Ry4(t,7)dudrde, 3
70 1B\ "
+2r 7000 ) ] (2 where Ry (t,7) is the local auto-correlation function,
0

®(6,7) is the kernel functionu=t+(7/2), 7is the lag pa-
rameter, and is the running time variable. The rangeta$
0=t=<ty, wheret, is the signal window size over which
the power spectrum of a nonstationary signal is estimated.
From now on, the range of all integrals is froaw to +o
unless otherwise stated.

The one-dimensiondll-D) Fourier transform of a func-
tion x(t) is defined a¥

A number of alternative kernels have been proposed and
studied such as ct&507) by Margenau and Hiff,
sindB67),X° the exponential kernel exif#2),* the com-
pound kernel derived by taking a product of the Hill and
CW kernelst® the cone-shaped kern¥l,and the general-
ized CW kernel® These kernels, although easy to use, are
not effective in cross-term suppression compared with the
CW and MTE kernels. Details of the time-frequency distri- o
butions of these kernels can be found in Ref. 4, wherg, f:(w):f X(t)-exp(— jot)dt, (4
v, \, andr are kernel control parameters that are indepen- o
dent of the signal parameters and subject to certain condi- .
tions given in Ref. 12. The positive-valued parameteys ~ where F(w) is the 1-D Fourier transform ok(t) and j
and 6, can be designed to suit specific requirements. =-1.

The CW and MTE kernels are second- and higher-power  The formula for a time-frequency distribution is derived
exponential functions whose explicit expressions when in- by first obtaining its weighing function. The weighting
tegrating with power series do not exist. Thus, “first- functiont”'® is derived by taking the 1-D Fourier
power” exponential kernels are more suitable for a time- transform of the kerneld(6,7). This weighting function,
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W(t—u,7), determines how the cross terms of a time- tribution. Thus, the chosen values gfshould not be too
frequency power spectrum are scaled down thus reducinglarge or too small. Depending on a particular applicatjen,

their effects in relation to the auto terms. should be accordingly chosen so that satisfactory perfor-
Equation(5) can be rewritten in the form of the weight- mance in terms of cross-term suppression, auto-term reso-
ing functionW(t—u,7) as given by lution, and noise robustness can be achieved. It is also im-
1 portant to note that the hyperbolic s¢ghkernel, given in
P(t,0)= — Eq. (7), is not the MTE kernel given in Eq2) even though
4m the CW kernel is a special case of the latter kernel. This
o (4o (oo makes the hyperbolic kernel unique and thus it hopefully
xf f f [expl—jO(t—u)]-D(6,7)] might provide some improvements to the CW and MTE
oS e ~ ~ ~ kernels.
Wie=u.m) The time-frequency power spectrum using the hyper-
-exp(—jTw)-R, (t,7)dud7dé. (5) bolic secliBr6) kernel can be derived by substituting

®(6,7)=secliBrd) into Eq. (5) with R;4(t,7)=x[u
+(7/2)]-x*[u—(7/2)] as follows
In the case of the time-frequency power spectrum, the
local auto-correlation function is defintf as R, (t,7) 1 (m (e (4
=x[u+(7/2)]-x*[u—(7/2)]. It should be noted that the P(t,w)= _2J j J’ exp(—jTw)-{secliBor)
auto terms are located over the small-valued region of the Am® e S e
lag parameter”® and the cross terms in the high-valued r
region as the autocorrelation function is a measure of the -exg —j 6(t—u)]}.x*<u— —)
similarity of the signal with itself as a function of the lag 2
parameterr.t® Higher-order time-frequency spectra have
been studied in Refs. 21-24 by defining a new form of the
local autocorrelation function. However, this paper is de-
voted to the time-frequency power spectrum and a hyper-
bolic kernel that is studied next.

x| u+ %) du drdé. (8)

Hence, the general time-frequency power spectrum of
the hyperbolic kernel is obtained as

3 Hyperbolic Kernel Family and Its First-Order B ) 1 m(t—u)
Kernel sech (867 P(t,w)= Texp(—j T®) uﬁ-sec 287
The general expression of the hyperbolic kernel family is
i T T
given as 'X*(U_E X[ u+ E)dudr. 9
O (0,7)=[sectipor)]", (6)

wheren>1 andn is an integer. 4 Compafis_on of th? Hyperbolic ?‘”d

There are two separate cases of even and odd values of Cho-Williams Weighting Functions
the parameten. Forn=2,4,6,..., the weighting functions of Mathematically, the hyperbolic kernel is easier to integrate
these kernels have infinite volumes under the surface in thethan the CW kernel. The weighting functioftee 1-D Fou-
[(t—u), 7] plane as will be shown later. Thus, they are not fier transform of the kernel with the *“frequency” variable
cross-term effective. Fon=3,5,7,..., initial investigations ~ (t—u)] of the two kernels are given by Egd.0) and(11),
show that their weighting functions have smaller side lobes respectively,
and finite volume under the surface, which can suppress

cross terms effectively. Thus, the odd set of hyperbolic ker- _ T i m(t—u)
nel family might find useful applications in signal analysis. hyperb"”c_ﬁq-'sec ' 2B
However, this paper is devoted to the first-order hyperbolic ) )
kernel and thus the discussion on higher-order hyperbolic _m 2 (10)
kernels stops here. Further studies on these kernels can be BT m(t—u) m(t—u)|’
found in Ref. 25. The weighting functions of the hyperbolic exp 287 + EXF{ T 287
and CW kernels are compared in Sec. 4. ; :
The proposed new first-order hyperbolic kernel of the - o(t—u)?
family is given by WCW:T'eXF{ _ e ] (11)
®(6.7)= cosh@or sectifo7), @) whereB and o are the kernel parameters of the hyperbolic

and CW kernels, respectively, andis the lag parameter
whereg is a parameter to control the exponential terms of used to calculate the autocorrelation function.
the hyperbolic function. The 2-D contour plots of the weighting functions of the
The use of the control parametgris important. Asg CW and hyperbolic kernels are shown in Fig. 1. This shows
tends to infinity in Eq(7), the kernel will approach zero. If  that the hyperbolic kernel is more “local” in thet{ u)
B~0, the hyperbolic distribution will become the WV dis- direction than in ther direction. The CW kernel extends
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Contour Piot of the Hyperbolic and CW Weighting Functions,f=c=1
T T T T T T T

CW Weighting Function

10

Fig. 1 Contour plots of the CW and hyperbolic weighting functions.

wider in the ¢—u) direction and therefore it can be said
not to be “local” in that directior? Thus, the hyperbolic
kernel is more concentrated in the vicinity of the origin in
the (t—u) direction than the CW kernel. If the auto terms
are mostly distributed along the horizontal straight line (
—u)=0 in Fig. 1, then the hyperbolic kernel is most suit-
able in amplifying these auto terms since it is localized in
the (t—u) axis.

Since the CW weighting function is localized in the di-
rection of ther axis, it is most suitable for auto terms that
are located along thet { u) axis. This suggests that the
CW kernel can support auto terms more effectively than the
hyperbolic kernel; in other words, the CW kernel is ex-

perbolic kernel . . .

Fig. 2 3-D plots of the hyperbolic and CW weighting functions.

the seven constraints. In the following section, performance
of the CW and hyperbolic kernels are compared in terms of
cross-term suppression through simulation.

5 Cross-Term Suppression Comparison

The effectiveness of the CW and hyperbolic kernels in sup-
pressing cross terms will be compared with two types of
multicomponent signals: a sum of two complex-exponential
and two chirp signals. Performance of the WV kernel is
also compared with the CW and hyperbolic kernels. One of
the key factors that can be used to judge the performance of
a particular kernel is to estimate the normalized peak-
magnitude ratio of the cross terms to auto terms. The lower
this ratio, the more effective the kernel is at cross-term
suppression.
Firstly, the WV, CW, and hyperbolic time-frequency

pected to have a finer auto-term resolution than that of the power spectra are compared so that the disadvantages of
hyperbolic kernel. The cross-term suppression ability of the WV unity kernel are shown and the advantages of the
these kernels will be discussed in Secs. 5.2 and 5.3 using aCW and hyperbolic time-frequency power spectra are dem-
sum of two complex-exponential and chirp signals, respec- onstrated. In the rest of this paper, the CW, MTE, and first-
tively. The auto-term resolution of the CW, hyperbolic, and order hyperbolic secl8dr) kernels are studied and com-
some MTE kernels will be investigated in Sec. 6 so that a pared (where appropriajein terms of normalized cross-
trade-off between cross-term suppression and auto-termterm magnitude ratio (Sec. 5.2, normalized peak-
resolution can be established. The 3-D plots of the weight-
ing functions of the CW and hyperbolic kernels, which cor-
respond to the contour plots displayed in Fig. 1, are shown
in Fig. 2. The hyperbolic weighting function has larger non-
zero values in the vicinity of the origin, as seen in Fig. 2.
Figure 2 shows the auto-term supportive regi@arsund
the vicinity of the origin in both thet(~u) and r axeq of
the kernels and therefore it is possible to choose suitable
applications for the appropriate kernels with the minimum
amount of cross terms and maximum amount of auto terms. 7 ss
The contour plot of the second-order hyperbolic kernel,
[sech@Bo7)]" with n=2, is given in Fig. 3. The main and
side lobes of the weighting function of tHesech@Bon]?
kernel are unbounded at the center frequency suggesting so
that its volume under the surface is infinite. Thus, it is not
suitable for suppressing cross terms in the time-frequency
plane and therefore the even order of the hyperbolic family
kernels will not be investigated further in this paper. Al-
though the even-order hyperbolic family kernels do not Fig. 3 The weighting function of the second-order hyperbolic kernel
provide effective cross-term suppression, they still satisfy (¢, r)=[sech(867)] with g=1.

The Squared Hyperbolic Sech Kernel
T T T

38

36

35

34

31F

L
6

28 L
1 5
Tau
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Simulated Telephone Signal WVTFR of a Telephone Conversation, Fast Version, N = 32

Silent period

L n L . . . L
30 40 50 60 70 80 90

z
20

Discrete Samples

Fig. 4 A simple “simulated” speech signal with a silent period.

o

Discrete Time n Discrete Frequency k

Fig. 5 The WV time-frequency power spectrum of a speech signal

magnitude ratio of the cross terms to auto tef®@sc. 5.3, displayed in Fig. 4

auto-term resolution or auto-term widtBec. 6, and noise
robustnesgSec. 7. The normalization that has been used
throughout this paper, unless otherwise specified, is done
by dividing the particular values by their maximum value.
For example, the normalized ratio of the cross terms to auto
terms is obtained by dividing all of the ratios by their maxi-
mum value.

spectrum. Figure 7 shows the hyperbolic time-frequency
power spectrum with a clear display of the silent period.
The edges are sharp and the amount of energy smearing is
) considerably reduced. There are still small “humps” over
5.1 Typical Example the silent period but these humps are much smaller and
The CW and hyperbolic time-frequency power spectra are cleaner than those in the WV and CW time-frequency spec-
displayed. The MTE time-frequency distribution does not tra. This suggests that the hyperbolic kernel can perform
have a general expression and thus it is not included here better cross-term suppression than the CW and WYV kernels.
Since the well-known CW kernel is a special case of the The subsequent sections compare the cross-term suppres-
MTE kernel, it can be chosen as a representative kernel forsion ability of the hyperbolic, CW, and WV kernels by
the MTE kernel. using a sum of two complex-exponential and two chirp

A simple “simulated” speech signal, shown in Fig. 4, is signals. Auto-term resolution and noise robustness of the
used as an input signal to obtain the WV, CW, and hyper- hyperbolic, CW, and MTE kernels are examined and com-
bolic time-frequency power spectra. A silent perictlis pared in Secs. 6 and 7, respectively.
present since it is unavoidable in normal conversations. It
should be noted that the waveform in Fig. 4 intends to show
that the WV time-frequency power spectrum misleads the
silent period compared to the CW and hyperbolic power
spectra. Real conversation waveforms are much more com-
plicated than this waveform. The WV, CW, and hyperbolic
time-frequency power spectra are displayed in Figs. 5-7,
respectively. The most important thing that determines the ,,_..
effectiveness of a kernel is that during the silent period of
the speech signal, its time-frequency power spectrum must
be “silent” or there is effectively no energy smearing.

As can be seen from Fig. 5, the WV time-frequency
power spectrum is nonzero over the silent perifrdm
discrete times of 32 to 64of the conversation. There are
many humps and considerable energy smearing over the
silent period. This creates misleading information about the
nature of the input signal and thus it shows that the WV
unity kernel is not effective in suppressing cross terms in
the time-frequency plane.

Figure 6 displays the CW time-frequency power spec-

TFRCW of a Telephone Conversation, N = 32

1

08.
(T R
044

o2

[N
100

trum, which shows a zeroed spectrum over the silent pe-
riod. This is a major improvement over the WV time-

frequency power spectrum. However, there is still energy
smearing over the silent period. The “humps” are cleaner
and smaller but they should be ideally removed from the

Discrete Time n

Frequency Bin k

Fig. 6 The CW time-frequency power spectrum with o=1 of a
speech signal displayed in Fig. 4. The “Frequency Bin k” axis should
read “Discrete Frequency.”
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TFRHyperbolic of a Telephone Conversation, N = 32, Beta = 1

Discrete Time n Frequency

Fig. 7 The hyperbolic time-frequency power spectrum with g=1 of

a speech signal displayed in Fig. 4. The “Frequency” axis should
read “Discrete Frequency.”

5.2  Sum of Two Complex-Exponential Signals
Given the input signal

f(t)=Arexdj(wit+60;1) ]+ A exdj(wot+6,)],

whereA,, A, are arbitrary real constants afig, 6, are the
phases of the exponential terme,=30rad/$ and w,
=34rad/s. The CW time-frequency power spectrunfi(dy
is given by

EDcw(t,0)=27A8(w— wq) + 2mAS8( 0 — )

+2A1A2 COE{(wl—wz) T+ 01_ 02]

\WEIGHTey, (12)
where
o 1/2 o
R (P 'exp[_«wl—wz)z
.(w_ "’1;“’2 i (13

The WV time-frequency power spectrum is given by

WV(t,0)=27A38(w— w) + 27AZ8( 0 — wy)
+2A1A2 COS{(wl—wz) t+ 01_ 02]
“WEIGHTyy, (14

whereWEIGHTy,,= 1.

Ratio of Weighting Factor of Hyperbolic over CW Kernels

Discrete Frequency (rad/s) Beta

Fig. 8 Normalized ratio of the hyperbolic weighting factor [Eq. (15)]
to that of the CW kernel [Eq. (13)] for a sum of two complex-
exponential signals.

time-frequency power spectruas seen in Eq12)]. How-
ever, the hyperbolic weighting factor is different from that
of the CW kernel and is given by

T
2B(w1— wy)

a
WE|GHThyper:,8(w1—w2) -sec+

-(a)— wit wy 15

2

From Eqs(12)—(15), it is clear that the WV kernel does
not effectively suppress cross terms, i.e., its weighting fac-
tor is unity as seen in Eq14). The weighting factors of
both the CW and hyperbolic kernels are much less than
unity and thus they are more effective in suppressing cross
terms than the WV kernel. Figure 8 shows the cross com-
parison of the 3-D plot of the normalized ratio of the hy-
perbolic weighting factofEqg. (15)] to that of the CW ker-
nel [Eqg. (13)] as a function ofw and 8. This ratio is very
small except for small values g8. This means that for
approximatelyB<1.5 and for frequencies less than 5 rad/s,
the hyperbolic weighting function is much larger than that
of the CW kernel and thus the former is not effective in
suppressing cross terms. However, ®r1.5, the hyper-
bolic weighting factor appears to be smaller than that of the
CW kernel and therefore the former kernel is more effec-
tive at cross-term suppression than the latter. The normal-
ized weighting functions of the hyperbolic and CW kernels
are compared again in Fig. 10 but the normalized curves
will not intersect due to different normalization factors and
instantaneous rates of change of the individual kernel
weighting functions.

Figure 9 displays the cross-term suppression ability of

The auto terms and cross terms of the hyperbolic time- the CW and hyperbolic kernels f@@=1 and 8=1.45. As
frequency power spectrum are identical to those of the CW explained in Sec. 3 and from Fig. 8, whehincreases,

"For comparison purposes, valuesa®@f and w, are taken from the paper

by Choi and Williams

6 Optical Engineering, Vol. 42 No. 8, August 2003
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weighting function is reduced. For small values®£1.5
(0=0.67), as explained earlier, the CW distribution gives
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07 Comparison of Hyperbolic and Choi- Wiliams Kemels, Beta = 1.45 tude. The normalized cross-term magnitude ratio, which is
Dok . ) shown in Fig. 10, decreases gdncreases. From Fig. 10,
Sos| I ] the faster decaying rate of the hyperbolic normalized cross
2.l N Choi-Williams i terms compared with that of the CW cross terms suggests
E,o.s— y / yperbali ] that the hyperbolic kernel is more effective in suppressing
w o2k : : cross terms than the CW kernel as predicted in Sec. 4. In
Sof 7 N : 4 fact, from Fig. 10, the CW normalized cross terms are al-

o Lo =SB = yra——— o 2 ways larger than those of the hyperbolic kernel for small

values ofp, i.e., typically, 3<50.
Comparison of Hyperbolic and Choi~Williams Kemels, Beta = 1 If B is large, the hyperbolic kernel approaches a “ze-

o
™

o N 'Hypemdic' ' roed” kernel (which is not very usefgland the CW kernel
Eost 2 / . B becomes the WV kernel, which does not provide effective
2 L Choi-Williams cross-term suppression. In addition, under this extreme
Eo4r RN ' 1 condition of B, the normalized cross terms of the two ker-
Bosf a N | nels will be getting closer in value and it is expected that
5 ya RN they will be identical for very large values @ Thus, the

0 - P ) L o : value of 8 and o should be carefully chosen with the spe-

o 10 20 30 40 50 60 70 . . . . . . .

Frequency (Hz) cific application to avoid the above limitations of the hy-

perbolic and CW kernels. For a sum of two complex-
exponential signals, from Figs. 8—10, the useful rangg of
for effective cross-term suppressiongs=1.45 whereg is

not to be chosen very large. Another frequently encoun-
tered nonstationary signal in practice is the chirp signal. A

better results since its main lobe is smaller in magnitude g, of two chirp signals is examined in the following sec-
than that of the hyperbolic distribution. However, it should jop.

be noted thaB should not be chosen too small or too large

or accordinglyo should not be chosen too large or too

small (as explained in Sec. 3ince extreme values ¢f or 5.3 Sum of Two Chirp Signals

o can make the kernel become the WV kernel, which does . . L

not have effective cross-term suppression. The hyperbolic, &t the input signalf(t), be a sum of two chirp signals of
CW, and WV auto-term magnitude remains constant at € form

2mAZ and 2rA3 as shown in Eqg12) and(14). Since the

Fig. 9 Comparison of the CW and hyperbolic kernels using a sum
of two complex-exponential signals.

auto terms remain constant, their ratios to the correspond- jaqt? jaot?
ing cross terms are not shown. Instead, the normalizedf(t)=A; exp{ 2 +A; exp( 2 )
cross terms of the CW and hyperbolic kerngsen also in
Eq. (12)] for a sum of two complex-exponential signals is
shown in Fig. 10. wherea,=1, a,=3 andA;=A,=1 (for simplicity).
From Fig. 9, forB near 1.45(c~0.7), the hyperbolic For a sum of two chirp signals, the integral cannot be

cross terms have identical peaks with those of the CW. analytically calculated, thus, approximation methdqdy
When 8=1.45, the hyperbolic kernel starts outperforming means of simulationusing discrete techniques are used to
the CW kernel by having a smaller cross-term peak magni- estimate the integrals. The general form of the time-

0.9 1 - |Hy. and CW normalised Cross Terms for a sum of exponential
038 4 o Signals

0.7 4
0.6 4 Ny . . —o— CWNorCross

os4 & N .. o ) ) —o—HyNorCross |

0.4 o

034 - - N\_ -

Beta

Fig. 10 Normalized CW and hyperbolic cross terms for a sum of two complex-exponential signals.
The lower this value is, the better the cross-term suppression ability of the kernel. In this case, the
hyperbolic kernel is better than the CW kernel for 8=1.45. Normalization factors are the maximum
values of each series.
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frequency power spectrum can be written B$t,w)
=AUTO+CROSS The WV time-frequency power spec-
trum is given by

AUTOw=A38(w— at) + A26(w— ast), (16)
and
. a1t a;
CRossW:zAlAzf exp[—j(w— 5t T]
1 LA
-CO E(al—az) Z-I—t dr. (17

The time-frequency power spectrum given by the CW
distribution ig°

o
exp —

. )] (exd —j(o—ast)1])
><dr+A§f {ex;{ -

a’%’]’4
o

AUTocszif

T

-(exgd —j(w—ayt) 7])dr, (18)
CRosngAlAzf exp{—j(w— al;azt T
_ o
~fu eXF[J(a1+a2)UT/2]~[27\/;
p(_g_uz - +1)%/2
-eXx 472 -cog (ay—ap)(u+tt)
+ (ay— ay) 72/8]du dr. (19

The auto terms and cross terms of the hyperbolic time-
frequency power spectrum of a sum of two chirp signals are
given by

AUTOHyZAif {sectiBa;7)}-(exd —j(w— ayt)7])dr

+AZ f {secliBa,r)}
-(exgd —j(w—ayt)7])dr, (20

a1+ (0%
2

t)7

CROS$y=A1A2J exp[—j(w—

mu

. f exdj(at ay)ut/2]
_H -cog (a1~ ay)

5ot
’ m-sec 2BT

X (U+1)%2+ (e — ap) 78] du dr. (21)
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Ratio of Weighting Factor of Hyperbolic over CW kernels
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Fig. 11 Normalized ratio of the hyperbolic weighting factor to that of
the CW kernel for a sum of two chirp signals as a function of u/ and
B. The approximate useful range of gis =0.5.

From Egs(17), (19), and(21), the cross-term weighting
factors of the WV, CW, and hyperbolic distributions are

2

T e 22
]| @2

1
CROSSWEIGHTW\,:cos{E(al—az)

CROSSWEIGHT .y

7 )] cog (a1~ a,)(U+1)2/2
42| 1

o

27\/;'8)([{

+(ay— ay) 72/8], (23
CROSSWEIGHTy,
|1 WU) 5
= %.Sec % .Cos{(al—az)(u+t) 12
+ (a1~ ay) 728]. (24)

From Egs.(22)—(24), it is evident that the WV kernel
has a larger weighting factor than those of the hyperbolic
and CW kernels. Thus, the WV unity kernel is not effective
in cross-term suppression. The normalized ratio of the hy-
perbolic weighting factofEqg. (24)] to the CW weighting
factor [Eq. (23)] is given in Fig. 11.

Figure 11 displays the 3-D plot of the normalized ratio
of the hyperbolic weighting factdiEq. (24)] to that of the
CW kernel[Eg. (23)] as a function ofu/7 and 8 in which
the ratio is small except for large values wfr and small
values of 8. This is similar to the case of a sum of two
complex-exponential signals investigated earlier. As stated
in Sec. 5.2, ag increases, better performance of the hy-
perbolic kernel compared with the CW kernel will be ob-
tained. Increasing will reduce the volume under the sur-
face of the weighting functions of the hyperbolic and CW
kernels. The faster the reduction rate of this volume with
respect tg3, the larger the peak-magnitude ratio of the auto
terms over the cross terms.

Figure 12 displays the peak-magnitude ratio of the cross
terms to auto terms and the normalized auto terms of the
two kernels a3 varies. This ratio is more important than
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Normalised Ratio of Cross- to Auto-Terms for a sum of chirp signals
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Fig. 12 Normalized peak-magnitude ratio of the cross terms to auto terms of the CW kernel [ratio of
Eqg. (19) to Eq. (18), CWNorRatio] and hyperbolic kernel [ratio of Eq. (21) to Eq. (20), HyNorRatio] for
a sum of two chirped signals. The lower this ratio is, the better the cross-term suppression ability of the
kernel. The normalized values of the auto terms of the two kernels (HyNorAuto and CWNorAuto) are
also shown in the same graph. The higher this value, the better the auto term magnitude. At 8~2.5, the
normalized values of the auto terms of the two kernels are approximately equal. The hyperbolic
normalized ratio of the cross terms to auto terms is much lower than that of the CW kernel for all
values of B except at 8=0.05. The useful range of g is therefore 0.3<8<2.5.

the individual magnitude of the cross terms and auto termsthe hyperbolic auto terms have lower magnitude than those
since it reflects the effectiveness of the kernel in supporting of the CW kernel, which corresponds to2B<500, i.e.,
auto terms and suppressing cross terms. If the cross term®.002<¢<0.05. If only the cross-term suppression ability
are small in magnitude, say 0.1, and the auto terms underis considered, then the larggris, the better the cross-term
the same conditions are much smaller than the cross termssuppression. However, 8 is very large(about 10), de-

say 0.000001, then the kernel is not effective even thoughtailed simulation shows that the auto-term peak magnitude
the cross terms are small. This explains why the ratio of becomes saturated at about 0.001 for a sum of two chirp
cross terms to auto terms of a kernel is considered to be thesignals. The auto terms of the two kernels are plotted in
most important factor and therefore it is used as a bench—Fig_ 13 fort=0 and o=1, and Fig. 14 shows the cross

mark to compare the effectiveness of different kernels. Itis terms of the CW and hyperbolic time-frequency power
clear that the smaller this ratio, the more effective the ker- spectra for3=3.5 andt=0 to give further understanding

nel. From Fig. 12, theoretically, {g8=0.05, i.e..0=<20, the on the effectiveness of the hyperbolic and CW kernels.
hyperbolic kernel performs better than the CW kernel by — grom Fig. 13, it can be seen that the hyperbolic auto-
having a smaller cross-term to auto-term magnitude ratio. torm peak magnitude is less than that of the CW kernel for

It should be noted that the decaying rate of the hyper- s—1 "From Fig. 14, the hyperbolic cross-term peak magni-
bolic cross terms is faster than that of the CW cross terms,

which yields better cross-term suppression as can be seen
in Flg 12. This effect has also been observed by Auto Terms of the CW and Hyperbolic Kernels for Chirped Signals
Boudreaux-Bartels and PapandréduFrom Fig. 12, the 14 ’ - ' ' - - :
useful range ofB is approximately 0.88<2.5 to ensure
that the hyperbolic kernel is more effective than the CW o Choi-Williams
kernel by having better auto-term magnitude and cross- 17 x Hyperbolic
term suppression ability. Using the observed rangegof
from Fig. 11 of 3=0.5, the optimum range g8 now be-
comes 0.58<2.5. It should be noted that the lower limits
of B obtained from Fig. 11(8=0.5 and from Fig. 12
(8=0.3 are in the same order of magnitude, which sug-
gests that both methods of calculating the ratio of the kernel
weighting factors or magnitude ratio of auto terms and AR
cross terms are valid. oF AR
From Sec. 5.2, the useful range Bffor a sum of two Sy
complex-exponential signals @#=1.45. Thus, to enable the
hyperbolic kernel to perform better than the CW kernel,  -o4f
practically, 8 should be in the range of 1.453<2.5. For
chirped signals, from Fig. 12, it should be noted that for -0 - o0 -0
20=pB=2.5, the hyperbolic kernel still performs well, but
with a slightly smaller auto-term magnitude compared to Fig. 13 Auto-term magnitude of the CW and hyperbolic time-
that of the CW kernel. The worst performance occurs when frequency power spectra for 7=0 and g=1.
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Discrete Cross Terms of the CW and Hypearbolic Kernels
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Fig. 14 Cross-term magnitude of the CW and hyperbolic time-
frequency power spectra for =0 and =3.5, which suggest that for
B=3.5, better cross-term suppression can be achieved by using the
hyperbolic kernel rather than the CW kernel.

tude is equal to that of the CW kernel f8.=3.5. However,
from Fig. 12, atp=3.5, the hyperbolic normalized auto
terms are only slightly less than the CW normalized auto
terms (about 5% and thus it can be accepted as a useful
value of 8. Thus, the most useful range Bf which yields
optimum performance for the hyperbolic kernel in cross-

term suppression but decreases the auto-term magnitude. A
question arises at this point: Are there any other tradesjoff
associated with increasing, such as auto-term resolution
and noise robustness? Sections 6 and 7 examine the auto-
term resolution or auto-term width and noise robustriass

B varieg of the CW, hyperbolic, and some of the MTE
kernels in some detail so that the relationships and trade-
off(s) among the above-mentioned quantities can be estab-
lished.

6 Auto-Term Functions and Auto-Term Widths

Sections 5.2 and 5.3 examined the effectiveness of the hy-
perbolic and CW kernels by estimating the peak-magnitude
ratio of their auto terms to cross terms. The effectiveness of
a kernel can also be measured based on its auto-term width
or auto-term resolution, which can be estimated from its
auto-term function. The auto-term function is a function of
the lag parameter but with the substitution of=—ar,
where a is the slope of the auto-term line in the kernel
time-frequency plane.

The auto-term width is defined as the frequency at which
the auto-term magnitude decreasesdsy2.718 times its
peak magnitudé’ The larger the auto-term width, the finer
the auto-term resolution. Previous work by StankbVial-
culated the auto-term functions and auto-term widths of a
number of kernels including the Born-Jordan kernel, the
pseudo WV kernel, the optimal kernel, the CW kernel, and

term suppression and auto-term magnitude compared withthe sinc kernel?” This section is devoted to comparing the

the CW kernel, can be expanded to 45%<3.5. The ap-
plicable range of3 for a satisfactory performance of effec-

hyperbolic sectBér) kernel with the CW and MTE kernels
as the kernel control parametés 1/o (for hyperbolic ker-

tive cross-term suppression and acceptable auto-term magnel), o (for CW kerne), ande, r, Byte, 7, and\ (for MTE

nitude is therefore 058<20.

kerne) vary. The auto-term function is given in general by

Although the hyperbolic kernel can suppress cross terms

more effectively than the CW kernel for well-chosen values
of B, increasingB to a very large value will saturate the

auto-term peak magnitude as discussed earlier and as ob-

served by Choi and William$Making S too large does not
provide useful information since the hyperbolic kernel ap-
proaches a “zeroed” kernel as explained in Sec. 48 i

too large then the peak-magnitude ratio of the cross terms
to auto terms decreases as shown in Fig. 10 and Fig. 12. In

addition, the normalized auto-term magnitude of the CW

and hyperbolic kernels also decreases. Thus, it can be sugayTQ,,=

gested that increasing (or decreasingr) enhances cross-

Auto-term Function

+

I

The auto-term functions of the CW and hyperbolic ker-
nels are given in Eq¥26) and(27), respectively,

[

D(0,7)] g= _a, X —jo7)dT. (25

a2 7_4

-exp(—jwT7)dT, (26)

1

0.9 4
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0.8

Normalized Auto-Term Widths

Hy Kernels

0.7 4

064 - -|—*—NorCWWwW

0.5 1

—e—NorHyW idth

idth

0.4 4

034 - o

024 - - -

014 -
<

0 g
0.001 0.005 0.01

0.1

Fig. 15 Normalized auto-term width of the hyperbolic and CW kernels.
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Auto-Term Functions of CW, Hyperbolic and MTE Diamond Case 1 functions and auto-term widths of the MTE diamond case 1
) ) ' ' form along with those of the hyperbolic and CW kernels

are plotted in Fig. 16. The auto-term functions of various

forms of the MTE kernel will not be displayed in full detail.

Hyperbolic Auto Function

sl D‘*mj";c:s"]‘;m_z ; Table 1 lists the auto-term widths of various types of the
m; 025,;,,’,,“{ MTE kernels fora=1 and compares them with those of the
»r ] hyperbolic kernel and CW kernel.
CW Auto Function | As explained in Sec. 4, the auto terms are located around

the origin and the hyperbolic kernel supports auto terms in
the direction of ther axis while the Choi-Williams kernel
does so in the direction of the-{ u) axis. It has also been
shown that the CW kernel is more effective than the hyper-
4733812718 2 17,4165 . . s ..
——————————————————————— bolic kernel since it is more concentrated around the origin
1 whereas the hyperbolic kernel has large main lobes that
extend in the direction of the axis. From Fig. 15, the
or 136164271815.0097 1 above remark can be validated. It is clear that the CW ker-
] \_ nel is more auto-term supportive than the hyperbolic kernel
W by having a finer auto-term resolution. Thus, it can be de-
0 : . P termined that auto terms are mainly located in the direction
of the (t—u) axis (vertically) rather than in the direction of
the 7 axis (horizontally.
Fig. 16 Auto-term functions and auto-term widths of the MTE dia- From Fig. 15, the hyperbolic auto-term resolution ap-
mond case 1 kernel, hyperbolic, and CW kernels. proaches that of the CW kernel wh@nis very small(o is
very large. For other values of3, the CW kernel outper-
forms the hyperbolic kernel, which is a trade-off of having

Frequency Samples from 110 25

too / . )

_ B 5 . more effective cross-term suppression of the hyperbolic

AUTOny= f,w secli —a77]-exp(—jw7)dr. (27) kernel at the expense of having a poorer auto-term resolu-
tion.

Equations(26) and (27) cannot be further reduced to In Table 1, the following parameter values are chosen:

their closed forms although the integrands are well-behaveda=1, 7o=6p=1, andS=1/o=1 for simplicity, which will
functions. To estimate the auto-term widths of the hyper- not affect the generality of comparison. The auto-term
bolic and CW kernels, the discrete Fourier transform ver- width of the CW and hyperbolic kernels for other values of
sions of Eqs(26) and(27) were used based on simulations s displayed in Fig. 15 in which the hyperbolic kernel has
in MATLAB. The normalized auto-term widths of the hy- a smaller auto-term width than that of the CW kernel. This
perbolic and CW kernels plotted again8tare shown in clearly indicates the trade-off between cross-term suppres-
Fig. 15 in which the maximum auto-term width of each sion ability and auto-term resolution. Increasj@gicreases
series is used as the normalization factor. The auto-termthe auto-term resolutiofseen in Fig. 15but also decreases

Table 1 Auto-term widths (in frequency samples) for a=1 of various forms of the MTE kernel.

Parameter value Auto-term width for a=1
MTE kernel a r B y A MTE Hyperbolic’ CW
Parallel 0 1 1 1 1 0.5 5.5 7.0
strip
Cross 0 -1 2 0.5 1 0.5 5.5 7.0
Snowflake* 0 r=-2 2 0.5 1 14.5 5.5 7.0
Untilted 0 0 1 1 1 14.5 55 7.0
elliptical
Tilted 0 0.5 1 1 2 9.2 5.5 7.0
elliptical
Diamond 0 1 2 0.5 1 18.5 5.5 7.0
case 1
Diamond 0.1 0 1 1 1 13.0 55 7.0
case 2
Hyperbolic 1 0 1 1 1 10.5 55 7.0
Rectangular 1010 0 1 1 1 6.5 5.5 7.0

"The parameters of the hyperbolic and CW kernels are 8=1/0=1 throughout the table.

*For this set of parameters, the MTE snowflake and untilted-elliptical forms have identical auto-term
functions.
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CW and Hyperbolic Noise Variance
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Fig. 17 Normalized noise variance of the CW and hyperbolic kernels as a function of g.

the auto-term magnitude as seen in Fig. 12. It should be Depending upon the kernel control paramédeispecific
noted that the MTE kernel becomes the WV kernel when requirements can be met. The MTE kernel is flexible, since
A=0. In that case, the MTE kernel can be rewritten as it can generate various types of different kernels, but one of
exp(—x 1), which is essentially the WV kernel multiplied its disadvantages is that the parallel and cross forms have
by a constane™ "~0.0432. From Table 1, it should also be coarse auto-term resolutions in which their auto-term func-
noted that the MTE kernel has 5 parameters that can gen-tions are identical triangular pulses with very large peaks.
erate up to(5!)=120 different MTE kernels with different ~ Further, the auto-term resolutions of the MTE snowflake
sets of parameters. The main aim of this work is not to and untilted elliptical forms are equal in value as seen in
analyze the MTE kernel in detail but to show that there is Table 1 for identical auto-term functions as observed ear-
still room for improvements even though the MTE has been lier. For larger values ok, the MTE snowflake auto-term
shown to be an effective kern¥lThus, only some popular ~ function departs from that of the MTE untilted-elliptical
forms of the MTE kernel are studied in this paper. Further kernel, which suggests that these kernels can only be effec-
studies of the MTE kernel can also be found in Ref. 12. tively used when\ is large.

Table 1 shows the advantages and disadvantages of various In this section, the relationship between the auto-term
forms of the MTE kernel over the CW and hyperbolic ker- resolution, auto-term magnitude, aml has been estab-
nels in terms of auto-term width. From Table 1, it can be lished. The larger the control paramefis, the higher the
suggested that the MTE kernel can produce better auto-auto-term resolution but the smaller the auto-term magni-
term quality than the hyperbolic and CW kernéitsr g=1/ tude. There is also a trade-off between the auto-term reso-
o=1) as larger auto-term widths are obtained from various lution and cross-term suppression ability of a kernel. The
types of the MTE kernel, except in cases of the parallel and finer the auto-term resolution, the less effective the kernel
cross MTE kernels where the MTE auto-term widths are is in cross-term suppression. From this, it might be sug-
0.5(a=0,r=B8=vy=\=1) compared with 5.5 and 7.0 of gested that the MTE kernel is less cross-term suppression

the hyperbolic and CW kernels, respectively. effective compared with the hyperbolic kernel and CW ker-
The f0||owing conclusions on the MTE kernel are drawn nel since most MTE kernels have finer auto-term resolu-
after studying Table 1. The larger the auto-term slage tions than those of the former two kernels as was shown

the (6,7 plane of the kernel functiod(6,7), the finer the earlier. Section 7 examines the noise variance of the hyper-
auto-term resolution. It also appears that the untilted ellip- bolic and CW time-frequency power spectra so that further
tical MTE kernel has the finest auto-term resolution and is conclusioits) on the trade-offs among auto-term resolution,
most sensitive to the auto-term slope compared to otherCross-term suppression, and noise robustness can be estab-
types of the MTE kernel, the hyperbolic and CW kernels. lished.

The tilted elliptical MTE kernel appears to have the coars-

est auto-term width. The auto-term functions of the remain- _ . .

ing MTE kernels(except the untilted elliptical MTE kernel ~ /  Noise Variance Calculation

are almost identicaland so are their auto-term widjhfer This section aims to investigate the effects of noise on auto
a small value ofa=0.5. The MTE hyperbolic and MTE  and cross terms by examining their regions on the time-
tilted elliptical kernels have identical auto-term functions frequency plane graphically. Previous work done by Stank-
and hence equal auto-term widths. The auto-term functionsovic and Ivanovi€® and Hearon and Amii=° dealt with

of the snow flake MTE kerndly=1) and the untilted ellip- complex noise and found that given an input complex white
tical MTE kernel are identical whea= 1. This might sug-  Gaussian noise with varianae?,, the noise variancer

gest that at some specific valuesapfthe auto-term func-  produced by the input noise in time-frequency power spec-
tions of various types of the MTE kernel are identical, trum can be successfully estimated. In this paper however,
yielding convergence of various forms of the MTE kernel, we deal with real white Gaussian noise only whose noise
which reduces its uniqueness. variance is given B#2°
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A(w)=0alh ( )2 [W(T,(t—u))|2+W(r,(t—u))
T=—% (t—u)=—»

W (7,(t—u))-exp(—jdwT), (28
where W(7,t—u) is the weighting function of the kernel
function ®(6,7) and “*” indicates complex conjugate op-
eration.

From Eq.(28), it can be seen that the noise variance is a
function of w and gains its maximum value when=0,
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thus the maximum real noise variance in the time- sof ;
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=200 > ) )2 IW(,(t—u))|% (29
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Fig. 18 Contour plot of the hyperbolic time-frequency power spec-

. . . trum of two chirped signals when no noise is added, 8=10. The
The normalized noise variance of the CW and hyper- cross-term region is approximately from discrete frequencies 95 to

bolic kernels, as a function @, is plotted in Fig. 17, from 125. The x-axis and y-axis should read “Discrete Frequency” and
which it can be suggested that the hyperbolic kernel is more “Discrete Time” respectively. This convention is also applied to the

noise robust than the CW kernel f@=3. For detailed  remaining graphs in this paper.

analysis of the noise variance of other kernels, see Refs. 28

and 29. Hence, it can be concluded that kernels that can . N

effectively suppress cross terms tend to be more noise ro-auto-term arms and in the directions along the arms as seen

bust(the hyperbolic kerngfthan kernels that are less cross- N Fig- 19, which is the disadvantage of the CW kernel
term effective but have a finer auto-term resolutionthis compared with the hyperbolic kernel. However, the CW
case, the CW and MTE kernglsThis important relation- kernel, due to its finer auto-term resolution, has stronger
ship agrees with what was reported in Refs. 2, 3, 6, and 7.2uto-term arms in the time-frequency power spectrum as
It should also be noted that time-frequency spectral analysisShoWn in Fig. 19 compared with those of the hyperbolic
can be applied to random and unknown signals such astime-frequency power spectrum in Fig. 18. This advantage
biomedical signalgelectrocardiograms and electroencepha- €Stablishes an important trade-off between auto-term reso-
lograms, music, various sounds including whale sounds lution and cross-term suppression of the two kerne_ls as dis-
and bat sounds, speech with real-time conversations, oceafUSS€d throughout this paper. However, one more important

waves, and chaotic signals such as those from a Duffing Parameter appears in this trade-i stated earlier in this
oscillator. section, which is the noise robustness, which is graphically

Equation(29) is evidently a function of the volume un-  Shown in Figs. 20 and 21. ,
der the squared weighting function. Thus, it is important to __From Fig. 20, it is seen that the CW time-frequency
note that to ensure robustness in the time-frequency powerPOWer spectrum is significantly distorted under the effects
spectrum, the volume under the squared weighting function
should be minimized, which means effective cross-term
suppression. Figures 18 and 19 display contour plots of the
hyperbolic and CW time-frequency power spectra, respec-
tively, for a sum of two chirp signals without noise inter-
ference. Figures 20 and 21 display contour plots of the CW
and hyperbolic time-frequency power spectra, respectively,
for a sum of two chirped signals embedded in a 3-dB
Gaussian noise. The corresponding 3-D plots of the hyper-
bolic and CW time-frequency power spectra without noise
interference, whose contours plots are displayed in Figs. 18
and 19, are given in Figs. 22 and 23, respectively.

As expected, by comparing Figs. 18, 19, 20, and 21, it
might be suggested that the hyperbolic time-frequency
power spectrum is clearer than the CW time-frequency
power spectrum due to a smaller amount of cross terms in
the region between the two auto-term arms. In addition, at
the intersection of the two arms, there is less interference
from the auto terms themselves than in the case of the CW
time-frequency power spectrum as displayed in Figs. 19

and 20, which is another advantage of the hyperbolic kernel _ _
over the CW kernel Fig. 19_ Contqur plot of the CW _tmg-frequency power spectrum qf

L . two chirped signals when no noise is added, 0=0.1. The x-axis is
As stated earlier, the CW time-frequency power spec- «piscrete Frequency” and the y-axis is “Discrete Time.” The cross-

trum has more cross terms in the region between the twoterm region is approximately from discrete frequencies 45 to 175.
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TFRCW of Noisy Chirped Signals, SNR = 3db, Sigma = 0.1
T T T

TFRHy of Converged Chirped, TfrHyFast.m, B = 10, WithOUT noise
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[ Ne . . I
150 250 Fig. 22 Noiseless 3-D plot of the hyperbolic time-frequency power
Discrete Frequency Bin spectrum of two chirp signals, f=10.

Fig. 20 Contour plot of the CW time-frequency power spectrum of
chirp signals embedded in a 3-dB noise, ¢=0.1.

might suggest that noise sources do not considerably affect
of a 3-dB noise source. It is very hard to recognize the two cross terms in time-frequency power spectra, however, the
main auto-term arms of the spectrum and therefore it might auto terms are significantly reduced.
be said that the CW time-frequency power spectrum is not  As can be seen in Fig. 20, the CW time-frequency power
robust. The cross terms appear to remain almost unchange@pectrum, by having a finer auto-term resolution, consider-
under the effects of a noise source even though they areably suffers under the effects of noise interference com-
slightly degraded. From Fig. 21, the hyperbolic time- pared to the hyperbolic time-frequency spectr(Fig. 21).
frequency power spectrum, although is better than the CW Obviously, the latter can withstand tougher conditions than
spectrum, still suffers from noise interference. The left the former. This suggests that the more effective the kernel
auto-term arm of the power spectrum is distorted, however, is at cross-term suppression, auto-term magnitude, and
the right auto-term arm can still be recognizable, as was notnoise robustness, the poorer its auto-term resolution. This is
the case for the CW time-frequency power spectrum dis- the prime result that this paper aims to achieve. The 3-D
played in Fig. 20. The hyperbolic cross terms are also de- mesh plots of the hyperbolic and CW time-frequency
graded(as were the CW cross terjnas compared with the  power spectra are provided in Figs. 22 and 23 to give fur-
case in which no noise was added in Fig. 18. However, the ther understanding on the effects of a noise source on the
amount of cross terms appears to remain unchanged. Thisspectrum. Mesh plots of the CW and hyperbolic time-

frequency power spectra embedded in a 3-dB noise source

are given Figs. 24 and 25, respectively.
TFRHy of Noisy Chirped Signals, SNR = 3dB, Beta = 10
e , ; : ; -

200

TFRCW of of Chirped Signals, TirCwPerFastm, S = 0.1, 3dB Noise

250 oY

g

200 .o

Discrete Time

150 T

8

1004, o

50
50

o
300

Discrete Frequency Bin

Discrete Time Discrete Frequency
Fig. 21 Contour plot of the hyperbolic time-frequency power spec-
trum of a sum of two chirped signals embedded in 3-dB noise, Fig. 24 Mesh plot of the Choi-Williams time-frequency power spec-

B=10. trum embedded in a 3-dB noise, o=0.1.
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TFRCW of Chirped Signals, TfrCwPerFast.m, S = 0.1, withOUT noise

ered in choosing the appropriate kernel for a particular

application. Further research needs to be carried out to in-

300

Su

Discrete Time Discrete Frequency Bin 1
Fig. 23 Noiseless 3-D plot of the CW time-frequency power spec- 2.
trum of two chirp signals, o=0.1.
3
8 Conclusion
The hyperbolic sechBén)]" (with n=1) kernel has been 4.
shown to be effective in cross-term suppression. In particu- g

lar, we have shown its effectiveness for a sum of two
complex-exponential signals, f@#=1.45 and, in the case
of a sum of two chirp signals, for 293=0.5. The hyper-
bolic kernel has also been shown to be better than the CW
kernel in terms of cross-term suppression ability and lower
noise variance for well-chosen values g£3. Thus, the
applicable range o8 is 20=3=3.

However, the hyperbolic kernel has a smaller auto-term

resolution than that of the CW kernel and most types of o.

MTE kernels, except in the case of the MTE rectangular
form where the auto-term widths of the three kernels are

approximately equal. There appears to be a trade-off amongl1.

auto-term resolution, auto-term magnitude, cross-term sup-,,
pression ability, and noise robustness. The more effective
the kernel is at cross-term suppression, auto-term magni-
tude, and noise robustness, the poorer its auto-term resolu

tion. This is an important trade-off that should be consid- 14.

TFRHy of Converged Chirped Signals, TfrHyFast.m, B = 10, 3dB NOISE

60w..

Discrete Time

Discrete Frequency

24.

Fig. 25 Mesh plot of the hyperbolic time-frequency power spectrum

embedded in a 3-dB noise, 8=10. 25

7.

15.

16.

17.

18.
19.

20.
21.

22.

23.

vestigate other members of the hyperbolic kernel family,

ch as th¢sechBon T kernel or higher-order kernels, for

further improvements on auto-term resolution and noise ro-
bustness. An additional constraint on the boundedness of a
kernel weighting function has also been stated.
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