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1 Introduction

Following on from a recent publication1 using the hyper-
bolic signal detector for nonstationary signals, this pa
explores in detail characteristics of the hyperbolic kerne
cross-term effect in the power spectrum of multicompon
signals represents interactions among the individual c
ponent signals. This effect, sometimes called the ‘‘artifac
is undesirable since the interactions among different mo
component signals in a multicomponent signal provide
useful physical interpretation of the individual signals. F
example, the artifact causes zero-valued regions of
original spectrum to be nonzero and complicates the in
pretation of the time-frequency power spectrum as will
illustrated later. To eliminate artifacts, the modulus of cro
terms in the time-frequency power spectrum must be
duced. However, cross terms cannot be completely el
nated since a spectrum consists of both auto and c
terms.2 One of the methods for reducing the effects of cro
terms is to use an appropriate kernel for the computatio
the power spectrum. A desirable property of a kernel is t
it supports auto terms and suppresses cross terms in
time-frequency plane by multiplying them with its weigh
ing function. A kernel is an arbitrary function that mu
satisfy a number of admissibility constraints. These c
straints were studied in detail in Ref. 3 and are as follow

1. Kernel function,F~u,t!, is independent of timet,

2. Kernel function is independent of frequencyv,

3. F~u,0!51 for all u,

4. F~0,t!51 for all t,
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5. Kernel function must be real, i.e
F~u,t!5F* ~2u,2t!, where ‘‘* ’’ indicates the com-
plex conjugate,

6. (d/dt)F(u,t)ut5050, ;u,

7. (d/du)F(u,t)uu5050, ;t.

The spectrogram or short-time Fourier transform~STFT!
method has been used very effectively to study nonstat
ary signals since the 1940s4 in which detailed comparison
of the spectrogram with time-frequency distributions can
found. However, the method has the disadvantage of c
promising time and frequency resolution, which heavily d
pend on the window size used in the transform. To furth
understand time-varying power spectra, several researc
such as Page, Gabor, and Ville4 tried to develop a joint
time-frequency distribution method. Later, Cohen4 general-
ized the method by deriving the general formula for t
distribution. Each joint time-frequency distribution
unique with a unique kernel function. It has also been
ported that the characteristics of the distribution depe
strongly on the kernel function. The first advantage of t
joint distribution is that it does not compromise time a
frequency resolution. Secondly, it is flexible, i.e., by chan
ing the kernel function, a new and unique distribution
generated. Thirdly, certain distributions can be used
study certain types of signals whose power spectral a
terms lie within the supportive region of the kernel functio
of the distribution. Fourthly, the Fourier transform tends
average out fine details of the power spectrum and thus
not suitable in cases where the signal power spectrum
ies rapidly with frequency. Finally, new wavelet function
are generated if new kernels are found. This diversifies
links the time-frequency signal processing area toget
This paper does not discuss the spectrogram but expl
joint time-frequency distributions only.

The main motivation in inventing new kernels is to mo
effectively suppress cross terms in the time-frequen
1© 2003 Society of Photo-Optical Instrumentation Engineers
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Le, Dabke, and Egan: Hyperbolic kernel . . .
power spectrum of multicomponent signals. The Wign
Ville ~WV! distribution or Wigner-Ville time-frequency
power spectrum, which employs a unity kernel, was fi
proposed by Wigner in 1932 to solve problems in quant
mechanics.4 Since then, the WV time-frequency distribu
tion has found many different applications including rad
speech recognition, and loudspeaker design.5 Further de-
tails on the WV distribution are provided in Refs. 3, 4, a
6 to 8. Since the WV kernel is unity, the cross terms in
time-frequency plane are not suppressed, i.e., they
scaled down by a unity factor, which is the main disadva
tage of the WV distribution. These cross terms or ‘‘ar
facts’’ provide misleading information about the WV time
frequency power spectrum. It should also be noted that
terms ‘‘time-frequency distribution,’’ which was coined b
Cohen,4,9 and ‘‘time-frequency power spectrum,’’ whic
was first used by Page and Rihaczek,10,11 are identical.
These terms have been extensively used by many diffe
authors in the field of time-frequency signal processing
this paper, they will be interchangeably used without a
difference in their meanings.

Currently, there are two kernels that have been show
be most useful and effective in time-frequency power sp
trum analysis. The first kernel was the Choi-Williams~CW!
kernel, which was proposed in 1989 by Choi a
Williams.2 The second kernel was the multiform tiltab
exponential~MTE! kernel, which was found in 1995 b
Costa and Boudreauz-Bartels.12 The CW kernel is a specia
case of the MTE kernel for some special values of
kernel parameters. The main problem of the MTE kerne
that some of the kernel types are not Fourier transforma
which makes them difficult to use. The CW and MTE ke
nels are given mathematically by Eqs.~1! and ~2!, respec-
tively,

FCW~u,t!5exp~2u2t2/s!,

where s is the control parameter, ~1!

FMTE~u,t!5expH 2pF F t

t0
G2S F u

u0
G2D a

1S F t

t0
G2D aF u

u0
G2

12r S F tu

t0u0
GbD gG2lJ . ~2!

A number of alternative kernels have been proposed
studied such as cos~0.5ut! by Margenau and Hill,4

sinc~but!,10 the exponential kernel exp(jut/2),11 the com-
pound kernel derived by taking a product of the Hill a
CW kernels,13 the cone-shaped kernel,14 and the general-
ized CW kernel.15 These kernels, although easy to use,
not effective in cross-term suppression compared with
CW and MTE kernels. Details of the time-frequency dist
butions of these kernels can be found in Ref. 4, wherea, b,
g, l, andr are kernel control parameters that are indep
dent of the signal parameters and subject to certain co
tions given in Ref. 12. The positive-valued parameterst0

andu0 can be designed to suit specific requirements.
The CW and MTE kernels are second- and higher-po

exponential functions whose explicit expressions when
tegrating with power series do not exist. Thus, ‘‘firs
power’’ exponential kernels are more suitable for a tim
2 Optical Engineering, Vol. 42 No. 8, August 2003
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frequency distribution. The problem of first-powe
exponential kernels is that they are simple and thus so
desirable properties such as effective cross-term supp
sion and noise robustness are missing. Therefore, find
the right kernel, which is easy to use and at the same t
effective, is a difficult task.

The purpose of this paper is to propose a new family
kernels, the family of hyperbolic functions,@sech(but)#n

where n is the kernel family order, that can be used
suppress cross terms in the time-frequency power spect
These kernels provide better results than the CW kerne
well-chosen values of the kernel control parameterb. Since
the MTE kernel is not Fourier transformable, it is not po
sible to compare its cross-term suppression and noise
bustness with that of the hyperbolic and CW kernels. Ho
ever, various forms of the MTE kernel are studied
estimating their auto-term widths, then comparisons
made among the MTE, hyperbolic, and CW kernels. T
hyperbolic and CW kernels are compared in detail in ter
of cross-term suppression, auto-term resolution, and n
robustness.

The paper is organized as follows. The proposed hyp
bolic kernel family is detailed in Sec. 3. Section 4 compa
the weighting functions of the hyperbolic and CW kerne
Section 5 discusses cross-term suppression ability of
hyperbolic and CW kernels using multicomponent chirp
and complex-exponential signals. Sections 6 and 7 comp
the effectiveness of the CW, hyperbolic, and multiform ti
able exponential~MTE! kernels in terms of their auto-term
widths and noise robustness.

2 Background on Cohen’s Time-Frequency
Distribution

The general form of the time-frequency power spectrum
Cohen’s class for nonstationary signals is defined as4

P~ t,v!5
1

4p2 E2`

1`E
2`

1`E
2`

1`

exp~2 j ut2 j tv1 j uu!

•F~u,t!•Rt,1~ t,t!du dt du, ~3!

where Rt,1(t,t) is the local auto-correlation function
F~u,t! is the kernel function,u5t1(t/2), t is the lag pa-
rameter, andt is the running time variable. The range oft is
0<t<t0 , where t0 is the signal window size over which
the power spectrum of a nonstationary signal is estima
From now on, the range of all integrals is from2` to 1`
unless otherwise stated.

The one-dimensional~1-D! Fourier transform of a func-
tion x(t) is defined as16

F̂~v!5E
2`

1`

x~ t !•exp~2 j vt !dt, ~4!

where F̂(v) is the 1-D Fourier transform ofx(t) and j
5A21.

The formula for a time-frequency distribution is derive
by first obtaining its weighing function. The weightin
function17,18 is derived by taking the 1-D Fourie
transform of the kernel,F~u,t!. This weighting function,
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Le, Dabke, and Egan: Hyperbolic kernel . . .
W(t2u,t), determines how the cross terms of a tim
frequency power spectrum are scaled down thus redu
their effects in relation to the auto terms.

Equation~5! can be rewritten in the form of the weigh
ing functionW(t2u,t) as given by

~5!

In the case of the time-frequency power spectrum,
local auto-correlation function is defined4,19 as Rt,1(t,t)
5x@u1(t/2)#•x* @u2(t/2)#. It should be noted that the
auto terms are located over the small-valued region of
lag parametert20 and the cross terms in the high-value
region as the autocorrelation function is a measure of
similarity of the signal with itself as a function of the la
parametert.16 Higher-order time-frequency spectra ha
been studied in Refs. 21–24 by defining a new form of
local autocorrelation function. However, this paper is d
voted to the time-frequency power spectrum and a hyp
bolic kernel that is studied next.

3 Hyperbolic Kernel Family and Its First-Order
Kernel sech „but…

The general expression of the hyperbolic kernel family
given as

F~u,t!5@sech~but!#n, ~6!

wheren.1 andn is an integer.
There are two separate cases of even and odd value

the parametern. Forn52,4,6,..., the weighting functions o
these kernels have infinite volumes under the surface in
@(t2u),t# plane as will be shown later. Thus, they are n
cross-term effective. Forn53,5,7,..., initial investigations
show that their weighting functions have smaller side lob
and finite volume under the surface, which can suppr
cross terms effectively. Thus, the odd set of hyperbolic k
nel family might find useful applications in signal analys
However, this paper is devoted to the first-order hyperbo
kernel and thus the discussion on higher-order hyperb
kernels stops here. Further studies on these kernels ca
found in Ref. 25. The weighting functions of the hyperbo
and CW kernels are compared in Sec. 4.

The proposed new first-order hyperbolic kernel of t
family is given by

F~u,t!5
1

coshbut
5sech~but!, ~7!

whereb is a parameter to control the exponential terms
the hyperbolic function.

The use of the control parameterb is important. Asb
tends to infinity in Eq.~7!, the kernel will approach zero. I
b'0, the hyperbolic distribution will become the WV dis
f

e

tribution. Thus, the chosen values ofb should not be too
large or too small. Depending on a particular applicationb
should be accordingly chosen so that satisfactory per
mance in terms of cross-term suppression, auto-term r
lution, and noise robustness can be achieved. It is also
portant to note that the hyperbolic sech~•! kernel, given in
Eq. ~7!, is not the MTE kernel given in Eq.~2! even though
the CW kernel is a special case of the latter kernel. T
makes the hyperbolic kernel unique and thus it hopefu
might provide some improvements to the CW and MT
kernels.

The time-frequency power spectrum using the hyp
bolic sech~btu! kernel can be derived by substitutin
F~u,t!5sech~btu! into Eq. ~5! with Rt,1(t,t)5x@u
1(t/2)#•x* @u2(t/2)# as follows

P~ t,v!5
1

4p2 E2`

1`E
2`

1`E
2`

1`

exp~2 j tv!•$sech~but!

•exp@2 j u~ t2u!#%•x* S u2
t

2D
•xS u1

t

2Ddu dt du. ~8!

Hence, the general time-frequency power spectrum
the hyperbolic kernel is obtained as

P~ t,v!5E
t

exp~2 j tv!E
u

1

2bt
•sechS p~ t2u!

2bt D
•x* S u2

t

2D •xS u1
t

2Ddu dt. ~9!

4 Comparison of the Hyperbolic and
Choi-Williams Weighting Functions

Mathematically, the hyperbolic kernel is easier to integr
than the CW kernel. The weighting functions@the 1-D Fou-
rier transform of the kernel with the ‘‘frequency’’ variabl
(t2u)] of the two kernels are given by Eqs.~10! and~11!,
respectively,

Whyperbolic5
p

bt
•sechFp~ t2u!

2bt G
5

p

bt
•

2

expFp~ t2u!

2bt G1expF2
p~ t2u!

2bt G , ~10!

WCW5
sAp

t
•expF2

s~ t2u!2

4t2 G , ~11!

whereb ands are the kernel parameters of the hyperbo
and CW kernels, respectively, andt is the lag paramete
used to calculate the autocorrelation function.

The 2-D contour plots of the weighting functions of th
CW and hyperbolic kernels are shown in Fig. 1. This sho
that the hyperbolic kernel is more ‘‘local’’ in the (t2u)
direction than in thet direction. The CW kernel extend
3Optical Engineering, Vol. 42 No. 8, August 2003
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Le, Dabke, and Egan: Hyperbolic kernel . . .
wider in the (t2u) direction and therefore it can be sa
not to be ‘‘local’’ in that direction.2 Thus, the hyperbolic
kernel is more concentrated in the vicinity of the origin
the (t2u) direction than the CW kernel. If the auto term
are mostly distributed along the horizontal straight linet
2u)50 in Fig. 1, then the hyperbolic kernel is most su
able in amplifying these auto terms since it is localized
the (t2u) axis.

Since the CW weighting function is localized in the d
rection of thet axis, it is most suitable for auto terms th
are located along the (t2u) axis. This suggests that th
CW kernel can support auto terms more effectively than
hyperbolic kernel; in other words, the CW kernel is e
pected to have a finer auto-term resolution than that of
hyperbolic kernel. The cross-term suppression ability
these kernels will be discussed in Secs. 5.2 and 5.3 usi
sum of two complex-exponential and chirp signals, resp
tively. The auto-term resolution of the CW, hyperbolic, a
some MTE kernels will be investigated in Sec. 6 so tha
trade-off between cross-term suppression and auto-t
resolution can be established. The 3-D plots of the weig
ing functions of the CW and hyperbolic kernels, which co
respond to the contour plots displayed in Fig. 1, are sho
in Fig. 2. The hyperbolic weighting function has larger no
zero values in the vicinity of the origin, as seen in Fig.

Figure 2 shows the auto-term supportive regions@around
the vicinity of the origin in both the (t2u) andt axes# of
the kernels and therefore it is possible to choose suita
applications for the appropriate kernels with the minimu
amount of cross terms and maximum amount of auto ter
The contour plot of the second-order hyperbolic kern
@sech(but)#n with n52, is given in Fig. 3. The main and
side lobes of the weighting function of the@sech(but)#2

kernel are unbounded at the center frequency sugges
that its volume under the surface is infinite. Thus, it is n
suitable for suppressing cross terms in the time-freque
plane and therefore the even order of the hyperbolic fam
kernels will not be investigated further in this paper. A
though the even-order hyperbolic family kernels do n
provide effective cross-term suppression, they still sati

Fig. 1 Contour plots of the CW and hyperbolic weighting functions.
4 Optical Engineering, Vol. 42 No. 8, August 2003
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g

the seven constraints. In the following section, performa
of the CW and hyperbolic kernels are compared in terms
cross-term suppression through simulation.

5 Cross-Term Suppression Comparison

The effectiveness of the CW and hyperbolic kernels in s
pressing cross terms will be compared with two types
multicomponent signals: a sum of two complex-exponen
and two chirp signals. Performance of the WV kernel
also compared with the CW and hyperbolic kernels. One
the key factors that can be used to judge the performanc
a particular kernel is to estimate the normalized pe
magnitude ratio of the cross terms to auto terms. The lo
this ratio, the more effective the kernel is at cross-te
suppression.

Firstly, the WV, CW, and hyperbolic time-frequenc
power spectra are compared so that the disadvantage
the WV unity kernel are shown and the advantages of
CW and hyperbolic time-frequency power spectra are de
onstrated. In the rest of this paper, the CW, MTE, and fir
order hyperbolic sech~but! kernels are studied and com
pared ~where appropriate! in terms of normalized cross
term magnitude ratio ~Sec. 5.2!, normalized peak-

Fig. 2 3-D plots of the hyperbolic and CW weighting functions.

Fig. 3 The weighting function of the second-order hyperbolic kernel
F(u,t)5@sech(but)#2 with b51.
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Le, Dabke, and Egan: Hyperbolic kernel . . .
magnitude ratio of the cross terms to auto terms~Sec. 5.3!,
auto-term resolution or auto-term width~Sec. 6!, and noise
robustness~Sec. 7!. The normalization that has been us
throughout this paper, unless otherwise specified, is d
by dividing the particular values by their maximum valu
For example, the normalized ratio of the cross terms to a
terms is obtained by dividing all of the ratios by their max
mum value.

5.1 Typical Example

The CW and hyperbolic time-frequency power spectra
displayed. The MTE time-frequency distribution does n
have a general expression and thus it is not included h
Since the well-known CW kernel is a special case of
MTE kernel, it can be chosen as a representative kerne
the MTE kernel.

A simple ‘‘simulated’’ speech signal, shown in Fig. 4,
used as an input signal to obtain the WV, CW, and hyp
bolic time-frequency power spectra. A silent period5–9 is
present since it is unavoidable in normal conversations
should be noted that the waveform in Fig. 4 intends to sh
that the WV time-frequency power spectrum misleads
silent period compared to the CW and hyperbolic pow
spectra. Real conversation waveforms are much more c
plicated than this waveform. The WV, CW, and hyperbo
time-frequency power spectra are displayed in Figs. 5
respectively. The most important thing that determines
effectiveness of a kernel is that during the silent period
the speech signal, its time-frequency power spectrum m
be ‘‘silent’’ or there is effectively no energy smearing.

As can be seen from Fig. 5, the WV time-frequen
power spectrum is nonzero over the silent period~from
discrete times of 32 to 64! of the conversation. There ar
many humps and considerable energy smearing over
silent period. This creates misleading information about
nature of the input signal and thus it shows that the W
unity kernel is not effective in suppressing cross terms
the time-frequency plane.

Figure 6 displays the CW time-frequency power sp
trum, which shows a zeroed spectrum over the silent
riod. This is a major improvement over the WV time
frequency power spectrum. However, there is still ene
smearing over the silent period. The ‘‘humps’’ are clean
and smaller but they should be ideally removed from

Fig. 4 A simple ‘‘simulated’’ speech signal with a silent period.
.

r

-

,

t

e

spectrum. Figure 7 shows the hyperbolic time-frequen
power spectrum with a clear display of the silent perio
The edges are sharp and the amount of energy smeari
considerably reduced. There are still small ‘‘humps’’ ov
the silent period but these humps are much smaller
cleaner than those in the WV and CW time-frequency sp
tra. This suggests that the hyperbolic kernel can perfo
better cross-term suppression than the CW and WV kern
The subsequent sections compare the cross-term sup
sion ability of the hyperbolic, CW, and WV kernels b
using a sum of two complex-exponential and two ch
signals. Auto-term resolution and noise robustness of
hyperbolic, CW, and MTE kernels are examined and co
pared in Secs. 6 and 7, respectively.

Fig. 5 The WV time-frequency power spectrum of a speech signal
displayed in Fig. 4.

Fig. 6 The CW time-frequency power spectrum with s51 of a
speech signal displayed in Fig. 4. The ‘‘Frequency Bin k’’ axis should
read ‘‘Discrete Frequency.’’
5Optical Engineering, Vol. 42 No. 8, August 2003
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Le, Dabke, and Egan: Hyperbolic kernel . . .
5.2 Sum of Two Complex-Exponential Signals

Given the input signal

f ~ t !5A1 exp@ j ~v1t1u1!#1A2 exp@ j ~v2t1u2!#,

whereA1 , A2 are arbitrary real constants andu1 , u2 are the
phases of the exponential terms,v1530 rad/s† and v2

534 rad/s. The CW time-frequency power spectrum off (t)
is given by2,26

EDCW~ t,v!52pA1
2d~v2v1!12pA2

2d~v2v2!

12A1A2 cos@~v12v2!•t1u12u2#

•WEIGHTCW , ~12!

where

WEIGHTCW5F ps

~v12v2!2G 1/2

•expF2
s

4~v12v2!2

•S v2
v11v2

2 D 2G . ~13!

The WV time-frequency power spectrum is given by

WV~ t,v!52pA1
2d~v2v1!12pA2

2d~v2v2!

12A1A2 cos@~v12v2!•t1u12u2#

•WEIGHTWV , ~14!

whereWEIGHTWV51.
The auto terms and cross terms of the hyperbolic tim

frequency power spectrum are identical to those of the C

†For comparison purposes, values ofv1 andv2 are taken from the pape
by Choi and Williams.2

Fig. 7 The hyperbolic time-frequency power spectrum with b51 of
a speech signal displayed in Fig. 4. The ‘‘Frequency’’ axis should
read ‘‘Discrete Frequency.’’
6 Optical Engineering, Vol. 42 No. 8, August 2003
time-frequency power spectrum@as seen in Eq.~12!#. How-
ever, the hyperbolic weighting factor is different from th
of the CW kernel and is given by

WEIGHThyper5
p

b~v12v2!
•sechF p

2b~v12v2!

•S v2
v11v2

2 D G . ~15!

From Eqs.~12!–~15!, it is clear that the WV kernel doe
not effectively suppress cross terms, i.e., its weighting f
tor is unity as seen in Eq.~14!. The weighting factors of
both the CW and hyperbolic kernels are much less th
unity and thus they are more effective in suppressing cr
terms than the WV kernel. Figure 8 shows the cross co
parison of the 3-D plot of the normalized ratio of the h
perbolic weighting factor@Eq. ~15!# to that of the CW ker-
nel @Eq. ~13!# as a function ofv andb. This ratio is very
small except for small values ofb. This means that for
approximatelyb<1.5 and for frequencies less than 5 rad
the hyperbolic weighting function is much larger than th
of the CW kernel and thus the former is not effective
suppressing cross terms. However, forb.1.5, the hyper-
bolic weighting factor appears to be smaller than that of
CW kernel and therefore the former kernel is more effe
tive at cross-term suppression than the latter. The norm
ized weighting functions of the hyperbolic and CW kerne
are compared again in Fig. 10 but the normalized cur
will not intersect due to different normalization factors a
instantaneous rates of change of the individual ker
weighting functions.

Figure 9 displays the cross-term suppression ability
the CW and hyperbolic kernels forb51 andb51.45. As
explained in Sec. 3 and from Fig. 8, whenb increases,
better performance in terms of cross-term suppressio
obtained since the main-lobe magnitude of the hyperb
weighting function is reduced. For small values ofb<1.5
~s>0.67!, as explained earlier, the CW distribution give

Fig. 8 Normalized ratio of the hyperbolic weighting factor [Eq. (15)]
to that of the CW kernel [Eq. (13)] for a sum of two complex-
exponential signals.
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Le, Dabke, and Egan: Hyperbolic kernel . . .
better results since its main lobe is smaller in magnitu
than that of the hyperbolic distribution. However, it shou
be noted thatb should not be chosen too small or too lar
or accordinglys should not be chosen too large or to
small ~as explained in Sec. 3! since extreme values ofb or
s can make the kernel become the WV kernel, which d
not have effective cross-term suppression. The hyperb
CW, and WV auto-term magnitude remains constant
2pA1

2 and 2pA2
2 as shown in Eqs.~12! and~14!. Since the

auto terms remain constant, their ratios to the correspo
ing cross terms are not shown. Instead, the normali
cross terms of the CW and hyperbolic kernels@given also in
Eq. ~12!# for a sum of two complex-exponential signals
shown in Fig. 10.

From Fig. 9, forb near 1.45~s'0.7!, the hyperbolic
cross terms have identical peaks with those of the C
When b>1.45, the hyperbolic kernel starts outperformi
the CW kernel by having a smaller cross-term peak mag

Fig. 9 Comparison of the CW and hyperbolic kernels using a sum
of two complex-exponential signals.
,

-

tude. The normalized cross-term magnitude ratio, which
shown in Fig. 10, decreases asb increases. From Fig. 10
the faster decaying rate of the hyperbolic normalized cr
terms compared with that of the CW cross terms sugg
that the hyperbolic kernel is more effective in suppress
cross terms than the CW kernel as predicted in Sec. 4
fact, from Fig. 10, the CW normalized cross terms are
ways larger than those of the hyperbolic kernel for sm
values ofb, i.e., typically,b<50.

If b is large, the hyperbolic kernel approaches a ‘‘z
roed’’ kernel~which is not very useful! and the CW kernel
becomes the WV kernel, which does not provide effect
cross-term suppression. In addition, under this extre
condition ofb, the normalized cross terms of the two ke
nels will be getting closer in value and it is expected th
they will be identical for very large values ofb. Thus, the
value ofb ands should be carefully chosen with the sp
cific application to avoid the above limitations of the h
perbolic and CW kernels. For a sum of two comple
exponential signals, from Figs. 8–10, the useful range ob
for effective cross-term suppression isb>1.45 whereb is
not to be chosen very large. Another frequently enco
tered nonstationary signal in practice is the chirp signal
sum of two chirp signals is examined in the following se
tion.

5.3 Sum of Two Chirp Signals

Let the input signal,f (t), be a sum of two chirp signals o
the form

f ~ t !5A1 expS j a1t2

2 D1A2 expS j a2t2

2 D ,

wherea151, a253 andA15A251 ~for simplicity!.
For a sum of two chirp signals, the integral cannot

analytically calculated, thus, approximation methods~by
means of simulation! using discrete techniques are used
estimate the integrals. The general form of the tim
Fig. 10 Normalized CW and hyperbolic cross terms for a sum of two complex-exponential signals.
The lower this value is, the better the cross-term suppression ability of the kernel. In this case, the
hyperbolic kernel is better than the CW kernel for b>1.45. Normalization factors are the maximum
values of each series.
7Optical Engineering, Vol. 42 No. 8, August 2003
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frequency power spectrum can be written asP(t,v)
5AUTO1CROSS. The WV time-frequency power spec
trum is given by

AUTOWV5A1
2d~v2a1t !1A2

2d~v2a2t !, ~16!

and

CROSSWV52A1A2E
t

expH 2 j S v2
a11a2

2
t D tJ

•cosF1

2
~a12a2!S t2

4
1t2D Gdt. ~17!

The time-frequency power spectrum given by the C
distribution is26

AUTOCW5A1
2E

t
H expS 2

a1
2t4

s D J •~exp@2 j ~v2a1t !t#!

3dt1A2
2E

t
H expS 2

a2
2t4

s D J
•~exp@2 j ~v2a2t !t#!dt, ~18!

CROSSCW5A1A2E
t

expF2 j S v2
a11a2

2
t D tG

•E
u

exp@ j ~a11a2!ut/2#•H s

2tAp

•expS 2
su2

4t2 D J •cos@~a12a2!~u1t !2/2

1~a12a2!t2/8#du dt. ~19!

The auto terms and cross terms of the hyperbolic tim
frequency power spectrum of a sum of two chirp signals
given by

AUTOHy5A1
2E

t
$sech~ba1t2!%•~exp@2 j ~v2a1t !t#!dt

1A2
2E

t
$sech~ba2t2!%

•~exp@2 j ~v2a2t !t#!dt, ~20!

CROSSHy5A1A2E
t

expF2 j S v2
a11a2

2
t D tG

•E
u

exp@ j ~a11a2!ut/2#

•H 1

2bt
•sechS pu

2bt D J •cos@~a12a2!

3~u1t !2/21~a12a2!t2/8#du dt. ~21!
8 Optical Engineering, Vol. 42 No. 8, August 2003
From Eqs.~17!, ~19!, and~21!, the cross-term weighting
factors of the WV, CW, and hyperbolic distributions are

CROSS-WEIGHTWV5cosF1

2
~a12a2!S t2

4
1t2D G , ~22!

CROSS-WEIGHTCW

5H s

2tAp
•expS 2

su2

4t2 D J •cos@~a12a2!~u1t !2/2

1~a12a2!t2/8#, ~23!

CROSS-WEIGHTHy

5H 1

2bt
•sechS pu

2bt D J •cos@~a12a2!~u1t !2/2

1~a12a2!t2/8#. ~24!

From Eqs.~22!–~24!, it is evident that the WV kerne
has a larger weighting factor than those of the hyperbo
and CW kernels. Thus, the WV unity kernel is not effecti
in cross-term suppression. The normalized ratio of the
perbolic weighting factor@Eq. ~24!# to the CW weighting
factor @Eq. ~23!# is given in Fig. 11.

Figure 11 displays the 3-D plot of the normalized ra
of the hyperbolic weighting factor@Eq. ~24!# to that of the
CW kernel@Eq. ~23!# as a function ofu/t andb in which
the ratio is small except for large values ofu/t and small
values ofb. This is similar to the case of a sum of tw
complex-exponential signals investigated earlier. As sta
in Sec. 5.2, asb increases, better performance of the h
perbolic kernel compared with the CW kernel will be o
tained. Increasingb will reduce the volume under the su
face of the weighting functions of the hyperbolic and C
kernels. The faster the reduction rate of this volume w
respect tob, the larger the peak-magnitude ratio of the au
terms over the cross terms.

Figure 12 displays the peak-magnitude ratio of the cr
terms to auto terms and the normalized auto terms of
two kernels asb varies. This ratio is more important tha

Fig. 11 Normalized ratio of the hyperbolic weighting factor to that of
the CW kernel for a sum of two chirp signals as a function of u/t and
b. The approximate useful range of b is b>0.5.
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Fig. 12 Normalized peak-magnitude ratio of the cross terms to auto terms of the CW kernel [ratio of
Eq. (19) to Eq. (18), CWNorRatio] and hyperbolic kernel [ratio of Eq. (21) to Eq. (20), HyNorRatio] for
a sum of two chirped signals. The lower this ratio is, the better the cross-term suppression ability of the
kernel. The normalized values of the auto terms of the two kernels (HyNorAuto and CWNorAuto) are
also shown in the same graph. The higher this value, the better the auto term magnitude. At b'2.5, the
normalized values of the auto terms of the two kernels are approximately equal. The hyperbolic
normalized ratio of the cross terms to auto terms is much lower than that of the CW kernel for all
values of b except at b50.05. The useful range of b is therefore 0.3<b<2.5.
rms
ting
rm
de
rms
ugh

of
th
ch
t is
er-

by
io.
er-
ms
see
by

W
ss-
f

ts

g-
rne
nd

e
el,

for
t
to
en

ose

ty

ude
hirp

in
s
er

to-
for
ni-
the individual magnitude of the cross terms and auto te
since it reflects the effectiveness of the kernel in suppor
auto terms and suppressing cross terms. If the cross te
are small in magnitude, say 0.1, and the auto terms un
the same conditions are much smaller than the cross te
say 0.000001, then the kernel is not effective even tho
the cross terms are small. This explains why the ratio
cross terms to auto terms of a kernel is considered to be
most important factor and therefore it is used as a ben
mark to compare the effectiveness of different kernels. I
clear that the smaller this ratio, the more effective the k
nel. From Fig. 12, theoretically, forb>0.05, i.e.,s<20, the
hyperbolic kernel performs better than the CW kernel
having a smaller cross-term to auto-term magnitude rat

It should be noted that the decaying rate of the hyp
bolic cross terms is faster than that of the CW cross ter
which yields better cross-term suppression as can be
in Fig. 12. This effect has also been observed
Boudreaux-Bartels and Papandreou.15 From Fig. 12, the
useful range ofb is approximately 0.3<b<2.5 to ensure
that the hyperbolic kernel is more effective than the C
kernel by having better auto-term magnitude and cro
term suppression ability. Using the observed range ob
from Fig. 11 ofb>0.5, the optimum range ofb now be-
comes 0.5<b<2.5. It should be noted that the lower limi
of b obtained from Fig. 11~b>0.5! and from Fig. 12
~b>0.3! are in the same order of magnitude, which su
gests that both methods of calculating the ratio of the ke
weighting factors or magnitude ratio of auto terms a
cross terms are valid.

From Sec. 5.2, the useful range ofb for a sum of two
complex-exponential signals isb>1.45. Thus, to enable th
hyperbolic kernel to perform better than the CW kern
practically,b should be in the range of 1.45<b<2.5. For
chirped signals, from Fig. 12, it should be noted that
20>b>2.5, the hyperbolic kernel still performs well, bu
with a slightly smaller auto-term magnitude compared
that of the CW kernel. The worst performance occurs wh
s
r
,

e
-

,
n

l

the hyperbolic auto terms have lower magnitude than th
of the CW kernel, which corresponds to 20,b<500, i.e.,
0.002<s<0.05. If only the cross-term suppression abili
is considered, then the largerb is, the better the cross-term
suppression. However, ifb is very large~about 107), de-
tailed simulation shows that the auto-term peak magnit
becomes saturated at about 0.001 for a sum of two c
signals. The auto terms of the two kernels are plotted
Fig. 13 for t50 and s51, and Fig. 14 shows the cros
terms of the CW and hyperbolic time-frequency pow
spectra forb53.5 andt50 to give further understanding
on the effectiveness of the hyperbolic and CW kernels.

From Fig. 13, it can be seen that the hyperbolic au
term peak magnitude is less than that of the CW kernel
b51. From Fig. 14, the hyperbolic cross-term peak mag

Fig. 13 Auto-term magnitude of the CW and hyperbolic time-
frequency power spectra for t50 and b51.
9Optical Engineering, Vol. 42 No. 8, August 2003
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tude is equal to that of the CW kernel forb53.5. However,
from Fig. 12, atb53.5, the hyperbolic normalized aut
terms are only slightly less than the CW normalized a
terms ~about 5%! and thus it can be accepted as a use
value ofb. Thus, the most useful range ofb, which yields
optimum performance for the hyperbolic kernel in cros
term suppression and auto-term magnitude compared
the CW kernel, can be expanded to 1.45<b<3.5. The ap-
plicable range ofb for a satisfactory performance of effec
tive cross-term suppression and acceptable auto-term m
nitude is therefore 0.5<b<20.

Although the hyperbolic kernel can suppress cross te
more effectively than the CW kernel for well-chosen valu
of b, increasingb to a very large value will saturate th
auto-term peak magnitude as discussed earlier and as
served by Choi and Williams.2 Making b too large does no
provide useful information since the hyperbolic kernel a
proaches a ‘‘zeroed’’ kernel as explained in Sec. 4. Ifb is
too large then the peak-magnitude ratio of the cross te
to auto terms decreases as shown in Fig. 10 and Fig. 1
addition, the normalized auto-term magnitude of the C
and hyperbolic kernels also decreases. Thus, it can be
gested that increasingb ~or decreasings! enhances cross

Fig. 14 Cross-term magnitude of the CW and hyperbolic time-
frequency power spectra for t50 and b53.5, which suggest that for
b>3.5, better cross-term suppression can be achieved by using the
hyperbolic kernel rather than the CW kernel.
10 Optical Engineering, Vol. 42 No. 8, August 2003
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term suppression but decreases the auto-term magnitud
question arises at this point: Are there any other trade-of~s!
associated with increasingb, such as auto-term resolutio
and noise robustness? Sections 6 and 7 examine the
term resolution or auto-term width and noise robustness~as
b varies! of the CW, hyperbolic, and some of the MT
kernels in some detail so that the relationships and tra
off~s! among the above-mentioned quantities can be es
lished.

6 Auto-Term Functions and Auto-Term Widths

Sections 5.2 and 5.3 examined the effectiveness of the
perbolic and CW kernels by estimating the peak-magnitu
ratio of their auto terms to cross terms. The effectivenes
a kernel can also be measured based on its auto-term w
or auto-term resolution, which can be estimated from
auto-term function. The auto-term function is a function
the lag parametert but with the substitution ofu52at,
where a is the slope of the auto-term line in the kern
time-frequency plane.

The auto-term width is defined as the frequency at wh
the auto-term magnitude decreases bye52.718 times its
peak magnitude.27 The larger the auto-term width, the fine
the auto-term resolution. Previous work by Stankovic27 cal-
culated the auto-term functions and auto-term widths o
number of kernels including the Born-Jordan kernel, t
pseudo WV kernel, the optimal kernel, the CW kernel, a
the sinc kernel.27 This section is devoted to comparing th
hyperbolic sech~but! kernel with the CW and MTE kernels
as the kernel control parametersb51/s ~for hyperbolic ker-
nel!, s ~for CW kernel!, anda, r, bMTE , g, andl ~for MTE
kernel! vary. The auto-term function is given in general b

Auto-term Function

5E
2`

1`

F~u,t!uu52at•exp~2 j vt!dt. ~25!

The auto-term functions of the CW and hyperbolic ke
nels are given in Eqs.~26! and ~27!, respectively,

AUTOCW5E
2`

1`

expF2
a2t4

s G•exp~2 j vt!dt, ~26!
Fig. 15 Normalized auto-term width of the hyperbolic and CW kernels.
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AUTOHy5E
2`

1`

sech@2abt2#•exp~2 j vt!dt. ~27!

Equations~26! and ~27! cannot be further reduced t
their closed forms although the integrands are well-beha
functions. To estimate the auto-term widths of the hyp
bolic and CW kernels, the discrete Fourier transform v
sions of Eqs.~26! and~27! were used based on simulation
in MATLAB. The normalized auto-term widths of the hy
perbolic and CW kernels plotted againstb are shown in
Fig. 15 in which the maximum auto-term width of eac
series is used as the normalization factor. The auto-t

Fig. 16 Auto-term functions and auto-term widths of the MTE dia-
mond case 1 kernel, hyperbolic, and CW kernels.
functions and auto-term widths of the MTE diamond cas
form along with those of the hyperbolic and CW kerne
are plotted in Fig. 16. The auto-term functions of vario
forms of the MTE kernel will not be displayed in full detai
Table 1 lists the auto-term widths of various types of t
MTE kernels fora51 and compares them with those of th
hyperbolic kernel and CW kernel.

As explained in Sec. 4, the auto terms are located aro
the origin and the hyperbolic kernel supports auto terms
the direction of thet axis while the Choi-Williams kerne
does so in the direction of the (t2u) axis. It has also been
shown that the CW kernel is more effective than the hyp
bolic kernel since it is more concentrated around the ori
whereas the hyperbolic kernel has large main lobes
extend in the direction of thet axis. From Fig. 15, the
above remark can be validated. It is clear that the CW k
nel is more auto-term supportive than the hyperbolic ker
by having a finer auto-term resolution. Thus, it can be
termined that auto terms are mainly located in the direct
of the (t2u) axis ~vertically! rather than in the direction o
the t axis ~horizontally!.

From Fig. 15, the hyperbolic auto-term resolution a
proaches that of the CW kernel whenb is very small~s is
very large!. For other values ofb, the CW kernel outper-
forms the hyperbolic kernel, which is a trade-off of havin
more effective cross-term suppression of the hyperb
kernel at the expense of having a poorer auto-term res
tion.

In Table 1, the following parameter values are chos
a51, t05u051, andb51/s51 for simplicity, which will
not affect the generality of comparison. The auto-te
width of the CW and hyperbolic kernels for other values
b is displayed in Fig. 15 in which the hyperbolic kernel h
a smaller auto-term width than that of the CW kernel. Th
clearly indicates the trade-off between cross-term supp
sion ability and auto-term resolution. Increasingb increases
the auto-term resolution~seen in Fig. 15! but also decrease
Table 1 Auto-term widths (in frequency samples) for a51 of various forms of the MTE kernel.

MTE kernel

Parameter value Auto-term width for a51

a r b g l MTE Hyperbolic† CW

Parallel
strip

0 1 1 1 1 0.5 5.5 7.0

Cross 0 21 2 0.5 1 0.5 5.5 7.0

Snowflake‡ 0 r522 2 0.5 1 14.5 5.5 7.0

Untilted
elliptical

0 0 1 1 1 14.5 5.5 7.0

Tilted
elliptical

0 0.5 1 1 2 9.2 5.5 7.0

Diamond
case 1

0 1 2 0.5 1 18.5 5.5 7.0

Diamond
case 2

0.1 0 1 1 1 13.0 5.5 7.0

Hyperbolic 1 0 1 1 1 10.5 5.5 7.0

Rectangular 1010 0 1 1 1 6.5 5.5 7.0

†The parameters of the hyperbolic and CW kernels are b51/s51 throughout the table.
‡For this set of parameters, the MTE snowflake and untilted-elliptical forms have identical auto-term
functions.
11Optical Engineering, Vol. 42 No. 8, August 2003



Le, Dabke, and Egan: Hyperbolic kernel . . .

12 Optical Engi
Fig. 17 Normalized noise variance of the CW and hyperbolic kernels as a function of b.
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the auto-term magnitude as seen in Fig. 12. It should
noted that the MTE kernel becomes the WV kernel wh
l50. In that case, the MTE kernel can be rewritten
exp~2p31!, which is essentially the WV kernel multiplie
by a constante2p'0.0432. From Table 1, it should also b
noted that the MTE kernel has 5 parameters that can g
erate up to~5!!5120 different MTE kernels with differen
sets of parameters. The main aim of this work is not
analyze the MTE kernel in detail but to show that there
still room for improvements even though the MTE has be
shown to be an effective kernel.12 Thus, only some popula
forms of the MTE kernel are studied in this paper. Furth
studies of the MTE kernel can also be found in Ref. 1
Table 1 shows the advantages and disadvantages of va
forms of the MTE kernel over the CW and hyperbolic ke
nels in terms of auto-term width. From Table 1, it can
suggested that the MTE kernel can produce better a
term quality than the hyperbolic and CW kernels~for b51/
s51! as larger auto-term widths are obtained from vario
types of the MTE kernel, except in cases of the parallel a
cross MTE kernels where the MTE auto-term widths a
0.5 ~a50, r 5b5g5l51) compared with 5.5 and 7.0 o
the hyperbolic and CW kernels, respectively.

The following conclusions on the MTE kernel are draw
after studying Table 1. The larger the auto-term slopea in
the ~u,t! plane of the kernel functionF~u,t!, the finer the
auto-term resolution. It also appears that the untilted el
tical MTE kernel has the finest auto-term resolution and
most sensitive to the auto-term slope compared to o
types of the MTE kernel, the hyperbolic and CW kerne
The tilted elliptical MTE kernel appears to have the coa
est auto-term width. The auto-term functions of the rema
ing MTE kernels~except the untilted elliptical MTE kernel!
are almost identical~and so are their auto-term widths! for
a small value ofa50.5. The MTE hyperbolic and MTE
tilted elliptical kernels have identical auto-term functio
and hence equal auto-term widths. The auto-term functi
of the snow flake MTE kernel~g51! and the untilted ellip-
tical MTE kernel are identical whena51. This might sug-
gest that at some specific values ofa, the auto-term func-
tions of various types of the MTE kernel are identic
yielding convergence of various forms of the MTE kern
which reduces its uniqueness.
neering, Vol. 42 No. 8, August 2003
-

s

-

r

Depending upon the kernel control parameter~s!, specific
requirements can be met. The MTE kernel is flexible, sin
it can generate various types of different kernels, but one
its disadvantages is that the parallel and cross forms h
coarse auto-term resolutions in which their auto-term fu
tions are identical triangular pulses with very large pea
Further, the auto-term resolutions of the MTE snowfla
and untilted elliptical forms are equal in value as seen
Table 1 for identical auto-term functions as observed e
lier. For larger values ofl, the MTE snowflake auto-term
function departs from that of the MTE untilted-elliptica
kernel, which suggests that these kernels can only be e
tively used whenl is large.

In this section, the relationship between the auto-te
resolution, auto-term magnitude, andb has been estab
lished. The larger the control parameterb is, the higher the
auto-term resolution but the smaller the auto-term mag
tude. There is also a trade-off between the auto-term re
lution and cross-term suppression ability of a kernel. T
finer the auto-term resolution, the less effective the ker
is in cross-term suppression. From this, it might be s
gested that the MTE kernel is less cross-term suppres
effective compared with the hyperbolic kernel and CW k
nel since most MTE kernels have finer auto-term reso
tions than those of the former two kernels as was sho
earlier. Section 7 examines the noise variance of the hy
bolic and CW time-frequency power spectra so that furt
conclusion~s! on the trade-offs among auto-term resolutio
cross-term suppression, and noise robustness can be e
lished.

7 Noise Variance Calculation

This section aims to investigate the effects of noise on a
and cross terms by examining their regions on the tim
frequency plane graphically. Previous work done by Sta
ovic and Ivanovic28 and Hearon and Amin29,30 dealt with
complex noise and found that given an input complex wh
Gaussian noise with variances in

2 , the noise variances2

produced by the input noise in time-frequency power sp
trum can be successfully estimated. In this paper howe
we deal with real white Gaussian noise only whose no
variance is given by28,29
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s2~v!5s in
4 (

t52`

1`

(
~ t2u!52`

1`

uW~t,~ t2u!!u21W~t,~ t2u!!

•W* ~t,~ t2u!!•exp~2 j 4vt!, ~28!

whereW(t,t2u) is the weighting function of the kerne
function F~u,t! and ‘‘* ’’ indicates complex conjugate op
eration.

From Eq.~28!, it can be seen that the noise variance i
function of v and gains its maximum value whenv50,
thus the maximum real noise variance in the tim
frequency power spectrum is given by

smax
2 52s in

4 (
t52`

1`

(
~ t2u!52`

1`

uW~t,~ t2u!!u2. ~29!

The normalized noise variance of the CW and hyp
bolic kernels, as a function ofb, is plotted in Fig. 17, from
which it can be suggested that the hyperbolic kernel is m
noise robust than the CW kernel forb>3. For detailed
analysis of the noise variance of other kernels, see Refs
and 29. Hence, it can be concluded that kernels that
effectively suppress cross terms tend to be more noise
bust~the hyperbolic kernel! than kernels that are less cros
term effective but have a finer auto-term resolution~in this
case, the CW and MTE kernels!. This important relation-
ship agrees with what was reported in Refs. 2, 3, 6, an
It should also be noted that time-frequency spectral anal
can be applied to random and unknown signals such
biomedical signals~electrocardiograms and electroenceph
lograms!, music, various sounds including whale soun
and bat sounds, speech with real-time conversations, o
waves, and chaotic signals such as those from a Duf
oscillator.

Equation~29! is evidently a function of the volume un
der the squared weighting function. Thus, it is important
note that to ensure robustness in the time-frequency po
spectrum, the volume under the squared weighting func
should be minimized, which means effective cross-te
suppression. Figures 18 and 19 display contour plots of
hyperbolic and CW time-frequency power spectra, resp
tively, for a sum of two chirp signals without noise inte
ference. Figures 20 and 21 display contour plots of the C
and hyperbolic time-frequency power spectra, respectiv
for a sum of two chirped signals embedded in a 3-
Gaussian noise. The corresponding 3-D plots of the hy
bolic and CW time-frequency power spectra without no
interference, whose contours plots are displayed in Figs
and 19, are given in Figs. 22 and 23, respectively.

As expected, by comparing Figs. 18, 19, 20, and 21
might be suggested that the hyperbolic time-freque
power spectrum is clearer than the CW time-frequen
power spectrum due to a smaller amount of cross term
the region between the two auto-term arms. In addition
the intersection of the two arms, there is less interfere
from the auto terms themselves than in the case of the
time-frequency power spectrum as displayed in Figs.
and 20, which is another advantage of the hyperbolic ke
over the CW kernel.

As stated earlier, the CW time-frequency power sp
trum has more cross terms in the region between the
8
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auto-term arms and in the directions along the arms as s
in Fig. 19, which is the disadvantage of the CW kern
compared with the hyperbolic kernel. However, the C
kernel, due to its finer auto-term resolution, has stron
auto-term arms in the time-frequency power spectrum
shown in Fig. 19 compared with those of the hyperbo
time-frequency power spectrum in Fig. 18. This advanta
establishes an important trade-off between auto-term re
lution and cross-term suppression of the two kernels as
cussed throughout this paper. However, one more impor
parameter appears in this trade-off~as stated earlier in this
section!, which is the noise robustness, which is graphica
shown in Figs. 20 and 21.

From Fig. 20, it is seen that the CW time-frequen
power spectrum is significantly distorted under the effe

Fig. 18 Contour plot of the hyperbolic time-frequency power spec-
trum of two chirped signals when no noise is added, b510. The
cross-term region is approximately from discrete frequencies 95 to
125. The x-axis and y-axis should read ‘‘Discrete Frequency’’ and
‘‘Discrete Time’’ respectively. This convention is also applied to the
remaining graphs in this paper.

Fig. 19 Contour plot of the CW time-frequency power spectrum of
two chirped signals when no noise is added, s50.1. The x-axis is
‘‘Discrete Frequency’’ and the y-axis is ‘‘Discrete Time.’’ The cross-
term region is approximately from discrete frequencies 45 to 175.
13Optical Engineering, Vol. 42 No. 8, August 2003
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of a 3-dB noise source. It is very hard to recognize the t
main auto-term arms of the spectrum and therefore it m
be said that the CW time-frequency power spectrum is
robust. The cross terms appear to remain almost uncha
under the effects of a noise source even though they
slightly degraded. From Fig. 21, the hyperbolic tim
frequency power spectrum, although is better than the
spectrum, still suffers from noise interference. The l
auto-term arm of the power spectrum is distorted, howe
the right auto-term arm can still be recognizable, as was
the case for the CW time-frequency power spectrum d
played in Fig. 20. The hyperbolic cross terms are also
graded~as were the CW cross terms! as compared with the
case in which no noise was added in Fig. 18. However,
amount of cross terms appears to remain unchanged.

Fig. 20 Contour plot of the CW time-frequency power spectrum of
chirp signals embedded in a 3-dB noise, s50.1.

Fig. 21 Contour plot of the hyperbolic time-frequency power spec-
trum of a sum of two chirped signals embedded in 3-dB noise,
b510.
14 Optical Engineering, Vol. 42 No. 8, August 2003
d
e

,
t

s

might suggest that noise sources do not considerably a
cross terms in time-frequency power spectra, however,
auto terms are significantly reduced.

As can be seen in Fig. 20, the CW time-frequency pow
spectrum, by having a finer auto-term resolution, consid
ably suffers under the effects of noise interference co
pared to the hyperbolic time-frequency spectrum~Fig. 21!.
Obviously, the latter can withstand tougher conditions th
the former. This suggests that the more effective the ke
is at cross-term suppression, auto-term magnitude,
noise robustness, the poorer its auto-term resolution. Th
the prime result that this paper aims to achieve. The 3
mesh plots of the hyperbolic and CW time-frequen
power spectra are provided in Figs. 22 and 23 to give f
ther understanding on the effects of a noise source on
spectrum. Mesh plots of the CW and hyperbolic tim
frequency power spectra embedded in a 3-dB noise so
are given Figs. 24 and 25, respectively.

Fig. 24 Mesh plot of the Choi-Williams time-frequency power spec-
trum embedded in a 3-dB noise, s50.1.

Fig. 22 Noiseless 3-D plot of the hyperbolic time-frequency power
spectrum of two chirp signals, b510.
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8 Conclusion

The hyperbolic@sech(but)#n ~with n51) kernel has been
shown to be effective in cross-term suppression. In part
lar, we have shown its effectiveness for a sum of t
complex-exponential signals, forb>1.45 and, in the case
of a sum of two chirp signals, for 20>b>0.5. The hyper-
bolic kernel has also been shown to be better than the
kernel in terms of cross-term suppression ability and low
noise variance for well-chosen values ofb>3. Thus, the
applicable range ofb is 20>b>3.

However, the hyperbolic kernel has a smaller auto-te
resolution than that of the CW kernel and most types
MTE kernels, except in the case of the MTE rectangu
form where the auto-term widths of the three kernels
approximately equal. There appears to be a trade-off am
auto-term resolution, auto-term magnitude, cross-term s
pression ability, and noise robustness. The more effec
the kernel is at cross-term suppression, auto-term ma
tude, and noise robustness, the poorer its auto-term res
tion. This is an important trade-off that should be cons

Fig. 23 Noiseless 3-D plot of the CW time-frequency power spec-
trum of two chirp signals, s50.1.

Fig. 25 Mesh plot of the hyperbolic time-frequency power spectrum
embedded in a 3-dB noise, b510.
g
-

-
-

ered in choosing the appropriate kernel for a particu
application. Further research needs to be carried out to
vestigate other members of the hyperbolic kernel fam
such as the@sech(but)#3 kernel or higher-order kernels, fo
further improvements on auto-term resolution and noise
bustness. An additional constraint on the boundedness
kernel weighting function has also been stated.
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