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Abstract 

This paper reports experimental and numerical results of the deformation of a 

ferrofluid droplet on a super hydrophobic surface under the effect of a uniform 

magnetic field. A water-based ferrofluid droplet surrounded by immiscible 

mineral oil was stretched by a magnetic field parallel to the substrate surface. 

The results show that an increasing flux density increases the droplet width and 

decreases the droplet height. A numerical model was established to study the 

equilibrium shape of the ferrofluid droplet. The governing equations for physical 

fields, including the magnetic field, are solved by the finite volume method. The 

interface between the two immiscible liquids was tracked by the level-set method. 

Nonlinear magnetization was implemented in the model. Comparison between 

experimental and numerical results shows that the numerical model can predict 

well the nonlinear deformation of a ferrofluid droplet in a uniform magnetic 

field.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Griffith Research Online

https://core.ac.uk/display/143869075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

Introduction 

The shape of a liquid droplet is of great interest for the field of droplet-based microfluidics. 

Under gravitational distortion, the shape of a sessile droplet has been numerically 

investigated with varying degrees of success. The classic numerical solutions from Bashforth 

and Adams was widely employed.1 Robertson and Lehman obtained the shape by minimizing 

the total energy of the droplet with a constant mass.2 By means of singular perturbation 

techniques, O’Brien et al. developed an asymptotic expression to estimate the shape of small 

sessile and pendant droplets.3, 4 The study of droplet shape is particularly important as the 

solutions can be directly compared with experimental results.5 In addition, the shape of the 

droplet allows an indirect measurement of surface tension.6, 7 

Numerous techniques have been developed for controlling the behavior of a liquid droplet 

on a solid surface. Droplet behavior can be controlled by chemical gradient,8 

thermocapillarity,9, 10 and electrostatic forces.11, 12 Magnetic force was used in our previous 

work to control the behavior of a sessile ferrofluid droplet under the effect of a non-uniform 

external magnetic field.13 This work indicated that the ferrofluid droplet undergoes a shape 

deformation. In the present paper, magnetic field was applied uniformly to investigate the 

deformed shape of a ferrofluid droplet.  

Compared to the case of droplets flattened purely by gravitational force, the equilibrium 

shape of droplets in a magnetic field is difficult to obtain. Extra efforts are required to solve 

the problem involving non-local forces which depend on the shape of the domain occupied by 

the droplet. Sneyd and Moffatt presented a preliminary theory for predicting the equilibrium 

shape of a sessile ferrofluid droplet under a magnetic force.14 The theory was derived based 

on potential energy minimization and perturbation method. The effects of both gravitational 

and magnetic force were examined on both wetting and non-wetting droplets. For droplet 

elongation under an external magnetic field, hysteresis phenomena were first experimentally 

investigated by Brancher and Zouaoui.15 The phenomenon of hysteresis was further 

confirmed by the numerical results which presented the interface wavelength for the case of a 

wetting droplet. Bormashenko and Whyman proposed a universal solution to treat interactions 
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between a droplet and the surrounding as a generalized potential.16 The application of 

standard calculus of variations was demonstrated to be effective and accurate for solving this 

problem.17 

Previously, Rosensweig studied the deformation and instability of freely suspended 

droplets.18 Numerical studies were carried out to obtain the deformation of both freely 

suspended droplets and sessile droplets in a uniform magnetic field.19, 20 The resulting droplet 

shape is determined by the interaction between interfacial tension and magnetic force. 

Afkhami et al. presented experimental and numerical results exploring equilibrium state of a 

suspended hydrophobic ferrofluid droplet under a uniform magnetic field.21, 22 Korlie et al. 

implemented a numerical model for a ferrofluid droplet falling down in a non-magnetic 

medium using a volume of fluid (VOF) method,23 the ferrofluid in this model was taken to be 

linearly magnetized. The numerical study of nonlinearly magnetized ferrofluid droplet 

showed similar results with linear magnetized droplets at low magnetic field strengths.24 

Lavrova et al. also implemented the simulation of a nonlinearly magnetized ferrofluid droplet 

using finite element method (FEM).20, 25  

Tracking the interface movement is a critical issue in the simulation of a multiphase 

system. There are different strategies proposed to describe the interface location. Level-set 

method (LSM) was demonstrated by Osher and Sethian for predicting the interface in a 

fixed-grid system.26 Scardovelli and Zaleski reviewed the VOF method for predicting the 

moving interface.27 To compare the accuracy of predicting the interface location, both 

methods were tested for flows with large vorticity.28, 29 In the present work, level set method is 

used with reinitialization strategy to improve mass conservation. 

In this paper, we describe the deformation of a sessile ferrofluid droplet on a hydrophobic 

surface under the effect of an applied magnetic field. The uniform magnetic field is generated 

by an electromagnet. The ferrofluid droplet is inserted into the air gap between the coils. The 

magnetic field is oriented parallel to the substrate surface. A sample container filled with 

mineral oil is required for the experiment. Mineral oil prevents liquid evaporation and makes 

the surface apparently superhydrophobic due to the thin film of oil between the substrate and 

the ferrofluid droplet. In the experiments, the geometry of the droplet was recorded while the 
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flux density of the applied magnetic field was varied with the applied current. A numerical 

model with non-linear magnetization was implemented to study the droplet shape under an 

applied uniform magnetic field coupled with interfacial tension and gravitational forces. The 

finite volume method is used to solve the governing equations. Interface tracking is achieved 

by level-set method.  

Experimental Description 

Materials and Methods 

Figure 1 shows the schematic setup of the experiments reported in this paper. The planar 

surface used in the experiment was prepared on a Pyrex glass wafer. In order to obtain the 

hydrophobic properties, we treated the surface using the method reported by Long et al.30 

Readers may refer to our previous work for the detailed procedure of the preparation of the 

surface.13 The sample container for was made of polymethylmethacrylate (PMMA). The size 

of the container was determined by the available slot between the two poles of the 

electromagnet. The PMMA holder was machined by laser cutting. The container was 

assembled by gluing pieces of PMMA together using chloroform. The pretreated planar 

surface was placed at the bottom of the container. The droplet was surrounded by mineral oil 

to improve the hydrophobic property of the contact and to prevent evaporation. Water based 

ferrofluid (EMG707, Ferrotec, USA) was used with 1.8-vol% 10-nm 3 4Fe O  nanoparticles. 

The viscosity of the ferrofluid at 27 ºC is 5 mPa s. The initial susceptibility is 0.36  . The 

surface tension of the ferrofluid and air is 50 mN/m. The density is =1.1 g/cm3 at 25 ºC. The 

density of mineral oil (M5904 Sigma) at 25 ºC is =0.84 g/cm3.  

We used a micropipette (Finnpipette, Thermo Scientific, USA) for dispensing the 

ferrofluid droplet. This micropipette is capable of accurately controlling liquid volumes 

ranging from 0.5 µL to 10 µL.  



 5

CCD camera

Pole Cap

Air Gap

PC
Coil

Pole
Adjuster

  Signal 
Generator

Recirculating
      Chiller

 Power 
Supply

 

Figure 1: Experimental setup and imaging system (top view, not to scale, gravity direction is 
going into the view plane). 

A continuous variable gap electromagnet (EM4 Series, Lake Shore, USA) generates the 

uniform magnetic field for the experiments. Adjusting the variable air gap between the poles 

can tune the range of the field strength. Once the gap is fixed, the field is controlled by the 

current input (0~70 A). Good alignment of the tapered pole caps ensures the stability and the 

uniformity of the magnetic field. Due to the large amount of heat generated in the coil, we 

used a recirculating chiller (NESLAB Merlin M100, Cole-Parmer, USA) for cooling. For a 

specific value of the field strength, one can refer to the chart given in the manufacturer’s 

manual sheet and the calibration using a gaussmeter (Model 410, Lake Shore, USA). In our 

experiment, we fixed the air gap at 20.1 mm. For this air gap, a maximum flux density of 

approximately 1.55 T can be achieved with a current of 70 A. Figure 2 shows the measured 

data as the square dots, which agree well with the calibration curves provided by the 

manufacturer. 
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Figure 2: Magnetic flux density versus applied current calibration curves of the electromagnet 
used in the experiments. The data points are measured using a gaussmeter.   

A CCD camera (Pulnix, progressive scan camera, JAI Inc., Japan) captured the images of 

the ferrofluid droplets for further processing. The camera was mounted horizontally to record 

the side view of the ferrofluid droplet. A scale was inserted and imaged as a reference for the 

calibration of the pixel values. A customized MATLAB program processed the images and 

evaluated the shape of the ferrofluid droplets. The image files were evaluated to extract 

parameters such as the width and the height of the droplet. 

 

Results and Discussion 

For ferrofluid droplets surrounded by a non-magnetizable medium, the magnetic field induces 

a mismatch of the normal stress balance at the interface of the two liquids. This stress 

mismatch forces the droplet to elongate along the field direction. Figure 3 illustrates the 

balance of the forces at the interface. For analyzing the problem, the ferrohydrodynamic 
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(FHD) Bernoulli equation is used to relate the pressures of a gravitational flattened droplet in 

a magnetic field. Considering a sessile ferrofluid droplet of a inviscid, isothermal and 

incompressible ferrofluid, the FHD Bernoulli equation is written as,19 

 mp gz p Const      (1) 

with the boundary condition, 

 0n cp p p p     (2) 

where n is the unit vector normal to the interface,   is the density difference between the 

ferrofluid and the surrounding fluid; 0 0

H

mp MdH   is the fluid-magnetic pressure  with 

H  and M  the applied field strength and the corresponding magnetization parallel to the 

applied magnetic field; 2
0 / 2n np M  is the magnetic normal pressure with nM  

representing the normal component of the magnetization; 2cp C  is the capillary pressure 

with   and C  indicating the surface tension and the radius of curvature; 0p  represents 

the pressure in the nonmagnetic fluid; and ( , ) mp p T p    is defined as the composite 

pressure with ( , )p p T  representing the thermodynamic pressure in the magnetizable 

fluid before polarization. The permeability of vacuum has a value of 7 2
0 4 10  N A      .  

  

Figure 3: Force balance in a multiphase system with the magnetizable medium 1 and the 
nonmagnetizable medium 2. 

At the interface, the magnetic surface force density can be expressed as18 

 20
0 0 2

H

nn m nt n T n MdH M
       (3) 
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where mT  is the surface stress tensor for an incompressible nonlinear fluid. The surface force 

density directs from the magnetized to the non-magnetized phase. Eq. (3) indicates that the 

magnetic field strength and the corresponding magnetization of the ferrofluid determine the 

surface stress tensor, and consequently the elongation of the droplet.  
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Figure 4: Deformation of a sessile ferrofluid droplet under different magnetic flux densities 
(V=1.3 µL).  

We first investigated the effect of uniform magnetic flux density on the shape of a sessile 

ferrofluid droplet on a super hydrophobic surface. Figure 4 shows the typical shapes of a 

sessile ferrofluid droplet under different magnetic flux densities. The droplet is elongated 

along the direction of the field. Figure 5 shows the measured geometric parameters (height 

and width) of the different sessile ferrofluid droplets as a function of the flux densities. The 

size of the droplet does not affect the trend of the curve. The results show that a stronger 

magnetic field would stretch the ferrofluid droplet, increasing the width and decreasing the 
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height. It is worth noting that the width and height of the droplet remains constant upon 

reaching the saturated magnetization. The solid lines are fitting curves. Hysteresis phenomena 

were present in the behavior of the droplets. To investigate the hysteresis effect in the 

experiment, data was recorded for both magnetic loading and unloading processes. The 

arrows in Figure 5 indicate the loading process with increasing flux density and the unloading 

process with decreasing flux density. The intrinsic hysteresis in the system can be 

investigated by the discrepancy between the two curves.  

 

Figure 5: Experimental result of droplet parameters as a function of flux density: (a) height; 
(b) width. 

The magnetic particles of a colloidal ferrofluid are dispersed in the paramagnetic fluid. 

However, these particles carry magnetic moments. In the absence of an external magnetic 
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field, dipole directions are random. The magnetic particles are polarized by orienting their 

dipole moments in the direction of the applied field. During the magnetization process, the 

angle between dipole moment and field direction becomes smaller as magnetic flux density 

increases. At a given value, the magnetic flux density is so high that the dipole moments may 

be completely aligned and saturation magnetization is achieved. The stretching behavior 

would be decreased or even stopped if the magnetic field increases further, as shown in the 

experimental curve. The magnetization M of a ferrofluid is a vector with the same direction 

as the applied field. The magnitude of magnetization follows the Langevin law as a function 

of the field strength H 31 

       1
coths sM H M L H M H

H
 


 

   
 

 (4) 

where sM  is the saturation magnetization, and 03 / sM   with 0  the initial value of 

magnetic susceptibility.  

 

Figure 6: Magnetization curves of the ferrofluid used in our experiments (EMG707, Ferrotec, 
at 285K). 

The magnetization data in Figure 6 was obtained from the manufacturer’s data sheet. The 

magnetization M  is calculated from the depicted mass magnetization s as M s , where 
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  is the density of the ferrofluid. Saturation magnetization of the ferrofluid is reached if the 

magnetic flux density in air is about 500 mT. Figure 7 shows the parameters of droplet as a 

function of magnetization. The specific mass magnetization values in Figure 7 were obtained 

through fourth-order Newton’s interpolating polynomials.  

 

Figure 7: Experimental results of droplet parameters as a function of magnetization (with 
2nd-order polynomial fit): (a) height; (b) width. 

The Langevin’s magnetization law as shown in Figure 6 can systematically describe the 

super paramagnetic properties in the ferrofluid. Because of the large magnetic flux density, 

the droplet in our experiment actually undergoes nonlinear magnetization. For a small flux 
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density, the deformation is significantly affected by the applied flux density. Figure 6 shows 

that the magnetization increases dramatically with an increasing flux density. In the range of 

flux density from 150 mT to 370 mT, the characteristic parameters of the droplets remain 

almost constant if depicted as function of the flux density. The relationship between the 

droplet parameters and the magnetization is better represented using the actual magnetization 

data of the ferrofluid droplet. 

Numerical Simulation 

Governing Equations 

Except for the jump at the interface, the properties of a two-phase system are continuous. 

Thus, the governing equations of a continuum are still valid for describing the physical field 

inside each phase. Assuming a unsteady, incompressible, viscous, immiscible multi-phase 

system, the continuity and momentum equations are expressed as, 

   0u
t

 
 




 (5) 

      Tu uu P u u F
t
           

   
 (6) 

where u


 is the velocity vector, and P  is the pressure. For the case of a ferrofluid droplet 

under the effect of magnetic force, the force per unit volume F


 consists of gravitational 

force gF


, interfacial tension force F


32, 33 and magnetic force mF


34. Besides, the magnetic 

field also needs to be calculated. Magnetic potential is incorporated into the model according 

to:34  

  1 0m        (7) 

where m  is the ferrofluid susceptibility, and   is the magnetic scalar potential. The 

magnetic potential is introduced in the form of H  


 with H


 the magnetic field 

strength. For a magnetizable liquid, the Langevin’s magnetization function in Eq.(4) is 

assumed and incorporated into the Maxwell equations. The susceptibility in Eq.(7) is taken to 

be 
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   1
coths

m

M
H

H H
 


 

  
 

  (8) 

Due to discontinuity across the interface, properties within the whole computational domain 

are defined using the smoothed Heaviside function ( )H   through arithmetic mean,  

    1H H        (9) 

or a harmonic mean 

 
 

 11 HH

    


   (10) 

The smoothed Heaviside function ( )H   is defined as,33 

          
0 ,

2 sin 2 ,

1 ,

H

 
         

 

 
     
 

 (11) 

The typically good value of   is 1.5 of the grid cell length. In our numerical model, the 

density is calculated by the arithmetic method. The viscosity and magnetic susceptibility act 

as coefficient of diffusion term and can be solved through the harmonic approach. The 

governing equations are solved on a Cartesian staggered grid by finite volume method. 

We used the level-set method26 to track the interface between the ferrofluid and the 

surrounding oil. The motion of the interface was obtained through introducing a signed 

normal distance function from the interface. During the numerical calculation, a 

reinitialization strategy was applied to reset and ensure the level-set function to be a signed 

distance function of the interface.35 The level-set function was solved within a narrow band 

around the interface. This narrow-band approach as implemented by Peng et al. showed that 

the accuracy of the numerical results is not affected.36 The processing time would be reduced 

by one order of magnitude due to the application of the narrow-band approach. The level-set 

and reinitialization equations are Hamiltonians in special form and thus can be solved by 

high-order weighted essentially non-oscillatory (WENO) schemes. The total variation 

diminishing (TVD) Runge-Kutta method was used for time discretization.37, 38  
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Validations and Results 

A three-dimensional (3D) numerical model was developed using the geometry from the 

experiment for a ferrofluid droplet surrounded by mineral oil. The initial size of the simulated 

droplet was set to be 4.8 µL, which was the largest size investigated in the experiment, for this 

size, the effect of gravity is also captured in the simulation. The whole computational area 

was meshed uniformly. Due to symmetry, a one-half model was implemented. No-slip 

boundary condition was employed at the wall. Symmetric boundary conditions were applied 

at the symmetric surface. At first, a grid-independent study was carried out. Two different 

meshes with 423426 CVs at a time step of 31 10t    s and 625038 CVs at a time 

step of 45 10t    s were used. Figure 8 shows that the difference between the solutions is 

relatively small. Thus, the mesh 42 34 26 CVs at a time step of 31 10t    s was 

sufficiently precise to capture the droplet behavior in the computational domain.  

At first, we measured the interfacial tension between the ferrofluid and the surrounding 

mineral oil by matching the shapes of the droplet from experiment and simulation without the 

magnetic effect. Without a magnetic force, the deformation of the droplet was determined by 

the gravitational force and interfacial tension force only. The simulation couples the 

interactions between gravitational forces and interfacial forces in the model. Numerical 

calculations were implemented for a variety of interfacial tension forces with other system 

parameters fixed. A constant value of interfacial tension between the ferrofluid and the 

surrounding medium was assumed. The value of the interfacial tension was determined when 

the numerically obtained droplet shape matches the experimental shape. Using this fitting 

method, the interfacial tension between the ferrofluid and the mineral oil was determined as 

3.0 310  N/m.  
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Figure 8: Grid-independent study with droplet in the computational domain (solid line: 

423426 CVs at a time step of 31 10t s   , dashed line: 625038 CVs at a time step 

of 45 10t s   ). 

Figure 9 shows the comparison between experimental and simulation results of the 

droplet shape in the absence of a magnetic field. A thin oil film prevents the droplet from 

wetting the bottom surface. The numerical result is shown in Figure 9(b) where the solid 

black line represents the interfacial curve. The developed numerical model can accurately 

predict the deformation of the droplet considering the effects of gravity and interfacial forces 

only.  

0.5 mm

(a) Experiment (b) Simulation
 

Figure 9: Comparison between experimental and numerical results (gravity flattened effect 
without magnetic force): (a) experiment; (b) simulation. 
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The magnetic force was then induced to study the effect on droplet deformation. The 

susceptibility mismatch between the two fluids enables the generation of magnetic force and 

thus the droplet deformation. In the experiments, the deformation of ferrofluid droplets 

occurred under a relatively high field strength. The magnetization curve in Fig. 6 shows that 

the region for droplets deformation is highly nonlinear. As ferrofluid droplets underwent 

nonlinear magnetization, the Langevin’s magnetization law described by Eq.(4) was assumed 

and incorporated into the governing equation of the numerical model. Through numerical 

solution of Eq.(7), the magnetic potential was obtained, Figure 10. The arrow indicates the 

direction of the magnetic field 0H  which was introduced in the numerical calculations. For 

a ferrofluid droplet surrounded by a non-magnetizable medium, the sketch is shown for the 

initial shape and the final stretched shape.  

 

Figure 10: The magnetic potential for a sessile ferrofluid droplet in a uniform magnetic field. 

The deformation of the droplets depends on both the magnetic susceptibility and the 

magnetic field strength. To generalize the investigation, the calculation was implemented 

with the magnetic Bond numbers mB , which can be calculated from the properties of 

droplets and the applied magnetic field. The magnetic Bond number is defined as the ratio of 
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magnetic force to interfacial tension force 

 
1/3 2

0 0

2m

V H
B

 


  (12) 

where 0H  is the applied magnetic field intensity and   is the ferrofluid susceptibility. The 

volume of the droplet V  is controllable in both experimental and numerical studies. The 

magnitude of the magnetic Bond number varies as the magnetic field strength changes. 

Figure 11 compares the experimental results with the numerical results of a 4.8-µL ferrofluid 

droplet. The deformation of a 4.8-µL droplet as observed in the experiments is shown in 

Figure 11(a). 

X

Y

Z

X
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Z
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807mB 

0.5 mm

(a) Experiment (b) Simulation  

Figure 11: The deformation of a ferrofluid droplet under different magnetic Bond numbers 
(V=4.8 µL): (a) experiment; (b) simulation. 



 18

 

Figure 12: Geometrical parameters as functions of magnetic Bond number of a 4.8-µL 
ferrofluid droplet: (a) height; (b) width. 

The numerical calculation was implemented with the value of magnetic Bond number 

corresponding to those used in the experiments, Figure 11(b). For different magnetic Bond 

numbers, the shapes of the droplet from the experiments agree well with the interfacial curve 

obtained from the simulation. The change of the width and the height of the droplet are 

compared in Figure 12. The higher magnetic Bond number leads to a further stretching of the 

droplet. The experimental results indicated that the stretching behavior decreases as magnetic 

Bond number increases. This nonlinear behavior agrees well with the trend predicted by the 
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numerical calculation. Although the experimental and numerical results show the same trend, 

the values differ slightly. The droplet height of simulation is slightly higher than that of the 

experiments. The discrepancy may be caused by the simplified numerical model.  

Conclusions 

This paper presents the deformation of a sessile ferrofluid droplet on a super hydrophobic 

surface under the influence of an external uniform magnetic field. The effect of an applied 

magnetic field on the droplet geometry was investigated through both experiment and 

numerical simulation. The droplet geometry for different magnetic flux densities was 

investigated experimentally. For nonlinear magnetized ferrofluid droplets, the Langevin’s 

magnetization law was used in the numerical model. The nonlinear characteristics of the 

deformation of the droplet were captured well in the numerical model. Both experiment and 

simulation confirm the nonlinear relationship between geometric parameters of the droplet 

and the magnetic Bond number. The good agreement verifies that the numerical model can be 

used for the study of magnetic droplets in general and ferrofluid droplets in particular. The 

results indicate that using an external uniform magnetic field is an effective method for 

studying behavior of magnetic droplets. Furthermore, the results can be used for studying the 

phenomenon of magnetowetting or magnetic control of wettability for lab-on-a-chip 

applications.39  
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