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Objective Beach-State Classification From Optical
Sensing of Cross-Shore Dissipation Profiles

Matthew Browne, Darrell Strauss, Rodger Tomlinson, and Michael Blumenstein

Abstract—Remote sensing using terrestrial optical charge-
coupled device cameras is a useful data collection method for
geophysical measurement in the nearshore zone, where in situ
measurement is difficult and time consuming. In particular, optical
video sensing of the variability in human-visible surface refraction
due to the nearshore incident wave field is becoming an established
method for distal measurement of nearshore subtidal morphology.
We report on the use of a low-mounted shore-normal camera
for gathering data on cross-shore dissipative characteristics of a
dynamic open beach. Data are analyzed for the purposes of classi-
fying three of Wright and Shorts’ intermediate classes of morpho-
logical beach state as determined by expert raters. Although these
beach states are usually thought of as being distinctive in terms
of their longshore bar variability, theory predicts that differences
should also be observed in cross-shore dissipative characteristics.
Three methods of generating features from statistical features
from the archived optical data are described and compared in
terms of their ability to discriminate between the beach states.
Principal component scores of the percentile distributions were
found to provide slightly better classification performance (i.e.,
85%, while approximating the data using relatively fewer fea-
tures), whereas classification using intensity distributions alone
resulted in the worst performance, classifying 78% of beach states
correctly. Class center moment profiles for each beach state were
constructed, and results indicate that cross-shore wave dissipation
becomes more disorganized as linear bars devolve into more com-
plex transverse structures.

Index Terms—Beach state, classification, nearshore, optical.

I. INTRODUCTION

UNDERSTANDING the nearshore beach zone represents a
significant challenge for researchers, due to the intrinsic

complexity of sediment and fluid dynamics in such a high-
energy environment. Complex bathymetric features that arise
through processes of sediment erosion and accretion are highly
significant in the study of coastal processes. Transformation and
dissipation of the incident wave field as it interacts with subsur-
face bathymetry result in changes in surface reflectance in the
human-visible spectrum, due to the generation of foam (white
water) and shadows as waves shoal. It is therefore possible
to infer the existence of subsurface bathymetric characteristics
from distal measurements of water surface reflectance in the
presence of shoaling and breaking waves [3], [9], [12].

The difficulties associated with the direct collection of long-
term morphological data in highly dynamic nearshore zones
has resulted in a great deal of interest in the use of remote
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sensing methods. Shore-mounted optical cameras have become
an established instrument for gathering data related to the
morphology in the seabed nearshore zone [7]. Aarninkhof and
Ruessink [8] provide a review of the variety of shore-based,
airborne, optical, or penetrative radar and spectral instruments
that have been applied in monitoring the surf zone. The most
significant body of work using this approach is grounded in
the Argus system [3], [9] for the purpose of quantifying inter-
mediate beach states, and significant work has established the
general validity of inferring bathymetric characteristics from
average surface reflectance.

The basic approach is to measure the average surface water
reflectance in the break zone and to average over a period
> 10 min. Zones of high average reflectance are associated
with wave breaking, rollers, and residual foam (white water)
and are related to areas of relatively shallow water (i.e., sand-
bars). It was possible for Lippmann and Holman [3] to use
this monitoring system for further defining the relationship
between environmental parameters and Wright and Short’s
intermediate beach states. A large body of work has established
that average surface reflectance intensity is related to various
bathymetric properties. For example, video-derived observa-
tions have served for sandbar localization [3], [9], [10], with
Kingston et al. [10] using an empirical neural network method
to correct inferred cross-shore sandbar maxima from pixel
intensity profiles. Aarninkhof et al. [11] estimated nearshore
bathymetry from Argus images using a process-based inverse
model of wave-breaking dynamics, achieving acceptable pre-
dictions for breaker parameters within the range for which the
model had been calibrated.

Although it is known that average surface reflectance is
related to subtidal morphology, it is recognized that it is an im-
perfect measurement technique. Wave height and quality create
different patterns of dissipation that vary independently with the
morphology. This approach is necessarily limited when swell
conditions are insufficiently large to cause significant breaking.
In such cases, outer bars may be present but are undetectable
because breaking is not evident. The cases of storms and large
swell conditions are also problematic, as the large quantity of
residual surface foam results in a serious lack of definition in
the detected bars. In general, foam residue generated from wave
breaking may remain on the water surface, biasing the estimate
of the bar location [8], [9]. Recent work has focused on methods
to minimize the impact of surface foam for linking pixel-
intensity-based dissipation with wave dissipation derived from
theoretical models [12]. Wave dissipation maxima, and that of
pixel intensity, were found to somewhat reflect the greatest rate
of depth change rather than absolute depth [13].
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Fig. 1. Wright and Short intermediate beach states commonly observed at Narrowneck beach. (Left) Cross-shore and longshore theoretical dynamics and (right)
Corresponding longshore Argus images from representative days in the survey period. The intermediate states of interest are LBT, RBB, and TBR. The Argus
images were used as a basis for human expert judgement of beach state.

Fig. 2. Example of a cross-shore intensity timestack from the Narrowneck
camera. The diagonal patterns represent individual waves propagating onshore.
Note that different cross-shore locations (horizontal slices) are characterized
by a particular combination of shoaling, breaking, and persistent white-water
effects.

A major application of the time-averaged surface reflectance
sensing method has been in the validation of dynamic mod-
els of beach evolution. The classification of individual beach
states most often follows Wright and Short’s approach [1]–[3]
(Fig. 1), which is based on variations in the underwater geo-
physical morphology. Derived from a long-term data set of
beach surveys, the scheme involves a range of six observed
states varying from dissipative, through intermediate, to reflec-
tive. Wright and Short’s categorical scheme incorporates pre-
dictions regarding the sequential progression of beach states
under various swell conditions and involves descriptions of
both the longshore and cross-shore variabilities in morphology.
Thus, the model attempts to describe qualitatively the evolution
of nearshore morphological features in terms of their scale
and shape in response to environmental energy input over
time, mainly in the form of incident waves [3]–[6]. Accurate
estimation of beach state, either by remote sensing or by in situ
human experts (e.g., lifeguards), is an oft-performed and es-
sential task for determining public safety for beach use and in
estimating beach health for planning nourishment programs.

The present study makes the proposition that higher order
statistics (i.e., variance, skewness, and kurtosis) of surface re-
flectance may better capture the total range of wave dissipation/
transformation behavior and therefore provide more informa-
tion regarding the underlying morphology. Fig. 2 provides a
useful “timestack” representation of cross-shore wave dissi-
pation over time. The progress of individual waves may be
observed as each progresses through the stages of shoaling and
breaking at the main sandbar (approximately 60 m offshore).
If horizontal cross-shore slices are considered, it is clear that

different cross-shore locations correspond to different patterns
of surface reflectance over time. For example, wave shoaling
around 90–110 m offshore results in a steeper wave face
and creates shadows, leading to darker registered pixel values
[14]. Inasmuch as large waves occur only intermittently, this
would be characterized by a degree of skewness in the cross-
shore reflectance measure. In the main breaking zone (60–80 m
offshore), high variance in the reflectance values would
be observed. The empirical work presented in subsequent
sections involves characterizing the cross-shore dissipation/
transformation profile in a manner that incorporates higher
order/non-Gaussian characteristics and examining the relation-
ship of this fingerprint to beach state.

As well as predicting differences in longshore bar variability
across the three categories, Wright and Short’s model makes
predictions regarding the form of cross-shore dissipation profile
that ought to be observed. Thus, with reference to Fig. 1, the
model predicts that the longshore bar and trough (LBT) state
will be characterized by a well-defined bar formation and a
deep trough to shoreward. This would be expected to generate
wave transformation and dissipation activity well localized with
respect to cross-shore position. The rhythmic bar and beach
(RBB) state, with a more shallow trough and more poorly
defined bar, should lead to a less organized dissipation activity
and rollers traversing a greater extent of the zone shoreward of
the bar. Finally, the transverse bar and rip (TBR) state, with the
least degree of bar definition and an almost flat profile in the
break zone, should generate a mixture of spilling and plunging
waves over the entire extent of the dissipation zone.

A significant shortcoming of many of the previous studies in
this area is that they have relied on subjective identification of
beach states [15]. Lippmann and Holman [3] relied on a large
number (i.e., nine) of expert raters in an attempt to remove
this subjectivity, whereas Wright et al. [6] and, more recently,
Ranasinghe et al. [15] are the only studies that report a statisti-
cal discrimination between beach states. The most encouraging
result reported was that of a 90% agreement between visual
classification and discriminate model predictions, using a mea-
sure of longshore bar variability as a predictor [15]. Objective
discrimination of beach state is an important component of
computational systems for monitoring the nearshore zone [16].



3420 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 11, NOVEMBER 2006

Fig. 3. Study site at Narrowneck beach at the Gold Coast, Australia.

In this work, we propose the use of more sophisticated
representations of variability in cross-shore surface reflectance
as an alternative to the conventional approach of using the
average reflectance. We evaluate the effectiveness of this extra
information in terms of classification of beach state in terms of
Wright and Short’s model (Fig. 1).

II. DATA

Data were collected from a shore-normal low-angle camera.
Although this does not provide a complete longshore perspec-
tive, this view angle is conducive to examination of variations
in cross-shore bar morphology in the surf zone. It has added
advantages in that it is portable, cost effective, and does not
require the use of a special high-altitude mounting site.

Video data were collected from Narrowneck beach (see
Fig. 3), located north of Surfers Paradise at the northern end
of the Gold Coast, Queensland. Narrowneck beach has been
studied particularly intensively in recent years because it is the
site of an artificial reef constructed by the local government
authorities.

Median sediment size at Narrowneck is 0.2–0.22 mm [17].
The tidal range is classed as microtidal, and tidal amplitudes
vary up to 2.1 m with a mean range of 1 m. Sand is generally
transported within a 15-m depth of water with the limit of
offshore and onshore transport being 22 and 30 m, respectively.
Seabed profiles obtained during bathymetric surveys prior to
construction of Narrowneck reef show a steep beach face and
either: 1) a nearly horizontal beach platform or channel merging
with an offshore bar or 2) a well-developed channel and bar
system. The profile is nearly linear further offshore with a
gradient of approximately 1 : 50. There is usually only one or
two breakpoint longshore bars, but their cross-shore position
varies considerably [18].

Average deep-water wave heights generally range from 0.8
to 1.4 m with periods of 7–9 s [19]. Extreme events such as
cyclones can produce offshore wave heights up to 14 m and
wave periods up to 18 s [20]. Typically, although waves over
1.5 m will result in the formation of a storm bar along Gold

Coast beaches, the reflective extreme of the Wright and Short
[2] beach-state model is seldom observed.

A fixed remote digital video camera was installed at a height
of approximately 15 m above the high-tide mark and 30 m
south of the southernmost point of the artificial reef, with an
orientation due east and a downward angle of approximately
10◦. The optical sensor used red, blue, and green (RBG) filters
in the standard visual range, and these bands were averaged
to create a monochrome representation of total reflectance in
the visible spectrum. Digital video recordings are made and
archived on the hour in daylight hours for the duration of 10 min
and with a pixel resolution of 240 × 320, sampled at 2 Hz,
with a median geographical resolution of 0.92 m. Video data
began archiving in December 2004, and the current report
describes analysis of data gathered up to March 2005. After
discarding video records due to salt accretion on the camera
lens, bad weather, and low lighting conditions, 284 records
were available for analysis.

A cross-shore section in the center of the visual field was
extracted from each 10-min video record and rectified to as
to be linearly scaled in the cross-shore direction. A spatial
resolution of 1 m was settled upon, and the index to the
cross-shore location was determined from the mean high-tide
water level. The cross-shore transect was sampled from 1 to
140 m from this point and recorded for 1200 time samples
(2 Hz × 60 s × 10 min). Each record thus comprises a 1200 ×
140 two-dimensional (2-D) timestack I(t,m) of intensities I
at each relative time instant t and cross-shore location m.
Each record was histogram equalized to include an approx-
imately equal distribution of reflectance intensities over the
domain (t,m). This was found to be helpful in standard-
izing records over varying light conditions and emphasizes
the “relative” reflectance at each location (t,m) for subse-
quent feature extraction. Fig. 4 (left) shows an example of a
histogram-normalized record.

Corresponding Argus images of Narrowneck beach for each
of the days recorded were scrutinized by three human experts
and were classified as to belonging to one of the three interme-
diate Wright and Short beach states. This entailed that manual
classification of the records was performed using the high-
altitude time-averaged images generated by the Argus system as
a reference rather than the video gathered in the present study.
Thus, the data used as the source for predictor (independent)
and target predicted (dependent) variables were from indepen-
dent sources. Inasmuch as Argus images provide a clear view of
bar contours in the longshore, the degree of observed longshore
variability observed by the expert rater was the main criteria
for state classification. The video data collected in this study
provided a high-resolution cross-shore section with information
on the cross-shore dissipation profile rather than longshore vari-
ability. Thus, one of the issues addressed concerns whether or
not it is possible to determine the intermediate state of the beach
solely from the cross-shore dissipative wave behavior. The
average interrater agreement was 88%, which is high relative
to degrees of human interrater agreement reported in previous
studies of beach-state classification. A beach-state classification
consensus was generated by a majority voting system, whereby
the final class was determined by the majority classification
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Fig. 4. (Left) Histogram-equalized timestack may be transformed via (center) sorting or (right) calculation of moments, both operations performed with respect
to rows. In doing so, time information is discarded, but the overall variability of the intensity over time is retained.

where there was a 2 : 1 ratio between the expert judgements.
The issue of a 1 : 1 : 1 expert rater split did not arise.

III. ANALYSIS

The data preprocessing and analysis stages are summarized
as follows:

1) rejection of poor-quality records and expert classification
(described in Section II);

2) generation of shore-normal, rectified, and histogram-
equalized transect slices and creation of cross-shore
timestack records (Section II);

3) transformation to three candidate cross-shore dissipation
profile representations of the statistical distribution, in
increasing order of quantity of information retained, i.e.,
intensities, moments, and sorted intensities (described
below);

4) dimensionality reduction to create a small number of in-
put features, using principal components analysis (PCA)
(below);

5) classification of three classes using linear discriminant
analysis (LDA) (below).

The total data set Ik(t,m) (k = 1, . . . , 284) was transformed
to three different forms of representation before subsequent di-
mensionality reduction and inclusion in an LDA. The term “dis-
tribution” in this paper is used through to refer to the statistical
pattern of intensity observations over time. One goals of this pa-
per is to compare several methods of representing the statistical
distribution of intensities. Each of the following representations
of the cross-shore intensity distribution were tested.

Average intensities: The standard method of averaging pixel
intensities over t, implemented to serve as a baseline compari-
son case for the other methods. There are 140 element descrip-
tion (1 × 140 cross-shore positions). This feature representation
of the dissipation activity corresponds to an average of the rows
of Ik(t,m). In the example provided in Fig. 4, this corresponds
to the solid line in the right-hand side subplot. The peak around
70 m from the shore indicates the location of the main break
zone associated with the linear bar.

Distribution moments: This represents an extension of the
average intensity profile to include higher moments; variance,
skewness, and kurtosis are calculated with respect to t : 560
element description (4 distribution moments × 140 cross-shore
positions). This feature representation of the dissipation activity
corresponds to the calculation of higher moments of the inten-

sities in each of the rows of Ik(t,m). In the example provided
in Fig. 4, these data correspond to the solid, dashed, and dotted
lines in the right-hand side subplot. The peak in the variance
plot around 80 m from the shore indicates the location that most
peaks shoal and break, generating a mixture of intermittent dark
shadows and light white water.

Intensity percentiles: The most complete representation of
the distribution of optical intensities over time: sorting Ik(t,m)
with respect to t. For each cross-shore position, intensity
values measured over time are sorted (thus discarding time-
order information). This is equivalent to an inverse cumulative
probability distribution. The sorting procedure discards time-
order information but loses no other information regarding the
statistical distribution of intensities over time and is therefore
the most complete descriptor of stochastic distribution of the
data. This “intensity percentile” representation involved the
creation of down-sampled 2-D feature map of Ik(t,m): 1400
element description (20 percentiles × 70 cross-shore positions,
percentiles and cross-shore pixels sampled at a lower rate to
maintain reasonable data size). In the example provided in
Fig. 4, these data correspond to the center subplot. The sorted
rows are essentially inverse empirical probability distribution
functions, retaining all statistical information without assuming
a Gaussian distribution.

Dimensionality reduction was necessary to reduce each indi-
vidual video record to a feature vector that provided suitable in-
put to a statistical classifier system. The method of linear PCA1

has long been employed as a method of concisely describing
cross-shore bathymetry surveys [21]–[23] and is a standard
procedure for dimensionality reduction [24].2 There are many
possible extensions of simple linear PCA,3 and nonlinear and

1Also described as empirical orthogonal functions (EOF) or independent
components analysis (ICA) in the literature.

2By determining the principal eigenvalues of the correlation matrix of a data
set, PCA may be used for feature extraction and dimensionality reduction.
Projection of the original data onto the eigenfunctions results in scores formed
by an orthogonal rotation of the original axes to align with the principal axes
of variation (eigenfunctions). At any reduction in dimensionality (discarding
axes that describe proportionally little variance), PCA scores may be said to be
an optimal description of the original data in a linear orthogonal least squares
sense. Dommenget and Latif [25] note that the shape of PCA eigenfunctions is
strongly determined by the orthogonality constraint, and hasty visual interpre-
tation is inadvisable.

3By relaxing the conditions of linearity or orthogonality, or substituting some
other (i.e., curved or circular) geometric coordinate system for that of straight
lines, or performing PCA on local regions of a coordinate space, or by some
combination of the above.
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Fig. 5. First nine principal components of two cross-shore dissipation repre-
sentations, with cumulative explained variance. In the example given in Fig. 4,
these basis functions were used to transform the sorted cross-shore intensity
values on the center and right subplots to obtain a low-dimensional feature
vector. Note that the axes are reversed. (a) Solid, dashed, and dotted lines
indicate principal components for mean, variance, and skewness, respectively
(kurtosis curve omitted for clarity). (b) PCA-derived 2-D percentile/order ver-
sus distance-from-shore image of the principal components for the percentile
(sorted) intensity basis functions.

complex variants have been reported to produce more efficient
state descriptors of nearshore bathymetry in circumstances
where the underlying dynamic structure is nonlinear or periodic

Fig. 6. Dynamics of wave transformation and dissipation for variable swell in
the short term leads to complex effects on the observed pixel distributions.

[23]. Before applying more sophisticated forms of PCA, a good
practical approach seems to be to apply more sophisticated
variants if, upon inspection, there appears to be residual non-
linear structure in the scatter plots of the derived scores.

Fig. 5(a) shows the first nine principal components identified
for the cross-shore moment profiles. Fig. 5(b) illustrates the
derived principal components of the percentile matrices as 2-D
images. Note that in each of these plots, the cross-shore location
denoted on the x axis runs from seaward (left) to shoreward
(right). In Fig. 5(a), it should be emphasized that the derived
components represent the joint moments of the distribution.
Thus, correlations between moments at particular cross-shore
positions may be considered by the PCA algorithm. Similarly,
in Fig. 5(b), the principal components may take into account
regularities between different percentile/cross-shore locations.

Examination of Fig. 5(a) reveals that the peaks of each of
the moment curves generally proceed from higher to lower,
as one moves shoreward. For example, a typical sequence is
a peak skew value to seaward, followed by a peak variance
value, which in turn precedes the peak mean value. We explain
this as a consequence of the dynamics of wave dissipation and
short-term variability of swell size and water level (e.g., due to
infragravity waves). As Fig. 6 illustrates using three example
break progressions, normal variability in swell and water level
will lead to variability in the observed breaking dynamics.
For example, a larger swell that approaches the shore during
the trough of an infragravity wave will shoal and break at a
shallower depth. Thus, for a given static bathymetry, and at any
particular distance from the shore, there is some variability as
to what stage of transformation/dissipation the waves will be in.
Next, due to the intermittent nature of wave groups (we observe
that over a period of time, a pixel value is perturbed only about
10% of the time), the effect of swell on an observed baseline
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Fig. 7. Comparison of classification rates of logistic regression using PCA
of pixel percentiles (sorted values) and distribution moments (mean, variance,
etc.) using 1–16 principal components.

pixel distribution (i.e., what is observed in the remaining 90%
of the time) would not be expected to be a simple shifting of
the mean. A more accurate view would be that wave activity
produces a mixture of Gaussian distributions, with a “wave-
perturbed” pixel distribution overlying the base probabilities
of observing particular intensity values. An exception to this
rule is the existence of persistent white-water foam, which is
an indirect outcome of wave breaking and may be expected to
partially or completely replace the base distribution itself.
Finally, waves produce different effects on the observed pixel
value at different stages in transformation/dissipation progres-
sion; darker values are observed during shoaling, whereas
lighter values are observed after breaking. As Fig. 6 illustrates,
the expected combined result of these interacting effects agrees
with that observed experimentally on waves breaking on a
typical bar formation: a perturbation of the observed pixel
distribution that is dominated, in order, by skewness, variance,
and mean, as one moves shoreward.

In Fig. 5(b), a subtle diagonal shoreward curve may be
observed on many of the basis functions, there being a diagonal
relationship between low percentiles and the higher percentiles
at a slightly more shoreward location. This phenomenon may
be explained once it is recognized that the distribution of wave
heights is itself Gaussian: The shoaling–breaking progression
of relatively infrequent large waves (represented in the lower
percentiles) breaks further out to sea, skewing the morphology
of the basis functions in Fig. 5(b) to the left. Overall, there
is a dependence across statistics and cross-shore position, due
to the physical behavior in the system. For example, high
variability at one cross-shore location (due to a mixture of
peaking and breaking) is physically related to a higher mean
at another slightly more shoreward cross-shore location (as the
same waves break or create swash). The fact that there exists an
interaction between percentile and cross-shore location some-
what supports the use of the combined matrix representation,

as the linearly redundant information may be approximated
more efficiently by combined (percentile, cross-shore position)
eigenfunctions.

IV. RESULTS

Logistic LDA, which implements a linear discriminant func-
tion suitable for categorical output [24], [26], was implemented
for classifying beach state. LDA is a straightforward linear
classification technique closely related to linear regression.
Linear decision boundaries were determined between each of
the states using the reduced dimension feature vector generated
by projection of the optical intensity representations onto the
basis functions derived by the PCA procedure. The target for
the classifier was the human-expert-determined classes, namely
LBT, RBB, and TBR.

As described in the previous section, PCA was applied to
three approaches representing the gathered optical intensity
data: referred to as “average intensities,” “moments,” and
“sorted intensities.” It should be recalled that because the
moments method incorporates mean intensities (along with
variance, skewness, and kurtosis), the information contained
in the average representation is a subset of this representation.
Preliminary analysis found that the average intensities repre-
sentation resulted in a peak classification performance of 61%,
significantly less than the other approaches. With this in mind,
the results presented below focus on the other two more com-
prehensive descriptors of the cross-shore dissipation profile.

Fig. 7 compares classification rates on the validation set for
the cross-shore percentile method and the moments method.
Performance under the null hypothesis condition (that the clas-
sifier performs no better than chance) for such a three-class
classification task would be 33.3%. The 284 video records were
divided ten times into 90% training and 10% test sets, each time
reserving a different portion of the data for testing in a rotating
design.

Using a feature vector generated from the percentile repre-
sentation results in the best classification performance, of 83%
on the validation subset using the first ten principal component
scores as input. As more than ten components are included, the
classification rate begins to decline due to overfitting and sub-
sequent lack of generalization of the model. From Fig. 7, it may
be seen that the discriminate performance of the classifier using
a feature vector based on the normalized cross-shore moments
rises more slowly than the percentile approach as the number
of feature inputs are increased. This result is consistent with the
fact that the sorting approach to representing distributions of
intensities retains more information than the moment approach.

The resulting classification performance on the test sets using
ten principal components are presented in Table I, which shows
the confusion matrix for the classifiers between the three beach
states. As mentioned in Section II, the average interrater agree-
ment between the human experts was 88%. Thus, the observed
performance of the automatic classifier (at 83%) was quite close
to the level of agreement between the human experts.

Fig. 8 plots the first three rectified moment profiles of the
class centers of each of the three intermediate beach states.
Some interpretation of the derived profiles with respect to
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TABLE I
LDA CLASSIFICATION RATES WITH TEN PRINCIPAL

COMPONENTS OF CROSS-SHORE PERCENTILES

Wright and Short’s description of the beach states is noted in
the figure.

V. CONCLUSION

Despite the fact that video-based sensing of the nearshore
zone is fast becoming the standard data gathering technique
in coastal processes research, there has been relatively little
attention paid to developing automatic and objective methods
of quantification and classification. The classification rates
achieved in this study were encouraging and on a par with
the degree of agreement between human raters. This degree
of reliability helps demonstrate the feasibility of objective
determination of beach state from low-mounted video sensors
and supports the predictions of Wright and Short’s model in
terms of differences between the cross-shore dissipative profiles
of the three states.

As expected, the most complete method of extracting the
parameters of a distribution, i.e., the percentile position rep-
resentation, achieved better classification rates than either the
intensity or moment representations, although utilizing fewer
extracted features to do so. Naturally, the modest sample size
and the relative differences in performance do not permit strong
conclusions to be drawn regarding the merits of the three feature
extraction methods tested. However, the relative strength of
the percentile approach is consistent with our assumptions that
the cross-shore intensity distribution at a particular cross-shore
location will not necessarily be well described by a single
Gaussian distribution. Also, the intensity distributions consist
of subdistributional elements correlated with elements at other
cross-shore locations. This is evidenced in Fig. 5(b) in the small
but significant degree of curved diagonal features in the derived
components. Thus, intensity values, and also higher moments,
would not be expected to be the most efficient method of
describing this form of data. The percentile method, because
it makes no assumptions regarding the underlying shape of
the pixel intensity distribution, appears to be more efficient
at representing the observed activity. However, the disadvan-
tage of this approach is that components extracted from the
distributions are less interpretable. Thus, for the purposes of
illustrating graphically the differences between the beach states
in Fig. 8, scaled and rectified moment profiles are more suitable
for discussion.

The results provide another source of support for the validity
of Wright and Short’s categories of beach state, at least in
terms of the distinction between the intermediate states. Human
perception, even that of experts with scientific training, is well

Fig. 8. Moment profiles (mean, standard deviation, and variance with respect
to the number of meters from the shore) of the derived class centers of the
three beach states. Comments specify the features that appeared to represent a
significant basis for the discriminate function.

known for its susceptibility to bias and systematic error, and ob-
jective methods for quantification of video data have long been
recognized as desirable in the marine geophysics community
[9]. Thus, a high degree of consistency between human and ma-
chine classifiers supports the beach-state classification scheme,
which hitherto has been mainly supported by data derived from
human observations. The derived rectified class centers of the
three beach states shown in Fig. 8 display decreasing linear
dependence on cross-shore position and less well defined bar
and trough formation, as beach state evolves from the LBT
class to more complex bar formations. Also observed was a
decreasing degree of coherence between the various moments,
indicating that the classic skew–variance–mean maxima pro-
gression breaks down as beach state devolves from a simple
bar–trough formation to more complex transverse structures.

The feature extraction approach pursued in this paper has
been variously described as assumption free or “data driven”—
the point being that rather than specifying the features of
interest, the domain of interest is specified (i.e., the cross-shore
pixel intensity statistics), and an unsupervised approximation
method (i.e., PCA) is used to derive features for classification.
There are a number of advantages and disadvantages associated
with this approach; on one hand, the derived features are
almost certainly suboptimal, whereas, on the other hand, the
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blind variance maximization criterion can discover features
difficult for an experimenter to define a priori. Perhaps the
greatest disadvantage is the difficulty of interpreting the derived
discriminate model, although this is mitigated by the fact that
pixel intensity values themselves do not have a straightforward
interpretation in terms of subtidal bathymetry [13]. It may be
that future research should continue to concentrate on modeling
the relationship between nearshore dissipation and bathymetry
before attempting to directly estimate beach state.

Limitations and concerns notwithstanding, the classification
rate achieved and the differences observed in the posthoc plots
of the class centers indicate that there appears to be sufficient
information contained in the cross-shore dissipation profile to
discriminate intermediate beach states. The Wright and Short
beach-state model, which has recently had support in terms
of its predictions of longshore bar variability [15], has been
supported in this study in terms of predictions regarding cross-
shore dissipation. With the development of an appropriate data
processing methodology, low-mounted shore-normal cameras
may have the potential to provide useful information regarding
subtidal bathymetry and beach state.
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