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Abstract

The rise in popularity of unmanned autonomous vehicles (UAV) has
created a need for accurate positioning systems. Due to the indoor limi-
tations of the Global Positioning System (GPS), research has focused on
other technologies which could be used in this landscape with Wi-Fi local-
isation emerging as a popular option. When implementing such a system,
it is necessary to find an equilibrium between the desired level of final pre-
cision, and the time and money spent training the system. We propose
Multi-Directional Weighted Interpolation (MDWI), a probabilistic-based
weighting mechanism to predict unseen locations. Our results show that
MDWTI uses half the number of training points whilst increasing accuracy
by up to 24%.

1 Introduction

Methods of human and robot localisation are fast becoming important areas
of research. The Global Positioning System (GPS) has widely been accepted
as a means of determining a device’s location outdoors. However, there are a
number of limitations with GPS that make it undesirable for indoor use: the
inability to detect levels, poor location quality because it requires direct contact
with satellites, and poor location accuracy because indoor localisation requires
a higher level of precision.

As a result, various methods of indoor localisation have been evaluated in
literature. The methods differ by the technology as well as their applications;
papers have proposed the use of infrared, radio frequency identifier (RFID),
Bluetooth, ZigBee and Wi-Fi [2, 6, 10, 12], for various applications of human or
robot tracking or navigation [7, 9]. Wi-Fi is seen as a desirable option due to
its low setup costs and high availability [1, 7, 9].

Traditionally Wi-Fi localisation works by training a system on signal strength
readings obtained from wireless networks inside a building. Readings from a


https://core.ac.uk/display/143866694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

single location are collated together to form a fingerprint. When deployed, the
system will take a device’s current fingerprint and compare it to all existing
fingerprints to find the best-matching location [1]. Systems using other tech-
nologies have followed similar training and positioning phases [12].

As one of the main limitations of indoor localisation schemes is the physical
training time required, efforts are being made to attempt to reduce this [3, §].
Of course, reducing the training space may seem like a simple and effective
measure to reduce costs, however they generally result in lower accuracy rates
[5]. In this paper we propose Multi-Directional Weighted Interpolation (MDWT)
which utilises the probabilities produced by a localisation algorithm to recognise
a location outside of the training space.

2 Related work

The RADAR system, published by Microsoft Research in 2000 [1], is generally
recognised as the founding paper in the field of Wi-Fi localisation, with 5,700
citations to date [4]. The authors gathered Wi-Fi data in one of two ways. In
the first approach, samples were manually taken at a number of locations facing
different directions, totalling a training space of at least 5,600 readings. The
second approach used a signal propagation model to predict signal strengths
at those same locations, based on the known locations of access points. The
system had consistent results with a median error distance of between 2 and 3
metres, with the first method performing better overall.

In 2002, Youssef et al. [11] proposed the application of probabilistic tech-
niques, such as Bayesian Inference, to the problem of indoor localisation. Based
on prior training records as well as a sample reading obtained from a device,
they calculated the probability for each possible location. The output was the
location with the highest probability, above a pre-defined confidence threshold.

As part of a wider study in 2004, Elnahrawy et al. [3] proposed the Interpo-
lated Map Grid (IMG). IMG utilised a small sample of training fingerprints to
interpolate the expected signal strength at various intermediary locations. IMG
essentially combines the two methods proposed in the RADAR paper.

In 2006, Li et al. [8] evaluated the use of inverse distance weighting (IDW)
and universal kriging (UK). As the name suggests, IDW applies weights inversely
proportionate to the distance between the known points. UK generates a poly-
nomial model representative of the known points, and uses this to interpolate
intermediary points. The researchers’ results reduced the error distance in all
cases, with UK consistently outperforming both the standard and IDW meth-
ods. When 16 access points were used, UK reduced the original error distance
of approximately 2.5 metres down to 1.5 metres.

In their 2007 Signal Strength Difference (SSD) paper Hossain et al. [5]
adopted Li et al.’s approach, however, they used a weighted linear regression
technique to develop their training set. Equations were created for each pair
of access points and intermediary points. Hossain et al.’s test results show
the usage of these intermediary points consistently improves the average error



Table 1: Comparison of techniques

. Signal Inverse - Infinite
Technique stregngth distance Probability locations
RADAR [1] No No No No
Prob. Cluster [11] No No Yes No
IMG [3] Yes No No No
IDW (8] No Yes No No
SSD [5] No Yes No No
MDWI No No Yes Yes

distance, with a maximum improvement of approximately 3.5 metres.

The techniques mentioned above are compared in table 1 with our technique,
MDWI. The authors of prior works propose various methods of interpolation
which predict new locations prior to runtime. One of the main disadvantages
of performing interpolation prior to runtime is it still enforces a limited state
space when deployed. Some propose the use of averaging the n best-matching
locations, however, this disregards the inherent probabilities and potentially
results in unlikely locations being included in the final result.

3 Multi-Directional Weighted Interpolation

In this paper we propose Multi-Directional Weighted Interpolation which pro-
vides greater precision in localisation without an increase in the training time
or associated costs. We utilise the probabilities output from an algorithm, such
as a Bayesian Network, as weights between the n best-matching, known finger-
prints. In general this will return an intermediary location not included in the
original training set.

The basic procedure can be expressed as a series of formulas which were
derived from a weighted centre of gravity algorithm. Equations 1 and 2 are
equivalent to calculating the dot product of the individual coordinate vectors
and the probability vector. The result is the estimated z and y coordinates for
the current location when given the coordinates of n best matches (i.e. z; and
y;) as well as their probabilities (p;).

xr = ZLEJ?L (1)
i=1

y= Zyipi (2)
i=1

These formulas can be used for any number of matches. Traditional inter-
polation would be where n = 2. Examples follow which show n = 3 and n =
4.
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(a) MDWI where n = 3 (b) MDWI where n = 4

Figure 1: Examples of MDWI

Take the example shown in figure la. The three outer nodes are known
fingerprints while the central node is the actual location of a user. Some sample
probabilities from a Bayesian Network are shown inside the outer nodes. In
traditional approaches, either of the two nodes with 45% probability would be
chosen. In our approach these probabilities will be used as weights determining
a location in the centre of the three fingerprints, much closer to the user’s actual
location.

Using figure 1b as an example, we shall now explicitly utilise the formulas.
Suppose we have 4 training locations which are labelled T1 through to T4. Their
coordinates are (3, 4), (5, 3), (1, 3) and (3, 1), respectively. The coordinates
of the actual location are (3, 3). In an ideal scenario, where the algorithm
accurately calculates these probabilities, we will have a probability of 40% for
T1, and 20% for each of the remaining nodes. From this information we can
calculate the predicted location:

n n
x:inpi yzzyipi
i=1 i=1

=(3x04)+ (5x0.2) =(4x04)+(3x0.2)

+(1x0.2)+(3x0.2) +(3x0.2)+(1x0.2)
=12+1+02+06 =1.6+0.6+0.6+0.2
=3 =3

Therefore the algorithms correctly predicted the location as (3, 3).

4 Experimental analysis

4.1 Setup

For our tests, we utilised a corridor in Griffith University’s G09 building. Lo-
cations for Wi-Fi scans were chosen at three-metre intervals along the corridor.
These are signified by the coloured dots in figure 2. During the tests, a total of



21 access points were discovered. We later filtered this list to access points with
a specific network name (SSID), resulting in a collection of 4 access points. The
locations of access points in the environment were not known.

Figure 2: G09 building. Blue dots represent the training set, with blue and red
dots being used for testing.

To prepare out dataset for processing we created a subset containing all of
the data from every second location. This dataset, as represented by the blue
dots in figure 2, contains four locations and was used as a training set. This
dataset would be representative of one taking Wi-Fi readings along the corridor
at intervals of 6 metres. All locations (i.e. both red and blue dots in figure 2)
were used for testing the accuracy.

A test set containing unseen samples, such as that used in our experiments,
is representative of a real-world situation in which a user may be standing in the
middle of two training locations. Traditional approaches would pick one of the
two locations, and could provide vastly different accuracy rates. The proposed
MDWTI approach allows for a location in the middle to be selected.

4.2 Algorithms

We ran our real world datasets through both a Bayesian Network (BN) and
a K-Nearest Neighbour (KNN) algorithm. These two machine learning algo-
rithms are commonly used in Wi-Fi localisation literature.[7] For both of the
algorithms, we apply MDWI with n set to 5.

BNs already calculate probabilities as part of their classification process. We
were therefore able to use these probabilities along with the coordinates of the
locations in our weighted interpolation calculations. We used the University of
Waikato’s Weka implementation of a Bayesian Network. The settings in version
3.6.9 of the software were left as defaults.

Unlike a BN, KNN algorithms do not calculate probabilities but rather out-
put the sum of differences between two instances. As a smaller sum is a closer
match, we took the inverse of the lowest-cost (or best-matching) for each loca-
tion and calculated probabilities.
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Figure 3: Perfect accuracy rate comparison

4.3 Results

The results from our tests are summarised in figure 3 and table 2. The figure
shows the perfect accuracy rates of various algorithms, both before and after the
application of MDWI. We define a perfectly accurate case as one which returns
the same location as where the samples were originally taken. When MDWTI is
applied, we round the x and y coordinates to the nearest three metres, to match
the granularity of the original readings. The figure shows perfect accuracy rates
increase in all cases when MDWTI is applied.

The percentages in table 2 are calculated by taking the actual location and
comparing it to the algorithm’s prediction. Therefore a Om error distance indi-
cates the algorithm correctly predicted the location, 3m indicates an adjacent
location, and so on. Again, the coordinates output from MDWI have been
rounded to the nearest three metres.

The tests performed on the BN showed positive results. In these tests,
MDWT shifted the majority of the error distribution towards smaller error dis-
tances, capping all errors at 6m. The BN with MDWTI correctly predicted perfect
matches 63.4% of the time, an increase of 8 percentage points. The number of
6m errors did slightly increase, however, we feel the 14% increase in perfect
predictions offsets this.

The KNN tests also provided positive results. When KNN was used along
with MDWI perfect accuracy was at 68%, an increase of 13.1 percentage points,
providing the best result in all of our tests. However, MDWT’s application to
KNN also had the unintended result of stretching the error distribution out to
15m. The main reason why this happened with KNN and not with the BN to
the same extent was the distribution of the probabilities calculated for KNN
were more evenly distributed than that of the BN.

The application of MDWI clearly provides a number of benefits. Accuracy



Table 2: Error distribution

Settings Rounded Error Distance

Om 3m 6m 9m | 12m | 15m
BN 55.4% | 42.9% | 1.7% - - -
BN+MDWI 63.4% | 32.0% | 4.6% - - -
KNN 54.9% | 42.3% | 2.3% | 0.6% - -
KNN-+MDWTI | 68.0% | 26.3% | 3.4% | 0.6% | 1.1% | 0.6%

rates can be increased when unseen intermediary locations are input as the
algorithm will not immediately pick the closest-matching location. Additionally,
if one is limited in the time spent and/or in the associated costs in training a
system, MDWI can provide greater precision.

5 Conclusions and future work

In this paper we propose Multi-Directional Weighted Interpolation (MDWTI)
for any Wi-Fi localisation system, whether it be designed for human or robot
navigation. MDWTI utilises probabilistic-based weighting mechanism to output
locations which have not been included in a training set. Our results show that,
as with any localisation system, it is necessary to find a balance between the
number of training locations and the desired level of final precision. The number
of training locations are proportional to distance-based accuracy rates, however,
more training locations also come at a higher cost. Our results show MDWI
facilitates the ability for training costs to be halved without affecting accuracy
rates to the same degree.

Future work will focus on utilising the theoretical concepts proposed in this
paper to evaluate its performance in larger areas and areas which feature more
dense training locations, as well as how signal strength variations between mul-
tiple devices are handled.
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