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Abstract. We study the possible structure of the groups of rational
points on elliptic curves of the form y2 = (ax + 1)(bx + 1)(cx + 1), where
a, b, c are non-zero rationals such that the product of any two of them is
one less than a square.

1. Introduction

Let E be an elliptic curve over Q. By the Mordell-Weil theorem, the group
E(Q) of rational points on E is a finitely generated abelian group. Hence, it
is the product of the torsion group and r ≥ 0 copies of infinite cyclic group:

E(Q) ' E(Q)tors × Zr.

By Mazur’s theorem, we know that E(Q)tors is one of the following 15 groups:
Z/nZ with 1 ≤ n ≤ 10 or n = 12, Z/2Z × Z/2mZ with 1 ≤ m ≤ 4. On the
other hand, it is not known which values of rank r are possible. The folklore
conjecture is that a rank can be arbitrary large, but it seems to be very hard
to find examples with large rank. The current record is an example of elliptic
curve over Q with rank ≥ 28, found by Elkies in May 2006 (see [21, 25]).

In the present paper, we will study a special case of this problem. Namely,
we will consider only elliptic curves of the form

y2 = (ax+ 1)(bx+ 1)(cx+ 1),

where {a, b, c} is a rational Diophantine triple. Although this is a very special
case, it has some relevance for the more general problem of determining which
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ranks are possible for elliptic curves with prescribed torsion group. In partic-
ular, we will show in Section 6 that every elliptic curve over Q with torsion
group Z/2Z× Z/8Z is induced by some rational Diophantine triple.

A set {a1, a2, . . . , am} of m non-zero integers (rationals) is called a (ratio-
nal) Diophantine m-tuple if ai ·aj +1 is a perfect square for all 1 ≤ i < j ≤ m.
Diophantus of Alexandria found a rational Diophantine quadruple

{
1

16
,
33

16
,
17

4
,
105

16

}
,

while the first Diophantine quadruple in integers, the set {1, 3, 8, 120}, was
found by Fermat (see [11, 12, 27]). The famous conjecture is that there does
not exist a Diophantine quintuple (in non-zero integers) (see e.g. [31, 43]).
In 1969, Baker and Davenport [2] proved that the Fermat’s set {1, 3, 8, 120}
cannot be extended to a Diophantine quintuple. Recently, it was proved in
[20] that there does not exist a Diophantine sextuple and there are only finitely
many Diophantine quintuples.

Let {a, b, c} be a (rational) Diophantine triple. We define nonnegative
rational numbers r, s, t by

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2.

In order to extend this triple to a quadruple, we have to solve the system

(1.1) ax+ 1 = �, bx+ 1 = �, cx+ 1 = �.

It is natural idea to assign to the system (1.1) the elliptic curve

(1.2) E : y2 = (ax+ 1)(bx+ 1)(cx+ 1).

Properties of elliptic curves obtained in this manner and connections between
solutions of the system (1.1) and the equation (1.2) were studied in [16, 18, 23],
but this was mainly for the case when a, b, c are positive integers. In this paper,
we will assume that a, b, c are non-zero rationals, and we will call {a, b, c} a
Diophantine triple (hence, omitting the word rational).

The coordinate transformation x 7→ x
abc , y 7→

y
abc applied on the curve E

leads to the elliptic curve

E′ : y2 = (x+ bc)(x+ ac)(x+ ab)(1.3)

= x3 + (ab+ ac+ bc)x2 + (a2bc+ ab2c+ abc2)x+ a2b2c2

in the Weierstrass form. There are three rational points on E ′ of order 2:

T1 = [−bc, 0], T2 = [−ac, 0], T3 = [−ab, 0],

and also other obvious rational points

P = [0, abc], Q = [1, rst].

It is easy to verify that Q = 2R, where

R = [rs+ rt+ st+ 1, (r + s)(r + t)(s+ t)].
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In general, we may expect that the points P and R will be two independent
points of infinite order, and therefore that rankE(Q) ≥ 2. Thus, assuming
various standard conjectures on rank distribution, we may expect that the
most of elliptic curves induced by Diophantine triples with the above construc-
tion will have the Mordell-Weil group E(Q) isomorphic to Z/2Z×Z/2Z×Z2

or Z/2Z× Z/2Z× Z3.
The main purpose of this paper is to study which other groups are possible

here. Namely, we will investigate situations in which P or R have finite order,
or they are dependent, and in particular we would try to construct curves
with more independent points of infinite order.

According to Mazur’s theorem, for the torsion group E(Q)tors we have
at most four possibilities: Z/2Z× Z/2mZ with m = 1, 2, 3, 4. In [18], it was
shown that if a, b, c are positive integers, then the cases m = 2 and m = 4 are
not possible (the case n = 3 remained open, since no example with m = 3 was
known). However, in the present paper we will show that for a, b, c non-zero
rationals all four groups are indeed possible.

Let us also note that every Diophantine pair {a, b} can be extended to a
Diophantine triple by a very simple extension: c = a+b+2r. This construction
was already known to Euler (and maybe even to Diophantus). The direct
computation shows that for triples of the form {a, b, a+ b+ 2r}, the points P
and R are not independent, since 2P = −2R.

2. Search for elliptic curves with high rank

In last few years, several authors considered the problem of construction
of elliptic curves with some prescribed property and relatively high rank. This
includes curves with given torsion group (see [17, 36] and the references given
there), curves y2 = x3 − n2x related to congruent numbers [41], curves of the
form y2 = x3 + dx [24], curves x3 + y3 = m related to the taxicab problem
[26], curves y2 = (ax + 1)(bx + 1)(cx + 1)(dx + 1) induced by Diophantine
quadruples {a, b, c, d} [15], etc.

LetG be an admissible torsion group for an elliptic curve over the rationals
(according to Mazur’s theorem). Let us define

B(G) = sup{rank (E(Q)) : E(Q)tors = G}.

The conjecture is that B(G) is unbounded for all G. In the following table
we give the best known lower bounds for B(G). Details on the record curves
appearing in the table and full list of the references can be found on the
author’s web page [17].
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G B(G) ≥ Author(s)

0 28 Elkies (2006)
Z/2Z 18 Elkies (2006)
Z/3Z 13 Eroshkin (2007)
Z/4Z 12 Elkies (2006)
Z/5Z 6 Dujella & Lecacheux (2001)

Z/6Z 7 Dujella (2001,2006)
Z/7Z 5 Dujella & Kulesz (2001), Elkies (2006)
Z/8Z 6 Elkies (2006)
Z/9Z 3 Dujella (2001), MacLeod (2004), Eroshkin (2006)
Z/10Z 4 Dujella (2005), Elkies (2006)
Z/12Z 3 Dujella (2001,2005,2006), Rathbun (2003,2006)

Z/2Z × Z/2Z 14 Elkies (2005)
Z/2Z × Z/4Z 8 Elkies (2005)
Z/2Z × Z/6Z 6 Elkies (2006)
Z/2Z × Z/8Z 3 Connell (2000), Dujella (2000,2001,2006),

Campbell & Goins (2003), Rathbun (2003,2006)

We will now briefly describe the main steps in the construction of high
rank curves with prescribed properties. These steps have been already applied,
with various modifications, in obtaining curves from the above table, and we
will also apply them in the following sections.

The first step is to find a parametric family of elliptic curves over Q which
contains curves with relatively high rank (i.e., an elliptic curve over the field of
rational functions Q(T ) with large generic rank) which satisfy the prescribed
property. Here it is not always the best idea to use the family with the largest
known generic rank, since these families usually contain curves with very large
coefficients for which it is very hard to compute the rank.

In the second step we want to find, in the given family of curves, the
best candidates for higher rank. The main idea here is that a curve is more
likely to have large rank if #E(Fp) is relatively large for many primes p.
We will use the following realization of this idea. For a prime p, we put
ap = ap(E) = p+ 1−#E(Fp). For a fixed integer N , we define

S(N,E) =
∑

p≤N, p prime

(
1− p− 1

#E(Fp)

)
log(p) =

∑

p≤N, p prime

−ap + 2

p+ 1− ap
log(p).

It is experimentally known (see [19, 38, 39]) that we may expect that high rank
curves have large S(N,E). In [7], some arguments were given which show that
the Birch and Swinnerton-Dyer conjecture gives support to this observation.
The sum S(N,E) can be very efficiently computed (e.g., using PARI [3]) for
N < 10000. After this sieving method, we may continue to investigate the
best, let us say, 1% of curves. Since, we are working with curves with torsion
points of order 2, we may compute the Selmer rank for these curves, which is
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well-known upper bound for the actual rank of the curve. This can be done
using an appropriate option in Cremona’s program mwrank [10].

Only for the curves for which that upper bound is satisfactory large, we
try to compute the rank exactly. Again, the best available software for this
purpose is mwrank which uses 2-descent (via 2-isogeny if possible) to deter-
mine the rank, obtain a set of points which generate E(Q) modulo 2E(Q),
and finally saturate to a full Z-basis for E(Q). The program package APECS
[9] and a program that implements LLL reduction on the lattice of points of
E, provided by Rathbun [40], is used to reduce the heights of the generators.
In the cases when 4-descent is appropriate to perform (for curves with a tor-
sion point of order 4, and with a generator of very large height) we used an
implementation of 4-descent in MAGMA [4].

3. Torsion group Z/2Z× Z/2Z

In [14], we have constructed a parametric family of elliptic curve with
the torsion group isomorphic to Z/2Z × Z/2Z and the generic rank ≥ 4.
The construction started with a Diophantine triple {a, b, c}. We assigned
to this triple the elliptic curve E ′ as in (1.3), and defined d = x(P + Q),
e = x(P − Q). If d, e 6= 0, then {a, b, c, d} and {a, b, c, e} are Diophantine
quadruples (see [18]). If ed + 1 is a perfect square (and in [14] a parametric
solution to this equation was found), then we may expect that the elliptic
curve y2 = (bx+1)(dx+1)(ex+1), induced by the Diophantine triple {b, d, e},
has at least four independent points of infinite order, namely, points with x-
coordinates 0, a, c and 1/(bde). By a specialization, we found an elliptic
curve of rank 7 in that family. Here we will improve that result and construct
several elliptic curves of the form (1.2) which have rank equal to 8 or 9.

The well-known family of Diophantine quadruples

(3.1) {k − 1, k + 1, 4k, 16k3 − 4k} (k ∈ Z, k ≥ 2)

has been studied by several authors. In [13], it was proved that the fourth
element in this quadruple is unique, i.e., if {k− 1, k+ 1, 4k, d} is an (integer)
Diophantine quadruple, then d = 16k3−4k (see also [6, 28]). It seems natural
to consider the families of elliptic curves induced by (3.1). However, in [16] it
was shown that the triple {k−1, k+1, 4k} induces an elliptic curve over Q(k)
with generic rank equal to 1 (this agrees with the fact that {k − 1, k + 1, 4k}
is of the form {a, b, a+ b+ 2r}). Therefore, we will try to obtain curves with
the higher rank induced by other subtriples of (3.1).

We first consider the family of Diophantine triples

{k − 1, k + 1, 16k3 − 4k} (k ∈ Q).
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Applying the strategy described in Section 2, we find a curve with the rank
equal to 9 for k = 3593/2323. We have the Diophantine triple

{
1270

2323
,

5916

2323
,

664593861324

12535672267

}
,

and the corresponding elliptic curve (its minimal Weierstrass equation)

y2 = x3 − 263759257625979218346701293692x

+ 43309770676275925610968063087567021709640976.

Torsion points are

O, [391223566189142, 0], [−581574668058484, 0], [190351101869342, 0],

while independent points of infinite order are

[13382356740992, 6307332780932304905700],

[137392393772492, 3108820636640783206800],

[151121694899342, 2627033807399227434000],

[182390949979797, 1126929502996358494505],

[−100285963891570, 8291713851182161095696],

[638038681834022, 11608723965551290530480],

[−570129376204450, 2892670061337006977376],

[−581493416436883, 246987048216416159925],

[395944953729830, 974097947650374250704].

We also found several examples with the rank equal to 8 in this family:
k = 286/69, 69/1144, 1169/1268, 1225/1959, 1443/1156, 1981/1941, 2447/50,
4350/1159, 5781/782.

Next we consider the family

{k − 1, 4k, 16k3 − 4k} (k ∈ Q).

(Note that the triples of the form {k + 1, 4k, 16k3 − 4k} induce the same
family, by the correspondence k ↔ −k.) In this case, we find a curve
with the rank equal to 9 for k = −2673/491, and several examples with
the rank equal to 8, e.g., for k = 65/521, 864/1415, 909/2741, 1500/2339,
1610/4401, 1914/2969, 3656/5127, 4435/3378, 6648/3473, −175/2098,
−291/674, −338/911, −470/889, −535/5178, −559/807, −705/1703,
−1224/4555, −1443/964, −1610/1629, −2123/4703, −2209/2927.

We may also consider rational Diophantine triples of the form {1, 3, c}.
Here we find two examples with rank equal to 8 for

c =
5043716589720

9928996362961
and c =

507857302680

1680262081
.
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Let us mention that Gibbs discovered 46 examples of rational Diophantine
sextuples ([29, 30]). By computing the ranks for all curves of the form y2 =
(ax+ 1)(bx+ 1)(cx+ 1), where {a, b, c} is a subtriple of some of the Gibbs’s
sextuples, we find a curve of rank 8 for the Diophantine triple{

494

35
,

1254396

665
,

11451300

5067001

}
.

Of course, the curves with rank less than 7 (and greater than 0) are easy to
find, and they already appeared in the literature (see [14, 16, 22]). Therefore,
we can summarize the results from this section in the following proposition:

Proposition 3.1. For each 1 ≤ r ≤ 9, there exists a Diophantine triple
{a, b, c} such that the elliptic curve y2 = (ax + 1)(bx + 1)(cx + 1) has the
torsion group isomorphic to Z/2Z× Z/2Z and the rank equal to r.

4. Torsion group Z/2Z× Z/4Z

In this section, we consider elliptic curves with a torsion subgroup iso-
morphic to Z/2Z× Z/4Z. It follows from the 2-descent proposition (see [33,
4.1, p. 37], [34, 4.2, p. 85]), that such curve has the equation of the form

(4.1) y2 = x(x + x2
1)(x + x2

2), x1, x2 ∈ Q.

The point [0, 0] is a double point (i.e., point of the form 2S, where S is a
rational point on the curve) of order 2. Translating the elliptic curve (1.3)
induced by the Diophantine triple {a, b, c}, we obtain the equation

(4.2) y2 = x(x + ac− ab)(x+ bc− ab).
Therefore, if we can find a, b, c such that ac − ab and bc − ab are perfect
squares, then the elliptic curve induced by {a, b, c}will have a torsion subgroup
isomorphic to Z/2Z× Z/4Z.

A simple way to fulfill these conditions is to choose a and b such that
ab = −1. Then ac− ab = ac+ 1 = s2 and bc− ab = bc+ 1 = t2. It remains
to find c such that {a,−1/a, c} is a Diophantine triple. Using the standard
extension c = a+ b+2r, we may take c = a− 1

a . However, it is easy to prove,
using Shioda’s formula ([42]), that the family of elliptic curves

y2 = x3 + (a4 + 1)x2 + a4x,

obtained with this construction, has the generic rank equal to 0. We may
ask what happened with the points P = [0, abc] and Q = [1, rst]. It is easy
to see that 2P = Q = T3. Hence, in this case P and Q are indeed points
of finite order. We are able to find examples with rank equal to 0, 1, 2, 3, 4
in this family, but in order to find curves with higher rank, we will consider
some other constructions.

We are searching for parametric solutions of the system

(4.3) ac+ 1 = �, − c
a

+ 1 = �.
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Multiplying these two conditions, we obtain

(4.4) a(ac+ 1)(a− c) = �,

which, for given c, may be regarded as an elliptic curve. We already know
one (non-torsion) parametric solution of (4.4), namely a = T , c = T − 1

T .
By duplicating the corresponding point on the elliptic curve (4.4), we obtain

another solution a = (T 2+1)2(T 2−1)
4T 3 , with the same c. By the 2-descent propo-

sition, these values of a and c also satisfy the original system (4.3). We have
again that Q = T3, but now the point P has infinite order.

By searching for curves with high rank in this family of elliptic curves,
with the methods described in Section 2, we are able to find two curves with
rank equal to 5, for T = 12/5 and T = 24/7, corresponding to the Diophantine
triples {

3398759

864000
, − 864000

2298759
,

119

60

}
,

{
205859375

18966528
, − 18966528

205859375
,

527

168

}
.

We will improve this result by considering a different parametric solution
of the system (4.3). Inserting ac+ 1 = s2 into − c

a + 1 = t2, we obtain

1− s2 + a2 = �,

which has the solution of the form

a =
αT + 1

T − α , s =
T + α

T − α.

We take α = 2, which gives

a =
2T + 1

T − 2
, b =

2− T
2T + 1

, c =
8T

(2T + 1)(T − 2)
.

This again yields the family of elliptic curves with generic rank ≥ 1. We are
able to find in this family several examples of curves with rank equal to 7,
e.g., for T = 7995/6562, 28853/5306, 55204/28537, 87046/1523, 95827/81626,
134726/16613, and many examples with rank equal to 6, e.g., for T = 399/160,
452/173, 698/561, 1212/661, 1253/974, 1263/707, 1463/1081.

We give some details only for T = 7995/6562. In that case we obtain the
Diophantine triple

{
22552

5129
, − 5129

22552
,

52463190

14458651

}
,

and the corresponding elliptic curve (its minimal Weierstrass equation) is

y2 = x3 − x2 − 66316100370037243788808101431860x

+ 207787397329581777063539110158423853553882263492.
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Torsion points:

O, [4628372593789489, 0], [4774517796226298, 0], [−9402890390015786, 0],

[6213948304937164, 188792790675737045056350],

[6213948304937164,−188792790675737045056350],

[3335087287515432,−153990087256491803556554],

[3335087287515432, 153990087256491803556554].

Independent points of infinite order:

[2296719982411009, 259986354975552263423820],

[−754552913305211, 507342881379999424501350],

[4623547820142394, 3196373093851098851280],

[4774647845487904, 519325665120008067090],

[2882111728866944, 201488073470229552730830],

[4572248586935254, 12595554476372830774560],

[−14146681940011859/4, 5047542184921547691312855/8].

Hence, we have proved the following result.

Proposition 4.1. For each 0 ≤ r ≤ 7, there exists a Diophantine triple
{a, b, c} such that the elliptic curve y2 = (ax + 1)(bx + 1)(cx + 1) has the
torsion group isomorphic to Z/2Z× Z/4Z and the rank equal to r.

5. Torsion group Z/2Z× Z/6Z

General form of curves with the torsion group isomorphic to Z/2Z×Z/6Z
is

y2 = (x+ α2)(x+ β2)

(
x+

α2β2

(α− β)2

)

(then the point [0, α2β2/(α − β)] is of order 3; see [35]). Let us force a
Diophantine triple equation

(5.1) y2 = (x+ bc)(x+ ac)(x+ ab)

to have this form.
Comparison gives

α2 + 1 = bc+ 1 = t2,(5.2)

β2 + 1 = ac+ 1 = s2,(5.3)

α2β2 + (α− β)2 = �.(5.4)

The first two conditions (5.2) and (5.3) have parametric solutions

α =
2u

u2 − 1
, β =

v2 − 1

2v
.
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Inserting this into (5.4), we obtain the equation F (u, v) = z2, where

F (u, v) = (v4 − 2v2 + 1)u4 + (−8v3 + 8v)u3(5.5)

+(2v4 + 2 + 12v2)u2 + (−8v + 8v3)u+ v4 − 2v2 + 1.

The condition F (u, v) = z2 is satisfied e.g. for

u =
v3 + v

v2 − 1
.

Indeed, then F (u, v) = (v6−v4+3v2+1)2

(v−1)2(v+1)2 . Hence, for

α =
2T 5 − 2T

T 6 + T 4 + 3T 2 − 1
, β =

T 2 − 1

2T
,

we obtain the parametric family of Diophantine triple equations with the
torsion group isomorphic to Z/2Z× Z/6Z. It is easy to check that the point
[1, rst] on (5.1) has an infinite order (by finding a suitable specialization, or by
listing explicitly all 12 torsion points on (5.1) over Q(T )). Hence, we found an
elliptic curve over Q(T ) with the torsion group Z/2Z×Z/6Z and the generic
rank ≥ 1, which ties the current record ([7, 35, 37]).

Since the constructed curve over Q(T ) has very large coefficients, it is not
surprising that we are able to compute the rank only for few specializations,
and among them we find examples with rank equal to 1, 2, 3. Rank 3 is
obtained for T = 7, which corresponds for the Diophantine triple

{
721176

193193
,

20580000

829322351
,

662376

210343

}
.

Instead of using a parametric solution, we can also try to search for solu-
tions u, v of the equation (5.5) with small numerators and denominators, and
to compute the rank of corresponding elliptic curves. Using this approach we
are able to find a curve with rank equal to 4. It is obtained for u = 34/35
and v = 8, i.e., for the Diophantine triple

{
39123

96976
,

12947200

418209
,

42427

1104

}
.

The curve is

y2 + xy = x3 − 24046649084795243589952562390x

+ 1435226116741326558309046453105518735800100.
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Torsion points:

O, [−179058763357620, 89529381678810],

[89873668514380,−44936834257190],

[356740379372959/4,−356740379372959/8],

[92726794888780,−52405873597247415590],

[92726794888780, 52405780870452526810],

[86369148214060, 51179899438633016410],

[154777835944300, 1192150615832496114010],

[37033400507980,−771678209256671722790],

[86369148214060,−51179985807781230470],

[154777835944300,−1192150770610332058310],

[37033400507980, 771678172223271214810].

Independent points of infinite order:

[35387651068492, 792834860571692154586],

[−39964997451020,−1527225651415581670190],

[−8547561811220,−1280680222922667973190],

[90070190194252, 6841914086525854426].

Proposition 5.1. For each 1 ≤ r ≤ 4, there exists a Diophantine triple
{a, b, c} such that the elliptic curve y2 = (ax + 1)(bx + 1)(cx + 1) has the
torsion group isomorphic to Z/2Z× Z/6Z and the rank equal to r.

6. Torsion group Z/2Z× Z/8Z

Finally, we consider the largest possible torsion group Z/2Z× Z/8Z. As
we have already noted in Section 6, the torsion group of elliptic curves induced
by Diophantine triples of the form

{
a,−1

a
, a− 1

a

}

contains a subgroup isomorphic to Z/2Z× Z/4Z. In that case, the points of
order 4 on

y2 = (x+ ab)(x+ ac)(x+ bc)

are P = [0, abc], P + T1, P + T2, P + T3, where T1 = [−bc, 0], T2 = [−ac, 0],
T3 = [−ab, 0]. Hence, our elliptic curve will have the torsion group isomorphic
to Z/2Z × Z/8Z if some of the points P, P + T1, P + T2, P + T3 is a double
point. We will use 2-descent proposition again. Consider the point P +T2. It
will be a double point iff (b− a)(b− c) and b(b− a) are both perfect squares.
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These conditions lead to a single condition that a2 + 1 is a perfect square.
Therefore, we have proved that all Diophantine triples of the form

{
2T

T 2 − 1
, −1− T 2

2T
,

6T 2 − T 4 − 1

2T (T 2 − 1)

}
, t ∈ Q,

induce elliptic curves with torsion group isomorphic to Z/2Z × Z/8Z. The
induced curves have the equation of the form

(6.1) y2 = x(x+ s2)(x + t2) = x

(
x+

(
2T

T 2 − 1

)2
)(

x+

(
T 2 − 1

2T

)2
)
.

But, according to [35], every elliptic curve over Q with torsion group Z/2Z×
Z/8Z has an equation of the form (6.1). Therefore, every such curve is induced
by a Diophantine triple. This fact has been independently proved by Campbell
and Goins in [8].

Thus, we are left with the question which ranks are possible for the el-
liptic curves with torsion group Z/2Z × Z/8Z. It is known that there exist
infinitely many such curves with rank ≥ 1 (see [1, 8, 35, 37]), although no
such parametric family (curve over Q(T )) is known. It is easy to find exam-
ples with rank equal to 0, 1, 2. The first example with rank equal to 3 was
found in 2000, independently, by Connell [9] and the author [17]. It was the
curve

y2 + xy = x3 − 15745932530829089880x

+ 24028219957095969426339278400,

with torsion points:

O, [−4581539664, 2290769832], [−1236230160, 203972501847720],

[2132310660, 12167787556920], [2452514160, 12747996298920],

[9535415580, 860741285907000], [2132310660,−12169919867580],

[−1236230160,−203971265617560], [9535415580,−860750821322580],

[2452514160,−12750448813080], [2346026160,−1173013080],

[1471049760, 63627110794920], [1471049760,−63628581844680],

[3221002560,−82025835631080], [3221002560, 82022614628520],

[8942054015/4,−8942054015/8],

and independent points of infinite order:

[2188064030,−7124272297330],

[396546810000/169, 1222553114825160/2197],

[16652415739760/3481, 49537578975823615480/205379].
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The curve was induced by the Diophantine triple

{
408

145
, −145

408
, −145439

59160

}
.

In the meantime, several other curves with rank equal to 3 were found
by Rathbun [40], Campbell and Goins [8], and the author (see also [5]). Here
we will mention our findings. Using a similar search procedure, as in the
previous sections, we have discovered elliptic curves with the torsion group
Z/2Z × Z/8Z and the rank equal to 3, which correspond to the following
Diophantine triples:

{
1692

1885
, −1885

1692
, − 690361

3189420

}
,

{
79040

35409
, −35409

79040
,

4993524319

2798727360

}
,

{
77556

59917
, −59917

77556
,

2424886247

4646922852

}
,

{
128760

176111
, −176111

128760
, −14435946721

22676052360

}
,

{
424580

799029
, −799029

424580
, −458179166441

339251732820

}
,

{
451352

974415
, −974415

451352
, −745765964321

439804159080

}
.

We give some details on the curve corresponding to the last triple, since
this case is the most technically involved and time consuming. Its minimal
Weierstrass equation is

y2 + xy = x3
− 16188503722614063108729139735755154904562292360x

+786863421808206463969913495490892469346874709447053592901366525761600.
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Torsion points are:

O, [126942113771663398101920, 27882680574001240245704236363397240],

[126942113771663398101920,−27882680574128182359475899761499160],

[30228264599630424878720,−18031474247759343557251945104801160],

[30228264599630424878720, 18031474247729115292652314679922440],

[422083239655931288586320,−262963676295121325354530570456161160],

[85392774125986994678180,−5211521754389769127545451481401720],

[−61613633858042970798640, 39375066083178460970956312648094840],

[61906075162778279941820, 4684356135071180542946299694504840],

[85392774125986994678180, 5211521754304376353419464486723540],

[422083239655931288586320, 262963676294699242114874639167574840],

[61906075162778279941820,−4684356135133086618109077974446660],

[−61613633858042970798640,−39375066083116847337098269677296200],

[68209869346874809632016,−34104934673437404816008],

[78585189185646911490320,−39292594592823455745160],

[−587180234130086884489345/4, 587180234130086884489345/8],

while independent points of infinite order are:

P1 = [66119657073815781066800, −2355339128918565969721076384104840],

P2 = [401169287265672834550867500080/76335169,

−17669918374394464360754418260810255353172665480/666940371553],

P3 = [2896876482219215018082911215320035879728511402808...

...52543070142236950355376437227490536812623183120/

17156914675194799164872812895696296908615977178623591714662702334872955881,

-1617954908834725344870195603458416032731793227363235820394569809657744633819...

...656062208905822304087388210043858968407239618913517436708870237508440/

7106549528400313535484236316357837399782369803809731948...

...0954479040616074792502966798554498341539450071275232779].

(Numerators and denominators too large to fit in one line are given in two
lines, which is indicated by ... at the end of the first line and beginning of the
second line.) In this case, we were not able to compute the exact rank using
mwrank (we obtained that rank is equal to 2 or 3). Namely, the coordinates
of the points P3 are too large to be found by 2-descent. Therefore, here we
used 4-descent implemented in MAGMA.

Let us summarize the results from this section.

Proposition 6.1. For each 0 ≤ r ≤ 3, there exists a Diophantine triple
{a, b, c} such that the elliptic curve y2 = (ax + 1)(bx + 1)(cx + 1) has the
torsion group isomorphic to Z/2Z× Z/8Z and the rank equal to r.
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