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Irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin: CPT-11) is a

widely used potent antitumor drug that is developed based on camptothecin. However, overex-

pression of ABCG2 (BCRP/MXR/ABCP) confers cancer cells resistance to SN-38, that is, the

active metabolite of irinotecan. In the present study to develop a platform for the molecular

modeling to circumvent cancer drug resistance associated with ABCG2, we have characterized

a total of fourteen new SN-38 analogues by some typical properties, which were evaluated by

molecular orbital (MO) calculations and neural network (NN) QSAR technique.

Keywords

camptothecin

ABCG2

neural network analysis

molecular orbital calculation

CROATICA CHEMICA ACTA

CCACAA 80 (2) 277¿281 (2007)

ISSN-0011-1643

CCA-3170

Conference Paper

INTRODUCTION

Irinotecan (CPT-11: 7-ethyl-10-[4-(1-piperidino)-1-piperi-

dino]carbonyloxycamptothecin) is a potent camptothe-

cin-based anti-cancer drug. Camptothecin (CPT) has been

gathered much attention, since it shows wide-spectrum

anti-tumor activity against human cancer cells. Irinote-

can was developed as a new water-soluble and safer

anti-cancer drug based on camptothecin.1,2 Since the lac-

tone moiety of irinotecan (E-ring in Figure 1) is critical-

ly required for the anti-tumor activity, SN-38 that is an

active metabolite of irinotecan conserves the lactone

moiety. SN-38 lactone is in thermal equilibrium with

carboxylate form of it within the cell. Molecular struc-

tures of irinotecan and lactone form of SN-38 are shown

in Figure 1.

ABCG2 is the human ATP-binding cassette transpor-

ter, which was originally named Breast Cancer Resistant

Protein (BCRP), since it was discovered in doxorubicin-

-resistant breast cancer cells.3 It is also called MXR or

ABCP. Recently, it has been shown that overexpression

of ABCG2 confers drug resistance to CPT analogues.4–6

Accumulating evidences suggest that ABCG2 actively

transports both forms of SN-38 from the cancer cells and

thereby confers resistance to camptothecin-based anti-

-cancer drugs.

To overcome and to circumvent ABCG2-associated

drug resistance to SN-38, many efforts have been made.

For instance, a total of 14 new analogues of SN-38 were

synthesized for evaluation.7 New 14 analogues have va-

rious pairs of substituents at the opposite (X- and Y-)
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positions of the lactone ring (E-ring in Figure 1), since

the lactone moiety plays a crucial role in anti-cancer ac-

tivity. The molecular structures of analogues are also il-

lustrated in Figure 1. Since 3D structure of ABCG2 has

not revealed yet, we have characterized SN-38 and its

analogues by some typical properties.

ABCG2-associated drug resistance profiles of SN-38

and its derivatives were already determined by MIT as-

say method using ABCG2-transfected HEK293 cells and

control HEK293 cells (Figure 2).8 The drug resistance ratios

(DRRs) were calculated as the ratio of IC50 of ABCG2-

-transfected HEK293 cells to IC50 of control cells, where

the IC50 value is concentration representing a 50% reduc-

tion of cell growth. ACBG2-transfected cells were resis-

tant to SN-38, 355, 392, and 398, suggesting that these

compounds are substrates for ABCG2.

In this paper, we discuss the critical features for

ABCG2-associated transport and recognition by ABCG2

to SN-38 and its analogues, based on the typical proper-

ties of compounds observed in theoretical approaches.

COMPUTATIONAL

Molecular structures of all analogues were firstly con-

structed by molecular mechanics (MM2) procedures.

Geometry optimizations by ab initio MO calculations at

the restricted Hartree-Fock (RHF) level with MIDI-4 ba-

sis set9 were used for refinement of the structures prior

to the analysis of electrostatic properties. Electrostatic iso-

potential surfaces were generated by single-point energy

calculations at RHF level with MIDI-4 and polarization

functions as a basis set. All ab initio MO calculations were

carried out with the program package AMOSS that is

developed by NEC quantum chemistry group.

Since it is supposed that hydrogen-bond formation

contributes to drug transport by ABCG2 from the results

of drug resistance profiles, the relationship between hy-

drophobicity or hydrophilicity and drug resistance of SN-

38 analogues are examined. We evaluated the solvation

free energies (DG) and hydrophobic parameters (LogP)

using quantum mechanical method and neural network

analysis, respectively.

The DG value was defined as DG = E(COSMO) –

E(in vacuo) + SASA*0.00542 + 0.92, where E(COSMO),

E(in vacuo), and SASA are total energies of the SN-38

analogues evaluated by semi-empirical MO calculations

using AM1 Hamiltonian10 with conductor-like screening

model (COSMO)11 as solvent effects, AM1 in vacuo, and

the solvent accessible surface area,12 respectively. All

semi-empirical MO calculations were archived with

MOPAC program available in the computer-aided che-

mistry modeling package CAChe developed by Fujitsu.

As hydrophobic profiles, we also examined LogP by

quantitative structure-activity relationship (QSAR) analy-

sis. The LogP values were estimated by using neural

network analysis with back-propagation method based

on AIC (Akaike Information Criteria) theory.
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Figure 1. Molecular structures of irinotecan (CPT-11), the active
metabolite SN-38, and SN-38 analogues. ABCG2 transports SN-38
out of cells in an ATP-dependent manner.
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Figure 2. Drug resistance ratios (DRRs) of SN-38 and its analogues
determined by MIT assay. The drug resistance ratios (DRRs) were
calculated as the ratio of IC50 of ABCG2-transfected HEK293 cells
to IC50 of control cells.



Finally, the prediction of substrate or non-substrate

of ABCG2 was also attempted only from the formal

charges on the atoms of X- and Y- substitutions observ-

ed in ab initio MO calculations. The neural network al-

gorithms based on weighted information maximization

method that is a new type of information theoretic super-

vised competitive learning were introduced and "leave-

one-out" experiments for each SN-38 analogue were

performed 10 times.

RESULTS AND DISCUSSION

The electrostatic iso-potential surfaces of SN-38 and its

analogues at ±0.01 a.u. (atomic unit) were generated and

the surfaces of representative analogues are shown in

Figure 3. It is found that there are two types of potential

maps, i.e., analogues, which have a negative potential

area around X- or Y- positions and others do not have.

As shown in Figures 2 and 3, the analogues (SN-38, 355,

and 398), which are classified into the substrate group

by MIT assay, have such a distinct negative potential area.

On the other hand, the Others classified as non-substrate

(SN-22, 343, and 349) exhibit both types of electrostatic

potentials. The negative potential in a non-substrate

(SN-349) may be directly attributed to the presence of a

halogen atom. Indeed ABCG2 has been reported to in-

dicate high affinity to SN-38 analogues containing halo-

gen atoms,13 and it is suggested that the negative poten-

tial area at X- or Y- positions may play a critical role in

the drug recognition mechanisms by ABCG2, since.

To investigate the relationship between hydrophili-

city or hyrdophobicity and drug resistant profiles, calcu-

lated DG and LogP values are plotted versus DRRs in

Figures 4 and 5. As shown in Figure 4, the SN-38 analo-

gues are clearly classified into substrates and non-sub-

strates by DG. Furthermore, the estimated LogP values

indicate good correlations with DRRs except for Cl- or

Me-containing compounds. These results are suggesting

that DG and LogP values as hydrophilicity and hydro-

phobicity properties are critically related to determine

substrates of ABCG2 and may be good indices for drug

resistance.

Finally, we report the results of the substrate predic-

tion. When the weighted information maximization (WIM)

method is used, the generalization errors were only 0.02,

meaning that miss-predictions were only tree times among

a total of 150 times "leave-one-out" experiments. For com-

parison, the magnitudes of generalization errors with ot-
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Figure 3. Electrostatic iso-potential surfaces at ±0.01 atomic unit of representative analogues. (a) SN-38, (b) SN-398, and (c) SN-355
are substrates and (d) SN-22, (e) SN-343, and (f) SN-349 are non-substrates. The surfaces were generated by ab initio MO calculations
at restricted Hartree-Fock level with the MIDI-4 and polarization functions as a basis set.
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Figure 4. The correlation between the solvation free energies (DG)
and drug resistance ratios (DRRs). The broken line classified 15
analogues into substrates and non-substrates.



her conventional methods of LVQ1 (learning vector

quantization 1), LVQ2, and back-propagation are also

depicted in Figure 6, suggesting neural network analysis,

especially, WIM is effective for prediction of substrates

of ABCG2.

CONCLUSIONS

In present paper we have described typical properties of

SN-38 and its analogues that are obtained by computa-

tional approaches to develop a platform for the molecular

modeling to circumvent ABCG2-associated drug resis-

tance. Indeed some computational results were shown to

be used for interpretation of drug recognition and trans-

port by ABC transporter. It has been suggested that hy-

drophilicity and hydrophobicity of compounds are one of

the essential determinants for drug transport by ABCG2.

Furthermore, the electrostatic profiles provide accurate

interpretation for the recognition mechanisms.

Though the 3D structure of ABCG2 has not been re-

vealed we have discussed the interaction such as recogni-

tion and transport, between the drug and the transporter

using computational results. To develop a platform for the

modeling new advantaged drug, much more information,

for instance, more numbers of analogues and more pre-

cise investigations are required. However we have pre-

sented that theoretical approaches are effective to inter-

pret and predict inter-bio-molecular interactions such as

the cancer drugs and the ABC transporters.
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Figure 6. The generalization errors using the weighted informa-
tion maximization (WIM) compared with learning vector quantiza-
tion 1 (LVQ1), LVQ2, and back-propagation.
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Figure 5. The correlation between the hydrophobic parameters
(LogPs) and drug resistance ratios (DRRs). The broken circles indi-
cate methyl-containing analogues and Cl-containing analogues,
respectively.
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Teorijske studije u molekulskom modeliranju novih analoga camptothecin-a

Sachiko Aida-Hyugaji, Hiroshi Nakagawa, Jumma Nomura, Minoru Sakurai,

Umpei Nagashima i Toshihisa Ishikawa

Irinotecan je vrlo kori{ten i mo}an antitumorski lijek ~ija se priprava temelji na camptothecin-u. Ipak, zbog

nedekspresije ABCG2, stanice raka mogu razviti otpornost na SN-38, tj. na aktivni metabolit irinotecan-a. Ka-

ko bi se savladala ova otpornost, u radu je razvijena platforma za molekulsko modeliranje koja je omogu}ila

karakterizaciju ~etrnaest novih SN-38 analoga i ~ija su tipi~na svojstva procijenjena molekularno-orbitalnim

prora~unima i QSAR neuronskim mre`ama.
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