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The role of the topological index, ZG, proposed by the present author in 1971, in various problems

and topics in elementary mathematics is introduced, namely, (i) Pascal’s and asymmetrical Pascal’s

triangle, (ii) Fibonacci, Lucas, and Pell numbers, (iii) Pell equation, (iv) Pythagorean, Hero-

nian, and Eisenstein triangles. It is shown that all the algebras in these problems can be easily

obtained, graph-theoretically interpreted, and systematically related with each other by intro-

ducing certain series of graphs whose ZG values represent the series of numbers involved therein.

Finally, an ambitious conjecture is proposed: for any recursive relation of the type of Fibonacci

numbers, there always exist a series of graphs whose Z-indices obey the same recursive re-

lation. Important role of ZG in algebraic number theory is also discussed.
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INTRODUCTION

My first graph-theoretical paper "Topological Index. A

Newly Proposed Quantity Characterizing the Topologi-

cal Nature of Saturated Hydrocarbons" was published in

1971.1 Since then I have been working in mathematical

chemistry for more than thirty years. If the essence of all

my papers is to be abstracted, one may say that many

chemical problems and phenomena can be described and

analyzed mathematically, and then interpreted chemical-

ly by using proper counting polynomials.2 Although the

"topological index" was coined by myself for the Z-in-

dex, this term has now become the general name for to-

pological descriptors.3

Good correlation is observed between the boiling point

of alkanes and Z, which is the sum of the non-adjacent

numbers, p(G,k)s, of graph G representing their carbon

atom skeleton.1,4–7 For tree graphs those p(G,k) values are

identical to the absolute values of the coefficients of the

characteristic polynomial of G, while for non-tree graphs

some correction terms become necessary. Then one can

systematically analyze the graph-theoretical meaning of

Z and then the chemical meaning of the observed cor-

relation. Later the Z index was found to be utilized for

analyzing the graph theoretical meaning of the aromatic

stability of conjugated hydrocarbons,8,9 and also for the

classification and coding of hydrocarbons.10

Possibly due to its mathematically naive definition,

the p(G,k) and Z values of several series of typical

graphs were found to be closely related to several series

of numbers and the related mathematical objects. For ex-

ample, the Z’s of path and monocycle graphs are nothing

else but the Fibonacci and Lucas numbers, respectively,

which have the same recursion formula, as fn = fn–1 + fn–2.
1

Moreover, the whole families of p(G,k) numbers of these

two series of graphs form Pascal’s and asymmetrical

Pascal’s triangles, respectively.11,12 This means that by

using the Z-index one can obtain new graph-theoretical

meaning of the well known algebraic concepts and theo-

rems. Quite recently various series of graphs were dis-

covered whose Z-indices are closely related to fundamen-

tal concepts and theorems in elementary mathematics as

follows.



1) Pell numbers, 1, 2, 5, 12, 29, etc., which recur as

fn = 2 fn–1 + fn–2.

2) Solutions of Pell equation, x2 – D y2 = N, for spe-

cial values of D and N.

3) Pythagorean triangles (a, b, c) composed of all

integers with a2 + b2 = c2.

4) Heronian triangles (a, b, c) composed of all inte-

gers with integral area.

A very important role of the Z index in elementary

mathematics has thus been verified. The purpose of this

paper is to expose and relate the important mathematical

roles of the Z-index, and finally to propose an ambitious

conjecture connecting algebra and geometry through Z.

PRELIMINARIES

Topological Index and Related Polynomials

In this section various numbers and polynomials relevant

to the discussion on the topological index, Z, will briefly

be introduced. Graph-theoretical concepts used here are

those which have conventionally been approved.13

Non-adjacent Number, p(G,k).1 – The number of ways

for choosing k disjoint edges from a given graph G is

defined as the non-adjacent number, p(G,k). Here p(G,0)

is defined as unity for any G including vacant graph, and

p(G,1) is equal to the number of edges of G.

Z-Counting Polynomial, QG(x).1 – By using the set of

p(G,k)’s for G the Z-counting polynomial, QG(x), is de-

fined as

QG(x) = p k x k

k

m

( , )G

=
∑

0

(1.1)

where m is the maximum number of k =  N / 2 with N

being the number of vertices of G.

Matching Polynomial, MG(x).14–16 – By using p(G,k)’s

for a given G three groups of researchers independently

proposed the same polynomial in the following form,

which is now called matching polynomial,

MG(x) = ( ) ( , )− −

=
∑ 1 2

0

k N k

k

m

p k xG . (1.2)

Mathematically it is essentially the same as QG(x).

Topological Index, ZG.1 – Total sum of p(G,k)’s for a gi-

ven G is defined as the topological index, ZG, as

ZG = p k

k

m

( , ) ( )G QG=
=
∑ 1

0

. (1.3)

Characteristic Polynomial, PG(x). – By using the adja-

cency matrix, A, and unit matrix, E, of the same size the

characteristic polynomial for G with N vertices is defin-

ed as

PG(x) = (–1)N det(A – x E) . (1.4)

For tree graphs the coefficients of PG(x) exactly co-

incide with the set of p(G,k)’s as1

PT(x) = a xk
N k

k

N

−

=
∑

0

=

( ) ( , )− −

=
∑ 1 2

0

k N k

k

m

p k xT (T : tree) (1.5)

and then we have

ZT = | |ak

k

m

=
∑

0

(T : tree) . (1.6)

For non-tree graphs PG(x) can be expressed by the

set of p(G,k)’s for G and its subgraphs obtained by

deleting the component rings. Details have already been

discussed elsewhere.17,18

Chebyshev Polynomial, Tn(x) and Un(x).19,20 – Although

trigonometric definitions are more common, Chebyshev

polynomials of the first and second kinds, Tn(x), Un(x),

are respectively defined here as

Tn(x) =
n

k
x x

k

n

n k k
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Modified Chebyshev Polynomials, Sn(x) and Cn(x).19–21 –

By using the following formulas modified Chebyshev

polynomials, Sn(x) and Cn(x), are defined as

Cn(x) = 2 Tn(x / 2) (1.9)

Sn(x) = Un(x / 2), (1.10)

or explicitly expressed by

Cn(x) = ( )
/

−
−

−
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(1.11)

Sn(x) = ( )
/
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−∑ 1

0
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n k
n k

k
x
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. (1.12)

These two polynomials have been found to be iden-

tical to the matching polynomials of monocyclic graph,

Cn, and path graph, Sn, respectively.21 It is interesting to

note that the notations of C and S for these modified

Chebyshev polynomials come from cosine and sine, res-

pectively, and the coincidence with the conventional no-

tations for cycle and path graphs is quite accidental.
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Various Series of Numbers

Fibonacci Number, Fn.
22 – Contrary to the conventional

choice of the initial values, the Fibonacci numbers, Fn,

are defined here as

Fn = Fn–1 + Fn–2 (1.13)

with F0 = F1= 1, and one can see that Fn represents the

Z-index of path graph Sn as shown in Figure 1.

Lucas number, Ln.
22 – The definition of the Lucas

Numbers, Ln, is the same as the conventional one as

Ln = Ln–1 + Ln–2 (1.14)

with L0 = 2 and L1= 1, and Ln is shown to represent the

Z-index of cycle graph Cn as shown in Figure 1.

Pell Number, Pn.
23,24 – Contrary to the conventional

choice of the initial values, the Pell numbers, Pn, are

defined here as

Pn = 2Pn–1 + Pn–2 (1.15)

with P0 = 1 and P1 = 2. It is shown in Figure 1 that Pn

represents the Z-index of comb graph, Un.
25 The change

in the initial values of Fn and Pn from the conventional

definition is linked with each other.

Pell-Lucas Number or Companion Pell Number,

Qn.
23,24,26 – The definition of the Lucas numbers, Ln, is

the same as the conventional one as

Qn = 2Qn–1 + Qn–2 (1.16)

with Q0 = 2 and Q1= 2. It is shown that Qn represents the

Z-index of gear graph, CUn, as seen in Figure 1.

Examples of all these characteristic quantities ex-

plained above are given below for path graph S5 which

is composed of five vertices and four consecutive edges

as shown in Figure 1, where several typical series of

graphs and their ZG values are given:

for G = S5 :

p(G, 0) = 1, p(G, 1) = 4, p(G, 2) = 3

and p(G, k) = 0 (k ≥ 3)

QG(x) = 1 + 4 x + 3 x2 ZG = 1 + 4 + 3 = 8 = F5

MG(x) = x5 – 4 x3 + 3 x = S5(x)

PG(x) = x5 – 4 x3 + 3 x.

Similarly,

for G = C5 :

p(G, 0) = 1, p(G, 1) = 5, p(G, 2) = 5

and p(G, k) = 0 (k ≥ 3)

QG(x) = 1 + 5 x + 5 x2 ZG = 1 + 5 + 5 = 11 = L5 .

MG(x) = x5 – 5 x3 + 5 x = C5(x)

PG(x) = x5 – 5 x3 + 5 x – 2 .

See also the Pascal and asymmetrical Pascal triang-

les12 given in Figures 2a and 2b, where the coefficients
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Figure 1. Various series of graphs derived from path (Sn) and mo-
nocycle (Cn) graphs together with their topological indices, ZG.

Figure 2. Pascal’s (a) and asymmetrical Pascal’s (b) triangles. Along
the slant lines from the left end to the upper right p(G,k) numbers
for path and monocycle graphs can be read, and their sums give
the Fibonacci and Lucas numbers, respectively.

a)

b)



of the QG(x) for path graphs and monocycle graphs can

be read along the slant lines from left to upper right.

Note also that the absolute values of the coefficients of

the modified Chebyshev polynomials of the second and

first kinds, Sn, (1.12), and Cn, (1.11), are respectively,

identical to the above two polynomials.

Recursive Relations
1,2,11,21

Useful recursive relations for p(G,k), QG(x), and ZG have

been known, respectively, as

p(G,k) = p(G – l,k) + p(GQl,k – 1) (1.17)

QG(x) = QG–l(x) + x QGQl(x) (1.18)

ZG = ZG–l + ZGQl (1.19)

where GQl is the subgraph of G obtained by deleting

edge l from G together with all the edges incident to l,

while G–l is the subgraph of G obtained by deleting only

edge l. These recursive relations are derived from the in-

clusion-exclusion principle.27,28 As many examples have

already been illustrated elsewhere, no further explanation

will be given here except for the following case.

Namely, as shown in Figure 1, Lucas numbers can

be obtained from Fibonacci numbers as in the following

way,

Ln = Fn + Fn–2, (1.20)

This is also the case with the pair of Pell and Pell-

-Lucas numbers as

Qn = Pn + Pn–2, (1.21)

and also for other pairs of the series of numbers as

xn = vn + vn–2, (1.22)

and

yn = wn + wn–2. (1.23)

The first terms of the right hand sides of (1.20)–(1.23)

are the contribution of G–l, while the second terms count

the GQl contribution.

Each of the four recursive relations, (1.20)–(1.23), re-

spectively, connects a pair of graphs or numbers whose

recursive relations are the same. In some sense these re-

lations describe the ring closure property along a »lati-

tude.« On the other hand, another group of recursive re-

lations can be obtained along a "longitude." Namely, the

fundamental skeletons of the three tree graphs (See Fig-

ure 1), Un, Vn, and Wn, with the same n are in common

with that of Sn, but they differ only in the number (a) of

unit edges branching from each vertex of the common

skeleton of Sn leading to a different recursive relation for

each stage (latitude) as

fn = (a+1) fn–1 + fn–2 . (1.24)

Similar relations also hold for another group of non-

-tree graphs, Cn, CUn, CVn, and CWn.

Let us here consider the process of growth of path

graph, Sn, into the corresponding comb graph, Un. By

taking into account the meaning and function of the

counting polynomial U5 can be obtained from that of S5,

with QG(x) = 1 + 4x + 3x2, in the following way:

U5 = (1 + x)5 + 4x (1 + x)3 + 3x2 (1 + x) =

1 + 9 x + 25 x2 + 25 x3 + 9 x4 + x5 .

Similarly QG(x) for V5 and W5 can be obtained from

that of S5 as

V5 = (1 + 2x)5 + 4x (1 + 2x)3 + 3x2 (1 + 2x) =

1 + 14 x + 67 x2 + 134 x3 + 112 x4 + 32 x5 ,

and

W5 = (1 + 3x)5 + 4x (1 + 3x)3 + 3x2 (1 + 3x) =

1 + 19 x + 129 x2 + 387 x3 + 513 x4 + 243 x5.

By putting x = 1 into these two polynomials one gets v5 =

360 and w5 = 1292, respectively, for their Z-indices (See

Figure 1).

The results obtained here assert that all the numbers

from Fn to wn and from Ln to yn with the same n in Fig-

ure 1, respectively, represent the Z-indices of those graphs

whose fundamental skeletons are tree Sn and non-tree Cn.

The shift of the initial conditions for the definition of Fn

and Pn are thus justified.

Various Series of Graphs

Although several important series of graphs have been

introduced in Figure 1, we will add several more others

and their Z-indices which are closely related to the pro-

blems discussed in this paper.
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Figure 3. Comb graph and the related graphs, and their Z-indices.



Comb-type graphs, U1n and U11n, with their Z-in-

dices, qn and rn (See Figure 3).

Wide Comb graph or w-shaped graph wn and w-relat-

ed graphs, w1n, w2n, w11n, w12n and w22n (See Figure 4).

ROLE OF Z-INDEX

Fibonacci, Lucas and Pell Numbers, and Pascal’s

Triangle

It has already been pointed out in my earlier paper11 that

the set of p(G,k)’s for the series of path graphs exactly

correspond to the Pascal’s triangle as illustrated in Figure

2a. That the set of p(G,k)’s for the series of monocycle

graphs correspond to the asymmetridal Pascal’s triangle

was rather later pointed out in my paper dealing with

4-dimensional atomic orbitals12 as shown in Figure 2b.

Since both these numbers obey the recursive relation of

the following type as (1.13) and (1.14),

fn = fn–1 + fn–2, (2.1)

the well-known recursive relation applied to the Pascal’s

triangle can be explained diagrammatically.

On the other hand, as the Pell and Pell-Lucas num-

bers situate in different stage or latitude, they obey a dif-

ferent recursive relation as

fn = 2 fn–1 + fn–2. (2.2)

See Table I, where the set of p(G,k) numbers, or the

coefficients of QG(x), of the two series of graphs, comb

graph, Un, and gear graph, or a cyclic comb graph, CUn,

(See Figure 1) are arranged to form a big triangle, res-

pectively. Notice that the pattern of the numbers is sym-

metrical with respect to the bisecting line of each equi-

lateral triangle. The reason for this symmetrical nature

of these polynomials can be explained by the process of

generating U5 polynomial from S5 as already shown in

the preceding section.

Another feature of these two triangles in Table I is

in their recursive construction rule. That is an element in

each triangle is the sum of the triplet forming a small tri-

angle just above it. This is an outcome of the recursive

relation of QG(x) as

QUn(x) = (1+x) QUn–1(x) + QUn–2(x). (2.3)

One can extend this discussion to other pairs of

graphs, (V, CV) and (W, CW), in Figure 1, which situate

on higher stages, but this problem will be left for the in-

terested readers.

Aside from these interesting algebraic properties the

most important message emanating from Table I and Fig-

ure 1 is that graph-theoretical meaning of the Pell and

Pell-Lucas numbers was clarified and their close rela-

tionship with Fibonacci and Lucas numbers was found.

Pell Equation

Irrespective of the long history of the Pell equation, let

us here call (2.4) and (2.5), respectively, Pell-N and

Llep-N,29

x2 – D y2 = N (Pell-N) (2.4)

x2 – D y2 = – N, (Lepp-N) (2.5)

where positive integer solutions (x, y) are to be sought

for positive integers N and square-free D.23,29,30 When both

Pell-N and Llep-N are to be discussed simultaneously, one

may use another new terminology, Pellep-N. For any value
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Figure 4. w-shaped graph and the related graphs, and their Z-in-
dices.

TABLE I. Coefficients of the Z-counting polynomials of graphs, Un

and CUn, generating Pell and Pell-Lucas numbers



of D Pell-1 has an infinite number of solutions besides

the trivial solution (x0 = 1, y0 = 0), whereas Llep-1 has

solutions only for special values of D.23,29,30 This is also

the case with Pellep-N, if N is a square number. Although

a number of interesting features have been known, it is

to be remarked here that Pellep-4 has a key role in the

whole Pellep-N problem, and the solutions of Pellep-4 for

special series of D values have important graph-theoreti-

cal meaning especially related to the problems discussed

in this paper.

See Figure 5 where the solutions (x, y) of Pellep-4

with four different D values are given together with the

graphs whose Z-indices correspond to these solutions. Note

that all the series of graphs given in Figure 1 are found

here. As mentioned before all the tree and non-tree graphs

in Figure 1 were constructed, respectively, from Sn and

Cn graphs by joining the same number (a ≥ 0) of unit ed-

ges to each vertex. As shown in Figure 5 the solutions

(x, y) of Pellep-4 with D = a2 + 2a + 5 correspond, res-

pectively, to the Z-indices of these graphs.

Similarly one can find graph-theoretical interpreta-

tion of the solutions of Pellep-1 through the Z-indices of

other series of graphs introduced in Figure 3 and 4. Na-

mely, in Figure 6 the Z-indices of two pairs of series of

graphs, U and U1 in Figure 3 and w11 and w12 in Figure

4 are found to be the solutions of Pellep-1 with D = 2

and Pell-1 with D = 3. The series of graphs, W, in Figure

1 are also found to be the solutions of Pellep-1 with D = 5

as in Figure 6, where other interesting series of graphs

are also shown.

In this way the whole mathematical structure of the

solutions of Pellep-N is beginning to be clarified by as-

signing proper series of graphs whose Z-indices exactly

represent these solutions. Study along this line is being

in progress.

Pythagorean Triangle
31

A Pythagorean triangle is a triangle whose edges (a, b,

c) with c as the hypotenuse are all integers, and these tri-

plet edges are sometimes called Pythagorean triplet. If (a,

b, c) are prime with each other, the triangle is called pri-

mitive. It has long been known that any Pythagorean triplet

can be expressed by a pair of positive integers (m>n) as

m2 – n2, 2 m n , m2 + n2, (*)

which satisfy the following identity,

(m2 – n2)2 + (2 m n ) 2 = (m2 + n2) 2. (2.6)

By using this relation various series of Pythagorean

triangles have been known for more than two thousand

years. Although Pythagorean triangle is a geometrical

object, its discussion has been performed mainly in alge-

braic manner, such as on the series of numbers and re-

cursive relations among them. In this paper it will be

shown that by using the topological index, ZG, a positive

integer representing the topological structure of a simple

graph, G, all these algebras can be easily obtained, graph-

-theoretically interpreted, and systematically related with

each other. Further, algebras of Heronian and Eisenstein

triangles can comprehensively be discussed and under-

stood through ZG.

Relation of Pythagorean triplet and the famous series

of numbers, e.g., Fibonacci, Lucas, and Pell numbers, have

been discussed but only sporadically. These relations will

be shown to be systematically related with each other

through ZG.

(a, a±1, c) or Root-2-Triangle. – First consider a series

of triangles, (a, a±1, c) converging to the equilateral

right triangle. The problem is reduced to solve the Pell
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Figure 5. The solutions of Pellep-4 with D=5, 8, 13, and 20. The
series of graphs whose Z-indices correspond to these solutions are
shown.

Figure 6. The solutions of Pellep-1 and Pell-1 with selected values
of D. The series of graphs whose Z-indices correspond to these
solutions are shown.



equation, x2– 2y2 = –1, and it is straightforwardly to get

the values of (m, n) and (a, b, c) as in Table II.23

The arguments m and n are nothing else but the Pell

numbers, Pk and Pk–1, respectively, while c takes every

other Pell number, P2k.
23 Further, b is the product of the

pair of consecutive Pell number. That is b = 2PkPk–1.

Although the value of a is obtained from the difference

of the squares of consecutive pair of Pk’s, it can also be

expressed by the product a = qk qk–1 of the consecutive

pair of another series of numbers, qk, representing the

Z-index of graph U1k, which has already been introduc-

ed in Figure 3. By noticing the relation,

qk = Pk + Pk–1, (2.7)

one gets

qk–1 = Pk–1 + Pk–2 = Pk – Pk–1 (2.8)

from the recursive relation (1.15). Then a can also be

expressed by the difference of the squares of the pair of

consecutive Pk's.

Anyway it was shown here that the Pythagorean tri-

plets converging to equilateral triangle can be construct-

ed from the Z-indices of the comb and related-graphs in-

troduced in Figure 3, where another series of comb-re-

lated graphs and numbers, rk, are also shown. Pk, qk, and

rk, are closely interrelated with each other through their

recursive relations as given in Figure 3, but have the same

recursive relation (2.2) within each series. The rapid

convergence of the ratio 2c/(a+b) with such small digits

of numbers is also to be remarked here.

However, by trial-and-error method interesting triplet

series of graphs were found as shown in Figure 7. First

consider the three tree graphs whose Z-indices represent

the smallest Pythagorean triangle (3, 4, 5), and then

sandwich it with a pair of L-shaped graphs as the (5, 2)

graph in Figure 7. The Z-indices of the resultant triplet

graphs will be the next larger member (21, 20, 29) of this

family of triplets. Although the recursive relation for a

and b is different from that of c as given in Figure 7, they

are closely related with each other through the following

identity,

(x2 – 6 x + 1) (x + 1) = x3 – 5 x2 – 5 x + 1 . (2.9)

Although one can derive algebraic closed forms re-

presenting the three edges of this type of Pythagorean

triangle, manipulation of graphs with simple recursive re-

lations as worked out in Figure 7 is mathematically more

enjoyable and productive for suggesting many hints for

the extension of the theory.

(a, b, b + 1) Triangle. – The series of triangles of the

form (a, b, b + 1) converge to another equilateral but flat-

tened triangle. From this condition it is easy to derive the

following series of numbers forming long acute Pytha-

gorean triangles as shown in Figure 8,23 where three se-

ries of graphs whose Z-indices corresponding to these

triangle are given. In this case the maximum length of

the graphs is fixed and the number of branches are in-

creasing to infinity.

(a, 2a ± 1, c) or Root-5 Triangle. – From the condition of

a2 + (2a ± 1)2 = c2 (2.10)

the problem is reduced to solve the following type of Pell

equation,
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Figure 7. The series of graphs whose Z-indices correspond to the
edge lengths of Pythagorean triangles of (a, a±1, c) type

Figure 8. The series of graphs whose Z-indices correspond to the
edge lengths of Pythagorean triangles of (a, b, b+1) type.

TABLE II. Pythagorean triangles approaching euilateral right triangle

k 1 2 3 4 5 6

m = P
k

2 5 12 29 70 169

n = P
k–1 1 2 5 12 29 70

a = m
2

– n
2

3 21 119 697 4059 23661

b = 2 m n 4 20 120 696 4060 23660

c = m
2

+ n
2

5 29 169 985 5741 33461

2 c / (a + b) 1.42 1.4146 1.41422 1.4142139 1.41421357 1.414213563

a = P
k

2
– P

k–1
2

= q
k
q

k–1 b = 2P
k

P
k–1 c = P

k

2
+ P

k–1
2

= P2k



x2 – 5 y2 = –1. (2.11)

After a little manipulation one gets the following

formula

(Fk–1 Fk+2)
2 + (2 Fk Fk+1)

2 = F2k+2,
22,32 (2.12)

which is expressed by only Fibonacci numbers.

A similar result is obtained by using only Lucas

numbers,22,33

(Lk–1 Lk+2)
2 + (2 Lk Lk+1)

2 = (L2k + L2k+2)
2. (2.13)

Since Fn and Ln stand path and monocycle graphs,

respectively, both (2.12) and (2.13) represent some graph-

-theoretical meaning of Pythagorean triangle whose edge

ratio c/a converges to square root of 5. However, we are

not going into more detail here, because the results are

not new and the rate of convergence is rather low.

(a, b, 2a ± 1) or Root-3 Triangle. – From the condition of

a2 + b2= (2a ± 1)2 (2.14)

the problem is reduced to solve the following type of

Pell equation,

x2 – 3 y2 = 1. (2.15)

Then after a little manipulation the series of Pythago-

rean triangle whose edge ratio bk/ck converges to square

root of 3 are obtained as in Table III. However, it was

found that these triangles are alternately grouped into two

series with even and odd k. Namely, the length of longer

leg b can be expressed by one general formula, whereas

the shorter leg a and hypotenuse c are, respectively, are

found to be a union of two series of numbers as given in

Table III. Further, all these series of numbers can be ex-

pressed by the Z-indices of several series of »w-shaped

graphs« introduced in Figure 4. Although the recursive

relation for a and c is different from that of b, they are

related through the following identity,

x3 – 3 x2 – 3 x + 1 = (x2 – 4 x + 1) (x + 1) . (2.16)

One can find and discuss as many types of Z-index

interpretation of Pythagorean triangles as one may wish,

but here only one example will be added without further

explanation as shown in Figure 9, where Pythagorean tri-

angles with c = a + 2 are given. In Figure 10 it is shown

how the Z-indices of several typical graphs introduced in

this paper have a key role in relating and understanding

the algebras of Pythagorean triangles of various types.

One can extend this diagram as large as one may wish.

Heronian Triangle

A Heronian triangle is a triangle whose edges (a, b, c)

and area are all integers. Any Pythagorean triangle is

Heronian, and one can construct a Heronian triangle

from a pair of Pythagorean triangles which have a leg of

common length. Then search for Heronian triangles is

usually performed by excluding those cases. Contrary to

the case with Pythagorean triangles no universal condi-

tion for Heronian triangles is known.

By putting

s = (a + b + c)/2 (2.17)
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TABLE III. Pythagorean triangles whose edge ratio converges to
square root of 3

k 1 2 3 4 5 6 7 8

a
k

3 8 33 120 451 1680 6273 23408

b
k

4 15 56 209 780 2911 10864 40545

c
k

5 17 65 241 901 3361 12545 46817

b
k

/c
k

n 1.3 1.8 1.69 1.741 1.729 1.73273 1.73186 1.73210

a2k–1 = w1k
w1k–1 b

k
= w11k

c2k–1 = w11k–12 + w12k–12

a2k
= w0k

w11k
c2k

= w11k2 + w11k–12 (k≥1)

a , c : f
k

= 3 f
k–1 + 3 f

k–2 – f
k–3 b : f

k
= 4 f

k–1 – f
k–2

Figure 9. The series of graphs whose Z-indices correspond to the
edge lengths of Pythagorean triangles of (a, b, a+2) type.

Figure 10. Mathematically interesting series of Pythagorean triangles
and their relevant graphs.



the area S of the triangle is given by the Heronian for-

mula,

S = s s a s b s c( )( )( )− − − . (2.18)

The most famous case is for those Heronian triangles

whose edges are consecutive integers, (b – 1, b, b + 1).

This problem is reduced to solve the Pell equation of the

form,

x2 – 3 y2 = 4, (2.19)

and the results with the height h and area S are obtained

as in Figure 11.

Although these numerical results have been known,23

it is to be noted that l = b/2 and h are, respectively, our

w12 and w22 introduced in Figure 4. Further, one can find

two series of graphs whose Z-indices are, respectively,

b = 2l and S/6 as given in Figure 11.

These two series of graphs, w12 and w22, are found

to be involved in another series of equilateral Heronian

triangles also converging to regular triangle. Namely, the

condition for the type of triangles (a, a, a±1) also to

solving (2.19), and one gets the results as summarized in

Figure 12, where two series of ak are found to give this

type of triangle as

ak = w11k–1
2 + w11k

2 for (a, a, a – 1) (2.20)

and

ak = w11k–1
2 + w12k

2 for (a, a, a + 1) (2.21)

two series of graphs whose Z-indices represent the edge

lengths of these Heronian triangles also belong to the

w-related graphs with the same recursive relation,

fn = 4 fn–1 – fn–2. (2.22)

After a number of trials for finding graph-theoretical

features of Heronian triangles of various types, one can

conclude that all these algebras can be represented and

interpreted by the aid of Z-indices for proper series of

relevant graphs.

Eisenstein Triangle
34

This terminology does not seem to be widely approved

in mathematical community, but one can discuss interest-

ing properties of integral triangles with one angle being
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Figure 11. The series of graphs whose Z-indices correspond to
the edge lengths of Heronian triangles of (a–1, a, a+1) type.

Figure 12. The series of graphs whose Z-indices correspond to
the edge lengths of Heronian triangles of (a, a±1, a) type.

Figure 13. The series of graphs whose Z-indices correspond to
the edge lengths of Eisenstein triangles of (a, a–1, c) type.

S = s s a s b s c( )( )( )− − −



60 or 120 degree. The smallest examples are (5, 8, 7) and

(3, 5, 7), respectively, for the former and latter ones.

Here we will seek those Eisenstein triangles (a, a –

1, c) which converge to equilateral 120° triangle. The

problem is reduced to solve the Pell equation,

x2 – 3 y2 = 1. (2.23)

Details of the analysis will not be given here, but Figure

13 illustrates and shows all the recipes and graph-theore-

tical aspects of the relevant numbers. Although the va-

lues are not given in Figure 13, the ratio 2c/(a + b) is

converging to square root of 3.

AMBITIOUS CONJECTURE

Z(Gm) = Z(Gm–1) + Z(Gm–2)

In this paper a number of examples have been shown to

demonstrate how the Z-index is not only helpful for un-

derstanding various concepts and theorems in elementary

mathematics and number theory but also indispensable

for connecting algebra and geometry (via graph theory)

visually. The essence of this statement stems from nu-

merous observations that when a simple recursive rela-

tion is obtained in any set of numbers, there are found

corresponding series of graphs whose Z-indices obey the

same or closely related recursive rule.

Then the present author dare to propose an ambitious

conjecture as follows.

Conjecture. – Given a pair of positive integers, n1 < n2,

which are prime with each other, there exist a series of

graphs, {Gn}, so that their Z-indices have such a

property that

ZG1 = n1, ZG2 = n2, and

ZGm = ZGm–1 + ZGm–2 (m ≥ 3). (3.1)

However, there should be added a supplementary re-

mark. Namely, a series of star graphs fulfilling (3.1) al-

ways exist for any pair of positive integers. A star graph

K1,n is composed of a center vertex and n edges of a unit

length (each with a terminal vertex) emanating from the

center. Since its Z-value is n + 1, for any positive integer

one can prepare a star graph whose Z-value is equal to it.

However, they are a kind of trivial solutions from which

no new mathematically meaningful information nor prac-

tically useful consequence comes out, and thus they will

be excluded from our discussion.

Instead of trying to find the general proof of the above

conjecture a few examples will be given here. Namely,

we can show that for the case with n1 = 5 a series of

graphs can be prepared for any n2 larger than and prime

to 5. See Figure 14, where the series of graphs for n2 =

6~9, 11~14, and 16~19 are given. By following this sy-

stematic algorithm one can conclude that at least for the

case with n1 = 5 the conjecture is true. No violation has

been found for this type of checking at least up to n1 = 65.

Although in this paper several series of non-tree

graphs are shown to support this conjecture, all of them

were found to be substituted by another series of tree

graphs. Then the term "graphs" in the above conjecture

may be substituted by "tree graphs."

If the above conjecture is true, all the algebraic theo-

ries derived from the Fibonacci-type recursive relation

(1.13) can be interpreted graph-theoretically or geome-

trically.

Perspective

Although at present the general proof has not yet been

obtained, supported by numerous calculations the present

author believes that the above conjecture can further be

extended to the case with

Fn = a Fn–1 + Fn–2 (a ∈ positive integer). (3.2)

This means that not only in mathematics but also in

sophisticated algebraic number theory, new interpreta-

tion or global understanding will be gained by the use of

topological index, ZG. Study for paving the way to this

goal is being in progress.
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SA@ETAK

Matemati~ki smisao i zna~aj topolo{kog Z indeksa

Haruo Hosoya

Autor je 1971. god. predlo`io topolo{ki indeks ZG za koji se ovdje predla`e njegova primjena na razne pro-

bleme i teme iz elementarne matematike: (i) Pascalov i asimetri~ni Pascalov trokut, (ii) Fibonaccijevi, Lucasovi

i Pellovi brojevi, (iii) Pellova jednad`ba, (iv) Pitagorin, Heronov i Eisensteinov trokut. Pokazano je kako se al-

gebra u ovim problemima mo`e lako provesti i graf-teorijski interpretirati, te problemi me|usobno povezati ako

se promatraju odre|ene klase grafova ~ije ZG vrijednosti odgovaraju brojevima u problemima (i)-(iv). Kona~no

se predla`e smiona hipoteza da za svaku rekurzivnu relaciju Fibonaccijevog tipa uvijek postoji klasa grafova

~iji indeksi Z zadovoljavaju iste rekurzivne relacije. Raspravlja se i o va`nosti indeksa ZG u algebarskoj teoriji

brojeva.
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