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The liquid-solid phase transition was investigated by the multicanonical Monte Carlo method

for a bulk Lennard-Jones fluid system that consists of 256 argon particles. The reliability of the

multicanonical weight factor we determined was confirmed by the flatness of the histogram

obtained by the multicanonical Monte Carlo production run. The first-order phase transition

between solid and liquid phase was observed around 130 K from the change in thermodynamic

properties as a function of temperature. Besides, the small change between two solid structures

was also observed at 60 K from the radial distribution function, from the heat capacity and

from conventional canonical Monte Carlo calculation at 60 K. Neither of them is not f. c. c.

structure which is known as the most stable.
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INTRODUCTION

Conventional canonical simulations of complex systems

tend to get tapped at low temperatures in local minimum

states on the potential energy surface. The multicanoni-

cal (MUCA) algorithm1,2 has been introduced in order to

overcome this multiple-minima problem and has been

applied to study first-order phase transitions1–14 (for re-

cent reviews, see Refs. 15 and 16). The algorithm is bas-

ed on an artificial, non-Boltzmann weight factor and per-

forms a free one-dimensional random walk in potential

energy space, which allows the simulation to avoid get-

ting trapped in states of energy local minima. Moreover,

one can calculate the expectation values of thermodyna-

mic quantities as functions of temperature by applying

the single-histogram reweighting techniques17 to the re-

sults of one long production run. A Lennard-Jones fluid

system, such as an argon fluid, is one of typical systems

with first-order phase transitions.7,10,18,19 In the present

study, we apply the MUCAMC method to the bulk argon

system and investigate the changes in thermodynamic

quantities across the phase transition point.

This article is organized as follows. In section Com-

putational Methods, the MUCAMC method is briefly de-

scribed. We report the results of the MUCAMC simula-

tion of a bulk argon system in section Results and Discus-

sion. Conclusions follow in section Concluding Remarks.
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COMPUTATIONAL METHODS

Multicanonical Ensemble

Although the multicanonical algorithm is explained in

detail elsewhere,14–16 we give a short overview in this

subsection for completeness. In the canonical ensemble,

the probability distribution of the potential energy E,

PB(E;T), is given by the product of the density of states

n(E) and the Boltzmann weight factor WB(E;T):

where b is the inverse temperature 1/kBT with the Boltz-

mann constant kB and temperature T. Because n(E) is a

rapidly increasing function and WB(E;T) decreases expo-

nentially, PB(E;T) generally has a bell-like shape.

In multicanonical ensemble each state is weighted by

a non-Boltzmann weight factor Wmu(E), which we refer

to as the multicanonical weight factor, so that a uniform

potential energy distribution may be obtained:

The flat artificial energy distribution implies that a

one-dimensional free random walk in the potential energy

space is realized. The random walk allows the system to

escape from any local-minimum-energy states and to

sample the configurational space much more widely with

a smaller number of simulation steps than the conventional

canonical Monte Carlo or molecular dynamics methods.

From the definition in Eq. (2), the multicanonical

weight factor Wmu(E) is inversely proportional to the

density of the states n(E) and can be written as follows:

where S(E) is the entropy in the microcanonical ensemble:

Since the density of states of the system is usually

unknown, the multicanonical weight has to be determin-

ed numerically by iterations of short preliminary runs. In

the present study, we employ the iterative procedure in

Ref. 20 and single- and multiple-histogram reweighting

techniques (see Ref. 19 for details).

A multicanonical Monte Carlo simulation is perform-

ed, for instance, with the usual Metropolis criterion:21 The

transition probability of state x with potential energy E

to state x ' with potential energy E ' is given by

where

Once the multicanonical weight factor (equivalently

the entropy S(E)) is given, one performs a long multi-

canonical production run. By tracing the potential ener-

gy surface during the simulation, the global-minimum

energy state can be identified. Moreover, the expectation

value of a physical quantity Q at any temperature T (=

1/kBb) is given by

where the optimal density of states n(E) is obtained by

the single-histogram reweighting techniques17 (see Eq. (2)):

and Hmu(E) is the recorded histogram of the probability

distribution of potential energy Pmu(E) in the production

run.

Computational Details

We put 256 argon particles in a cubic cell with periodic

boundary conditions. The edge size is fixed at 21.75 Å

so that the density of the system is 1.65 g cm–3, which

corresponds to the density of solid argon at 40.15 K. A

pair of argon particles with distance rij interacts through

the Lennard-Jones pair potential

where the potential parameters of argon are e = 0.9961

kJ/mol and s = 3.405 Å,22 and the total potential energy

per particle of the system that consists of N argon

particles is given by

The interactions of all particles are truncated at a

distance of rc = 10.88 Å which corresponds to a half

length of the edge size. The multicanonical weight factor

was determined for the temperature range T ≤ 200 K.

Thermodynamic quantities are calculated by the reweight-

ing techniques in Eqs. (7) and (8). For instance, the pres-

sure P and heat capacity CV are calculated from the fol-

lowing equations:
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where fij is the pair force acting on atom i due to atom j

and V is the volume of the system. The potential ener-

gies and pressures are corrected by the following equa-

tions:

where r is the number density of the system.

One MC sweep is defined to consist of 256 coordi-

nate updates of a randomly chosen particle with the Metro-

polis evaluation for each update. Since we found the phase

transition-like behavior in lower energy region around

for higher energy region –7.3 kJ/mol, the MUCAMC pro-

duction run was performed by dividing two energy re-

gions: one is from –7.2 to –5.3 kJ/mol and another is be-

low –6.7 kJ/mol. The phase transition takes place between

two phases within these energy regions. Total number of

MC sweeps for the MUCAMC production run was 3 × 108

for higher energy region and 2 × 107 for lower energy

region. The conventional canonical MC calculation with

the same condition was also performed at 40 K, 60 K, 80

K, 110 K, and 200 K to compare the expectation values

for physical quantities with those of the MUCAMC cal-

culation. All calculations were performed with our own

computer code.

RESULTS AND DISCUSSION

Reliability of the MUCA Weight Factor

We first examine how the present MUCAMC production

run performed. In an ideal MUCAMC production run, we

should obtain a uniform potential energy distribution and

observe a free random walk in the potential energy space

covering the entire energy range of interest. Figure 1 is

the entropy S(E) which calculated from the multicanoni-

cal weight factor W(E). In the present study, the multicano-

nical weight factor for the temperature range T ≤ 200 K

is determined by setting S(E) = 0 at E = –7.8 kJ/mol.

Figure 2(a) shows the time series of the total poten-

tial energy per particle from the MUCAMC production

run of higher energy region and Figure 2(b) shows those

from the conventional canonical MC calculation at 80 K

and 200 K. To avoid simulating the energy below –7.2

kJ/mol, DS(E) is fixed at DS(E) at E ≤ –7.2 kJ/mol for
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Figure 1. The entropy S(E) which calculated from the multicanoni-
cal weight factor by the relation S(E) = –kBlnW(E). We have set the
value of entropy to zero at E = –7.8 kJ mol–1.

Figure 2. Time series of total potential energy per particle that was
obtained by (a) a long production run of the MUCAMC simulation
above –7.2 kJ mol–1 and (b) and the conventional canonical MC
calculations at temperatures 80 and 200 K.

Figure 3. Time series of total potential energy per particle that was
obtained by (a) a long production run of the MUCAMC simulation
below –6.7 kJ mol–1 and (b) and the conventional canonical MC
calculations at temperatures 40 K, 60 K and 110 K.



E = –7.2 kJ/mol during the MUCAMC production run.

We indeed see random walks between from –5.3 kJ/mol

to –7.2 kJ/mol. However the random walks are not com-

pletely free and the energy regions are divided into two

parts whose boundary is located around –6.3 kJ/mol.

Within both energy regions we have free random walks,

but the transition between the two regions took place only

eight times during the production run. This implies that

the MUCA weight factor was accurately determined in the

entire energy range between –7.2 kJ/mol and –5.3 kJ/mol

except near –6.3 kJ/mol. In Figures 3(a) and (b), the time

series of the total potential energy per particle from the

MUCAMC production run below –6.7 kJ/mol and from

the conventional canonical MC calculation at 40 K, 60K

and 110 K are shown. To avoid simulating the energy above

–6.7 kJ/mol, DS(E) is fixed at DS(E) at E = –6.7 kJ/mol

for E ≤ –6.7 kJ/mol uring the MUCAMC production run.

As well as Figures. 2(a) and (b), we can see free random

walks between –7.2 kJ/mol and –5.4 kJ/mol except near

–7.4 kJ/mol.

Figure 4 is the histograms of the potential energy

distribution that were obtained by two MUCAMC produc-

tion runs. We observe flat histograms between –7.2 kJ/mol

and –5.4 kJ/mol for higher energy region and between

–7.6 kJ/mol and –6.7 kJ/mol for lower energy region. This

appears to imply that the multicanonical ensemble is rea-

lized in the entire potential energy range. If we examine

Figure 4 carefully, however, we find two uniform distri-

butions with slightly different heights below and above

–6.4 kJ/mol for the production run of the higher energy

region, and also below and above –7.4 kJ/mol for the pro-

duction run of the lower energy region for each histo-

grams. This implies that the MUCA weight factor was

accurately determined in the entire energy range between

–7.6 kJ/mol and –5.3 kJ/mol

Expectation Values of Thermodynamic Quantities

We now examine thermodynamic quantities as functions

of temperature. We calculated expectation values at every

5 K from 50 K to 200 K by applying the reweighting tech-

niques in Eqs. (7) and (8) to the results of two MUCAMC

production runs. Average potential energy per particle,

pressure, heat capacity, entropy, and Helmholtz free

energy are shown in Figure 5. As we will be shown in

detail below, we find that all these data suggest that there

exist a phase transition at T = 130 K in the present sy-

stem and imperceptible transition at T = 60 K. The phase

transition at 130 K is considered to be the liquid-solid

transition.
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The average total potential energy per particle is

shown in Figure 5(a). The energy range from –7.2 kJ/mol

to –5.4 kJ/mol and from –7.6 kJ/mol to –6.7 kJ/mol cor-

responds to the temperature range from 70 K to 200 K

and from 50 K to 110 K, respectibvely. The sudden change

in the average energy suggests that there exists a phase

transition around T = 130 K. A similar behavior is also

observed for the 108 argon system, but the transition tem-

perature is by about 20 K higher than the present system.

The pressure, shown in Figure 5(b), also shows the

sudden change at 130 K, which agrees well with the

experimental fact that the melting point of solid argon is

about 130 K under the corresponding pressure of 0.3 GPa.23

Thus, the phase transition observed in the present

simulation seems to be the liquid-solid phase transition.

We will confirm this below in Figure 6. This can be

interpreted by the fact that the solid state obtained in the

simulation of the 108 argon system is more crystal-like

(and lower in pressure) than that obtained in the present

simulation, judging from the radial distribution functions

in Figure 7.

Heat capacity is shown in Figure 5(c). A significant

peak is observed at 130 K in the present system and that

at 150 K in the 108 argon system. We see that the width

and the height of the peak becomes narrower and higher,

respectively, in the present system than in the 108 argon

system, which are typical behaviors of heat capacity as

the number of particles is increased.

Calculating entropy by the ordinary molecular simu-

lation methods requires a lot of efforts. However, the en-

tropy S(E) in the microcanonical ensemble can be easily

obtained by the multicanonical algorithm. The entropy in

the canonical ensemble at temperature T can then be cal-

culated by the reweighting techniques as follows:

The results are shown in Figure 5(d). The phase

transition is again recognized in the figure. We remark

that the differences in energy 0.50 kJ/mol (Figure 5(a))
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and in entropy 3.62 J K–1 mol–1 (Figure 5(d)) at the phase

transition temperature 130 K almost satisfy the thermo-

dynamic relation DS = DE / T (3.62 versus 3.85).

Helmholtz free energy is also one of the physical

quantities that are difficult to calculate by the ordinary

computer simulation methods. In the multicanonical al-

gorithm, we can calculate the Helmholtz free energy by

the relation A(T) = �E�T – TS(T). It is shown in Figure

5(e). We observe a slight change in slope is again ob-

served at 130 K in the present system.

Structure Analyses

Snapshots obtained from the MUCAMC production run

are shown in Figure 6. In the higher energy state of Fig-

ure 6(a), argon particles are scattered randomly, whereas

argon particles are almost regularly arranged in the

lower energy state of Figure 6(b). Therefore we confirm

that the high-energy state correspond to the liquid state

and the low-energy state to the solid state.

The radial distribution functions (RDFs) are calcu-

lated for the conventional canonical MC calculation by

the flowing equation:

where N is the number of particles included in the system

whose volume is V, and DNi(R) is average number of

particles included between two spheres whose distances

are R and R+DR from particle i. RDFs can be also cal-

culated by applying the reweighting techniques in Eqs.

(7) and (8) to DNi(R) obtained by the MUCAMC produc-

tion run.

Figure 7 shows the RDFs at 100 K, 130 K, and 150

K. RDF at 150 K shows that the system is in liquid state

because the curvature changes gradually. As the tempe-

rature is lower, the second peak at 6.3 Å of liquid state is

split into 6.2 Å and 7.2 Å, and the third peak becomes

closer. Argon particles in the system are more structured

at 100 K than at 150 K. The curvature of RDF at 130 K

is intermediate between those at 100 K and 150 K.

In order to investigate the structural change in lower

energy region, RDF at 50 K is compared with that at 80

K. At 50 K, small peak is appeared at 5.7 Å and the peak

at 6.6 Å becomes higher than that at 7.2 Å. But the total

potential energy per particle alternates between higher

energy state and lower energy state in the time series of

the conventional canonical MC calculation at 60 K during

the same canonical simulation (see Figure 3(b)). This in-

dicates that the structural phase transition takes place

between two energy states with small energy barrier.

To analyze the structures obtained by the MUCAMC

production run below –6.7 kJ/mol, the RDFs are calcu-

lated for the face center cubic (f. c. c.) structure and the

hexagonal closed packing (h. c. p.) structure from the

structures obtained by the conventional canonical MC

calculation. We put 256 argon particles in a periodic cu-

bic cell of 21.75 Å edge for f. c. c. structure and put 384

argon particles in a periodic orthorhombic cell of 23.07

Å � 26.64 Å � 25.12 Å for h. c. p. structure. The RDF at

50 K shows different position and height of the peaks from

that of f. c. c. structure, but shows similar in position of

the peaks to that of h. c. p. structure. Though the system

size seems to be not fit to the crystal structure, two ener-

gy states obtained by the MUCAMC production run below

–6.7 kJ/mol are the semi-stable states and lower energy

state might belong to the h. c. p. structure.
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CONCLUDING REMARKS

The MUCAMC method was applied to the 256 bulk ar-

gon system. The histogram of energy distribution obtain-

ed from the multicanonical production run tells that the

multicanonical weight factor that we determined was

reliable for the energy range between –7.6 kJ/mol and

–5.4 kJ/mol, which corresponds to the temperature range

from 50 K to 200 K from the average total potential

energy. The expectation values of physical quantities in-

dicated that the phase transition between liquid and solid

states is observed around 130 K. We are further investi-

gating the relationship between structures and thermody-

namic quantities among face center cubic structure, hexa-

gonal closed packing structure, and two solid structures

obtained in the present study.
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Multikanonski Monte Carlo prora~uni faznog prijelaza prvog reda za Lennard-Jonesove fluide

Chizuru Muguruma, Yuko Okamoto i Masuhiro Mikami

Primjenom multikanonske Monte Carlo metode prou~avan je fazni prijelaz ~vrsto-teku}e za Lennard-Jonesov

fluid od 256 ~estica argona. Pouzdanost multikanonskog te`inskog faktora potvr|ena je ravnomjerno{}u histo-

grama dobivenog kroz vi{e ciklusa multikanonskog Monte Carlo prora~una. Iz promjena termodinami~kih

svojstava s temperaturom izra~unato je da se fazni prijelaz ~vrsto-teku}e prvog reda doga|a na oko 130 K.

Osim toga je na osnovu poznavanja funkcija radijalne raspodjele, toplinskog kapaciteta i provedenog standard-

nog kanonskog Monte Carlo prora~una utvr|eno da se na 60 K doga|a fazni prijelaz ~vrsto-~vrsto izme|u dviju

struktura od kojih nijedna nije poznata stabilna f.c.c. struktura.
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