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The topological Zagreb index M1 introduces an ordering on the set of alkanes. Recently,

modified Zagreb indices l
M1 have been proposed, and it is noted that they differently order

alkanes. In this paper, the level of consistency between these orders is analyzed. A new partial

order � as the intersection of all partial orders l
M1 (where m is at least 2) is introduced and its

properties are analyzed.
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INTRODUCTION

Over 30 years ago, topological indices named Zagreb in-

dices and denoted M1 and M2 were introduced.1 Variants

of these indices were introduced and studied as well. The

most famous example is the descriptor for characterizing

molecular branching, first introduced by Randi},2 which

was soon named the connectivity index and later gene-

ralized to connectivity indices of various orders.3 The

first-order connectivity index is similar to the Zagreb M2

index.

Recently, it has been noticed that Zagreb indices in

their basic form are not best suited for modeling the con-

tributions of some parts of a molecule to its physical,

chemical and biological properties. Hence, modified Za-

greb indices denoted mM1 and mM2 were proposed and

studied.4,5 Another variant of Zagreb indices has also been

introduced and researched recently, namely the Zagreb

complexity indices.4,6 Zagreb indices and their variants

have been used to study molecular complexity,6,7 chira-

lity,8 ZE-isomerism9 and heterosystems.10 Mathematical

properties of Zagreb indices have been studied as well.11

In this paper, we will establish a graph theoretical

method for partially ordering alkanes based on a variant

of the Zagreb index M1, and we will therefore use con-

cepts and terminology from graph theory, like many au-

thors before us who studied the Zagreb indices.

An alkane is a molecular compound represented by

a simple, acyclic graph, i.e., a graph with no loops, mul-

tiple edges, or cycles. Here, we will be analyzing keno-

graphs,12 i.e., graphs in which vertices representing hydro-

gen atoms will be suppressed. In our paper, alkanes with

n carbon atoms are partitioned into classes represented

by 4-tuples (n1, n2, n3, n4) where ni represents the num-

ber of vertices of degree i in the graph of an alkane.

lM1 is a variant of the Zagreb index M1 with 2M1 be-

ing precisely equal to M1. Based on lM1, we define a par-

tial ordering of alkanes and investigate how the fraction of

orderable pairs depends on the number of carbon atoms.
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Many properties of this ordering are proven, and a table

containing the number N of different classes of alkanes

on n vertices, the number
N

2








 of all possible pairs of clas-

ses of alkanes, the number e of all orderable pairs of clas-

ses of alkanes, and finally the fraction e /
N

2








 of order-

able pairs is presented for n = 5, K, 50. Asymptotic be-

havior is also studied. These results may represent a

contribution to studies of partial orders in chemistry.

PRELIMINARIES

Let us choose an arbitrary integer n ≥ 1 and then fix it.

For a chosen n, consider all alkanes with n carbon atoms,

i.e., all simple connected acyclic graphs with n vertices.

Furthermore, let (n1, n2, n3, n4) represent the class of al-

kanes, i.e., simple connected acyclic graphs with n ver-

tices containing n1 vertices of degree 1, n2 vertices of de-

gree 2, n3 vertices of degree 3, and n4 vertices of degree

4. Note that n = n1 + n2 + n3 + n4. For the sake of sim-

plicity, we say that (n1, n2, n3, n4) represents an alkane

instead of the class of alkanes in further text. Let G be

the graph of an alkane (n1, n2, n3, n4) with a set of ver-

tices V(G) and a set of edges E(G). Note that |V(G) | = n

and let e := |E(G) |.

Futhermore, note that:

lM1(n1, n2, n3, n4) := d v

v

G

V G

( )

( )

l

∈
∑ .

Therefore, lM1(n1, n2, n3, n4) = 1ln1 + 2ln2 + 3ln3 +

4ln4.

Now let (a1, a2, a3, a4) and (b1, b2, b3, b4) represent

two alkanes. We say that (a1, a2, a3, a4) � (b1, b2, b3, b4)

if and only if lM1(a1, a2, a3, a4) > lM1(b1, b2, b3, b4) for

every l ∈ [2, ∞) or (a1, a2, a3, a4) = (b1, b2, b3, b4). Ob-

viously, relation "�" is reflexive, transitive and antisym-

metric. Therefore, relation "�" is a partial order relation.

Also, if (a1, a2, a3, a4) � (b1, b2, b3, b4), we also say (b1,

b2, b3, b4) � (a1, a2, a3, a4). Since the focus of our in-

terest is on the pairs of different alkanes being related, in

further text we will omit the relation of the alkane to it-

self.

We will show that n1 and n2 depend on n3 and n4.

We have 2e = d v

v

G

V G

( )

( )∈
∑ from the handshaking lemma

and e = n – 1 since G is acyclic. Combining these two

facts we get:

2(n1 + n2 + n3 + n4 – 1) = n1 + 2n2 + 3n3 + 4n4

n1 = n3 + 2n4 + 2 (1)

Hence,

n2 = n – 2n3 – 3n4 – 2 . (2)

Now that we have expressed n1 and n2 dependent on

n3 and n4, there is no longer a need to represent alkanes

with 4-tuples (n1, n2, n3, n4). Instead, we will represent

them with ordered pairs (n3, n4), calculating n1 and n2

using (1) and (2). Also using (1) and (2), we show the

following:

lM1(n1, n2, n3, n4) = 1n1 + 2ln2 + 3ln3 + 4ln4 =

(n3 + 2n4 + 2) + 2l(n – 2n3 – 3n4 – 2) + 3ln3 + 4ln4.

Thus, lM1(n1, n2, n3, n4) depends only on n3 and n4

as well, and can therefore be denoted lM1(n3, n4). Con-

sequently, our partial order relation "�" becomes:

(a3, a4) � (b3, b4) iff

lM1(a3, a4) > lM1(b3, b4), ∀ l ∈ [2, ∞),

i.e.,

(a3, a4) � (b3, b4) iff

[(a3 + 2a4 + 2) + 2l(a – 2a3 – 3a4 – 2) + 3la3 + 4la4] –

[(b3 + 2b4 + 2) + 2l(b – 2b3 – 3b4 – 2) + 3lb3 + 4lb4] > 0

for every l ∈ [2, ∞). To simplify the expression on the

right side of this equivalence, it is helpful to let x3 := a3 –

b3 and x4 := a4 – b4. It then becomes:

x3 (1 – 2 ⋅ 2l + 3l) + x4 (2 – 3 ⋅ 2l + 4l) > 0 .

We have

(a3, a4) � (b3, b4) iff

x3(1 – 2 ⋅ 2l + 3l) + x4(2 – 3 ⋅ 2l + 4l) > 0, ∀ l∈[2, ∞) .

Now we will establish the necessary and sufficient

conditions on x3 and x4 such that (a3, a4) � (b3, b4). In

other words, we will establish the necessary and sufficient

conditions on x3 and x4 such that x3(1 – 2 ⋅ 2l + 3l) +

x4(2 – 3 ⋅ 2l + 4l) > 0 for every l ∈ [2, ∞).

Lemma 1. – If x3(1 – 2 ⋅ 2l + 3l) + x4(2 – 3 ⋅ 2l + 4l) > 0

for every l ∈ [2, ∞), then x4 ≥ 0.

Proof: Suppose the opposite, i.e., x4 < 0 and (x3 + 2x4) +

2l(–2x3 – 3x4) + 3lx3 + 4lx4 > 0 for each l ∈ [2, ∞). For

large lambdas, the sign of the second expression depends

only on x4. Hence, it must be x4 ≥ 0, which is a contra-

diction. �
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Theorem 2. – (a3, a4) � (b3, b4) if and only if (a4 = b4,

a3 > b3) or (a4 > b4,
a b

a b

3 3

4 4

−
−

> –3).

Proof: From Lemma 1, it follows that we need only con-

sider the cases where x4 ≥ 0 (i.e., a4 – b4 ≥ 0).

CASE I: x4 = 0 (i.e., a4 – b4 = 0).

Let us prove that in this case x3(1 – 2 ⋅ 2l + 3l) +

x4(2 – 3 ⋅ 2l + 4l) > 0 for every l ∈ [2, ∞) if and only if

x3 > 0. It is sufficient to prove that 1 – 2 ⋅ 2l + 3l > 0 for

every l ∈ [2, ∞). Since 1 – 2 ⋅ 22 + 32 > 0, it is sufficient

to prove that the function f(l) = 1 – 2 ⋅ 2l + 3l is in-

creasing, i.e., that f '(l) = –2 ⋅ 2l ⋅ ln 2 + 3 ⋅ 3l ln 3 > 0,

but this is obviously true.

CASE II: x4 > 0 (i.e. a4 – b4 > 0).

Let us prove that in this case (a3, a4) � (b3, b4) if and

only if
x

x

3

4

> –3. Since x4 > 0, we can divide inequality

x3(1 – 2 ⋅2l + 3l) + x4(2 – 3 ⋅ 2l + 4l) > 0 by x4 and thus

we obtain:

x

x

3

4

(1 – 2 ⋅ 2l + 3l) > –2 + 3 ⋅ 2l – 4l,

x

x

3

4

>
− + ⋅ −
− ⋅ +

2 3 2 4

1 2 2 3

l l

l l
.

Thus, we conclude that (a3, a4) � (b3, b4) if and only if

x

x

3

4

>
− + ⋅ −
− ⋅ +

2 3 2 4

1 2 2 3

l l

l l
for every l ∈ [2, ∞). Let us define

M ' := max
− + ⋅ −
− ⋅ +

∈ ∞







2 3 2 4

1 2 2 3
2

l l

l l
l: , )[ . Then

x

x

3

4

>

− + ⋅ −
− ⋅ +

2 3 2 4

1 2 2 3

l l

l l
for every l ∈ [2, ∞) if and only if

x

x

3

4

>

M '. We claim that M ' = –3. The proof of this claim is

somewhat technical, so we omit it here and prove it in

Lemma 3 following this theorem. Thus, in this case, (a3,

a4) � (b3, b4) if and only if
x

x

3

4

> –3, i.e.
a b

a b

3 3

4 4

−
−

> –3.�

Lemma 3. – The inequality
− + ⋅ −
− ⋅ +

2 3 2 4

1 2 2 3

l l

l l
≤ –3 holds for

every l ∈ [2, ∞) and the inequality is sharp.

Proof: Note that this claim is equivalent to
4 3 2 2

3 2 2 1

l l

l l

− ⋅ +
− ⋅ +

≥ 3. Let us define Num(l) = 4l – 3 ⋅ 2l + 2 and Den(l) =

3l – 2 ⋅ 2l + 1. It is easily calculated that:

Num'(l) – Den'(l) =

(ln 4) ⋅ 4l – 3 ⋅ (ln 2) ⋅ 2l – (ln 3) ⋅ 3l + 2 ⋅ (ln 2) ⋅ 2l =

(ln 2) ⋅ 2 4 2
3

2
3⋅ − − ⋅


 


l l l

ln

ln
=

(ln 2) ⋅ 2
2

4

3

2

3

4
4− − ⋅






⋅

l

l

l

l

l
ln

ln
.

Since clearly
2

4

1

4

l

l
≤ and

3

4

9

16

l

l
≤ for l∈[2, ∞), we

conclude that:

Num'(l) – Den'(l) ≥

(ln 2) ⋅ 2
1

4

3

2

9

16
− − ⋅


 




ln

ln
⋅ 4l ≥ 0.58 ⋅ 4l > 0 .

Thus, Num(l) increases more rapidly than Den(l) for

l ∈ [2, ∞), and so the ratio Num(l) / Den(l) always ex-

ceeds its value at l = 2. Therefore:

4 3 2 2

3 2 2 1

l l

l l

− ⋅ +
− ⋅ +

≥ 4 3 2 2

3 2 2 1

2 2

2 2

− ⋅ +
− ⋅ +

= 3 . �

THE ORDERING

Recall that we have shown that n1 = n3 + 2n4 + 2 is a

necessary condition for 4-tuple (n1, n2, n3, n4) to repre-

sent an alkane. It can be shown that it is a sufficient con-

dition too. More precisely, the following Lemma has been

proven in Ref. 14:

Lemma 4. – The 4-tuple (n1, n2, n3, n4) of nonnegative

integers represents an alkane if and only if n1 = n3 + 2n4 +

2.

Since n1 = n3 + 2n4 + 2 is equivalent to n2 = n – 2n3 –

3n4 – 2, where n = n1 + n2 + n3 + n4, we can restate

Lemma 4 as follows.

Lemma 5. – Let (n1, n2, n3, n4) be a 4-tuple of nonnega-

tive integers such that n1 + n2 + n3 + n4 = n. Then (n1, n2,

n3, n4) represents an alkane if and only if n1 = n3 + 2n4 +

2 and n2 = n – 2n3 – 3n4 – 2.

Now, we will show that the pair of conditions from

Lemma 5 is equivalent to a pair of conditions more con-

venient to us.

Lemma 6. – Let n3 and n4 be non-negative integers. Then,

there are non-negative integers n1 and n2 such that n1 +

n2 + n3 + n4 = n, n1 = n3 + 2n4 + 2, and n2 = n – 2n3 – 3n4 –

2 if and only if n3 ≤
n −2

2
and n4 ≤

n n− −2 2

3

3 .

Proof: Let us prove necessity first. Suppose n1 = n3 +

2n4 + 2 and n2 = n – 2n3 – 3n4 – 2. Since n2 ≥ 0, we have:

–2n3 ≥ –n + 3n4 – 2 .
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Since n4 ≥ 0, it follows that:

–2n3 ≥ –n + 2 ,

n3 ≤
n −2

2
.

From n – 2n3 – 3n4 – 2 ≥ 0, it also follows that n4 ≤
n n− −2 2

3

3 . Now we have to prove sufficiency. Suppose

n3 ≤
n −2

2
and n4 ≤

n n− −2 2

3

3 . From n4 ≤
n n− −2 2

3

3 , it

follows that n – 2n3 – 3n4 – 2 ≥ 0. So, we let n2 := n –

2n3 – 3n4 – 2 and we put n1 = n3 + 2n4 + 2. Since n3 ≥ 0

and n4 ≥ 0, it follows that n1 ≥ 0 too. It remains to show

that n1 + n2 + n3 + n4 = n. We have:

n1 + n2 + n3 + n4 =

(n3 + 2n4 + 2) + (n – 2n3 – 3n4 – 2) + n3 + n4 = n . �

We define Vp0(n) := ( , ): ,n n n
n

3 4 3

2

2
≤ −




n4 �
n n− − 




2 2

3

3
.

There is obviously a one to one correspondence between

elements of Vp0(n) and classes of alkanes with n carbon

atoms, i.e., Vp0(n) is the set of all ordered pairs (n3, n4)

representing an alkane with n carbon atoms. Let N := |Vp0 |.

Thus, N is the number of ordered pairs that meet the cri-

teria, i.e., the number of different ordered pairs that re-

present an alkane.

Let Gp0(n) be a directed graph with a set of vertices

Vp0(n) and a set of arcs:

Ap0(n) :=

{((a3, a4), (b3, b4)) ∈V(p0(n))2 : (a3, a4) � (b3, b4)} .

From the above, follows Eq. (3).

We wish to calculate the ratio of the number of arcs

in Gp0 to the number of arcs in a graph on the set of ver-

tices Vp0(n) whose underlying undirected graph is com-

plete, i.e.,
| |Ap n

N

0

2

( )










.

Cases n = 2, 3, 4 are trivial. In the first two cases,

Gp0(n) has only one vertex, and in the third case, Gp0(n)

has two vertices connected with an arc (i.e., its under-

lying graph is complete) and so the considered ratio is

one. Let us look at the case n = 5. In this case, Vp0(n)

consists of all pairs (n3,n4) such that n3 ≤
5 2

2

−
=

3

2
and

n4 ≤
5 2 2

3

3− −n
= 1 –

2

3

3n
. Obviously, n3 = 0,1. If n3 = 0,

then n4 ≤ 1 and if n3 = 1, then n4 = 0. We conclude that

Vp0(5) = {(0,0), (0,1), (1,0)} and N = |Vp0 | = 3. Check-

ing which of these pairs are ordered, we get (0,1) � (1,0),

(0,1) � (0,0) and (1,0) � (0,0). Therefore, |Ap0(5) | = 3 and

the underlying undirected graph of Gp0(n) is complete
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Ap0(n) =

(( , ),( , )): , , , ; , ;a a b b a a b b N a b
n

a
n

3 4 3 4 3 4 3 4 0 3 3 4

2

2

2∈ ≤ − ≤ − a

b
n b

a b a b a b
a b

a

3

4
3

4 4 3 3 4 4
3 3

4

2

3

2 2

3

−

≤ − − = > > −
−

;

( , ) ( ,and or
b4

3> −



























)

(3)

TABLE I. Classes of octanes

Vp0(8) Corresponding 4-tuples Octanes in the class Images

(0,0) (2,6,0,0) Octane

(1,0) (3,4,1,0) 2-Methylheptane

3-Methylheptane

4-Methylheptane

3-Ethylhexane



again. Thus, in cases n = 2, 3, 4, 5 the ordering "�" is

complete.

Actually, the smallest n for which there are two pairs

that cannot be ordered (i.e., for which "�" is not com-

plete) is n = 8. Note that in that case Vp0(8) = {(0,0),

(0,1), (0,2), (1,0), (1,1), (2,0), (3,0)}. Two pairs that can-

not be ordered are (0,1) and (3,0), since neither of the

two criteria for Ap0(8) is met.

The partial order of octanes, i.e., the corresponding

graph Gp0(8), is shown in Figure 1.

Let us now compare the order presented in this

paper with the orders induced by the Zagreb index M1
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Vp0(8) Corresponding 4-tuples Octanes in the class Images

(2,0) (4,2,2,0) 2,3-Dimethylhexane

2,4-Dimethylhexane

2,5-Dimethylhexane

3,4-Dimethylhexane

3-Ethyl-2-methylpentane

(3,0) (5,0,3,0) 2,3,4-Trimethylpentane

(0,1) (4,3,0,1) 2,2-Dimethylhexane

3,3-Dimethylhexane

3-Ethyl-3-methylpentane

(1,1) (5,1,1,1) 2,2,3-Trimethylpentane

2,2,4-Trimethylpentane

2,3,3-Trimethylpentane

(0,2) (6,0,0,2) 2,2,3,3-Tetramethylbutane

TABLE I. (cont.)



and the modified Zagreb index 4M1 on the set of alkanes

with n = 12. Values of the Zagreb index M1 and the mo-

dified Zagreb index 4M1 for the dodecanes are easily cal-

culated, and the results are presented in Table II.

These values induce order on the set of alkanes with

n = 12, i.e., on set Vp0(12). But, let us consider alkanes

(0,1) and (4,0). Both orders, the one induced by M1 and

the one induced by 4M1 order them, but they order them

differently. Index M1 orders them as (0,1) < (4,0), whe-

reas index 4M1 orders them as (4,0) < (0,1). Hence, both

indices refine our partial order, but in an inconsistent

manner.

Since we suspect that the occurrence of un-orderable

pairs will increase with increasing n, we have establish-

ed a table of some values of n and their corresponding

A(Gp0). Using the definition of Vp0(n) and Ap0(n), the

simple program based on 4 »four-loops« is constructed

and the results are recorded in Table III.

This table contains the number N of different classes

of alkanes on n vertices, the number
N

2








 of all possible

pairs of classes of alkanes, the number |Ap0(n) | of all

orderable pairs of classes of alkanes, and finally the

fraction |Ap0(n) | /
N

2








 of orderable pairs for n = 5, K, 50.

The ratio |Ap0(n) | /
N

2








 may be considered as the mea-

sure of the »extent« of total ordering.
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TABLE II. Orders induced by M1 and 4M1 on a set of alkanes with
n = 12

Vp0(12) M1
4M1

(0.0) 42 162

(0.1) 48 372

(0.2) 54 582

(0.3) 60 792

(1.0) 44 212

(1.1) 50 422

(1.2) 56 632

(2.0) 46 262

(2.1) 52 472

(2.2) 58 682

(3.0) 48 312

(3.1) 54 522

(4.0) 50 362

(5.0) 52 412

TABLE III. Analyses of graph Gp0(n)

n N |Ap0(n) | |Ap0(n) | /
N

2










5 3 3 1.000000

6 4 6 1.000000

7 5 10 1.000000

8 7 20 0.952381

9 8 27 0.964286

10 10 42 0.933333

11 12 62 0.939394

12 14 84 0.923077

13 16 111 0.925000

14 19 156 0.912281

15 21 192 0.914286

16 24 249 0.902174

17 27 318 0.905983

18 30 390 0.896552

19 33 474 0.897727

20 37 594 0.891892

21 40 696 0.892308

22 44 838 0.885835

23 48 1002 0.888298

24 52 1170 0.882353

25 56 1360 0.883117

26 61 1610 0.879781

27 65 1830 0.879808

28 70 2115 0.875776

29 75 2435 0.877477

30 80 2760 0.873418

31 85 3120 0.873950

32 91 3570 0.871795

33 96 3975 0.871711

34 102 4476 0.868957

35 108 5028 0.870197

36 114 5586 0.867257

37 120 6195 0.867647

38 127 6930 0.866142

39 133 7602 0.866029

40 140 8407 0.864029

41 147 9282 0.864971

42 154 10164 0.862745

43 161 11116 0.863043

44 169 12236 0.861933

45 176 13272 0.861818

46 184 14484 0.860299

47 192 15788 0.861038

48 200 17100 0.859296

49 208 18504 0.859532

50 217 20124 0.858679

Figure 1. Graph Gp0(8)
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In order to calculate
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Hence:



.

Let us calculate the first of these two limits:

.

Now, let us calculate the second limit:
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.

Let us calculate the first of these two summands:

.

Let us calculate the second summand:
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.

Finally, we calculate:

.

This is in accordance with the results presented in Table I.
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CONCLUSIONS

In this paper, the consistency of partial orderings by lM1,

l ≥ 2 is discussed. It is shown that these indices show a

great deal of consistency. More then 80 % of 4-tuples

(n1, n2, n3, n4) are consistently ordered. However, there

are some smaller differences in ordering between the va-

rious lM1. This proves that it may be useful to adopt the

original definitions of the Zagreb index for some speci-

fic problems. However, it seems that these modifications

should be useful only as improved predictors of those

properties which are already relatively well predicted by

the original Zagreb M1 index.

The new partial order � proposed in this paper is an

intersection of all of these partial orderings. Hence, the

results obtained by this newly proposed partial order are

in agreement with all lM1, l ≥ 2, and therefore, each re-

sult obtained by this partial order is of great confidence.

On the other hand, »the price« of this great confidence is

the fact that many alkanes will be incomparable and no

information will be extracted from the order �.
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SA@ETAK

Metoda teorije grafova za parcijalni ure|aj na alkanima

Damir Vuki~evi}, Jelena Sedlar i Sarah Michele Rajtmajer

Zagreba~kim topolo{kim indeksom M1 uvodi se ure|aj na skupu alkana. Nedavno su predlo`eni modifici-

rani zagreba~ki indeksi lM1, te je uo~eno da se ure|aji koje oni uvode razlikuju. U ovom se radu istra`uje ra-

zina konzistentnosti tih ure|aja. Uvodi se novi parcijalni ure|aj � koji je presjek svih parcijalnih ure|aja lM1

(pri ~emu je m barem 2), te se istra`uju njegova svojstva.
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