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Mann iterative scheme for nonlinear equations
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Abstract. The purpose of this paper is to analyze the Mann itera-
tive scheme with errors for solving nonlinear operator equations in real
Banach spaces.
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1. Introduction

Form now onward, we assume that E is a real Banach space and K a nonempty
convex subset of E. Let J denote the normalized duality mapping from E to 2E∗

defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ||x||2 and ||f∗|| = ||x||},

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality
pairing. We shall denote the single-valued duality map by j.

Definition 1. A map T : E → E is called strongly accretive if there exists a
constant 0 < k < 1 such that for each x, y ∈ E there is a j(x − y) ∈ J(x − y)
satisfying

〈Tx− Ty, j(x− y)〉 ≥ k||x− y||2. (1.1)

Definition 2. An operator T with domain D(T ) and range R(T ) in E is called
strongly pseudocontractive if for all x, y ∈ D(T ) there exist j(x−y) ∈ J(x−y) and
a constant 0 < k < 1 such that

〈Tx− Ty, j(x− y)〉 ≤ (1 − k)||x− y||2. (1.2)
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It is known that T is strongly pseudocontractive if and only if (I−T ) is strongly
accretive.

The concept of accretive mapping was first introduced independently by Browder
[1] and Kato [5] in 1967. An early fundamental result in the theory of accretive
mapping, due to Browder, states that the initial value problem

du(t)
dt

+ Tu(t) = 0, u(0) = u0

is solvable if T is locally Lipschitzian and accretive on E.
In recent years, much attention has been given to solving nonlinear operator

equations in Banach spaces by using two-step and one-step iterative schemes, see
[3, 6-7].

The Mann iterative scheme is defined by the sequence {xn}∞n=0 (see [6]):

{
x0 ∈ K,

xn+1 = (1 − bn)xn + bnTxn, n ≥ 0
(1.3)

where {bn} is a sequence in [0, 1].
In 1998, Xu introduced the iterative scheme defined by (see [7]):

{
x0 ∈ K,

xn+1 = anxn + bnTxn + cnun, n ≥ 0 (1.4)

where {an}, {bn}, {cn} are sequences in [0, 1] such that an + bn + cn = 1 and {un} is
a bounded sequence in K. Clearly, this iterative scheme contains (1.3) as its special
case.

The purpose of this paper is to analyze the Mann iterative scheme with errors
(1.4) for solving nonlinear operator equations in real Banach spaces. We also study
the convergence analysis of the iterative method.

2. Main results

The following two Lemmas are now well known.
Lemma 1. Let J : E → 2E be the normalized duality mapping. Then for any

x, y ∈ E, we have

||x + y||2 ≤ ||x||2 + 2〈y, j(x + y)〉, ∀j(x + y) ∈ J(x + y).

Lemma 2. If there exists a positive integer N such that for all n ≥ N,n ∈ N,

ρn+1 ≤ (1 − θn)ρn + bn,

then

lim
n→∞ ρn = 0,
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where θn ∈ [0, 1),
∑∞

n=0 θn = ∞, and bn = o(θn).
Theorem 1. Let T : E → E be a uniformly continuous and strongly pseudo-

contractive mapping with a bounded range. Let p be a fixed point of T and let the
Mann iterative scheme {xn}∞n=0 be defined by

xn+1 = anxn + bnTxn + cnun, n ≥ 0, (2.1)

where {an}, {bn}, {cn} are sequences in [0, 1] such that an + bn + cn = 1 satisfying
the conditions:

a)
∑∞

n=0 bn = ∞,

b) cn = 0(bn),

c) lim
n→∞bn = 0,

and {un} is a bounded sequence in E. Then the sequence {xn}∞n=0 converges strongly
to the unique fixed point p of T.

Proof. Since p is a fixed point of T , then the set of fixed points F (T ) of T is
nonempty. We will show that p is the unique fixed point of T . Suppose there exists
q ∈ F (T ). Then, from the definition of strongly pseudocontractive mapping,

||p− q||2 = 〈p− q, j(p− q)〉 = 〈Tp− Tq, j(p− q)〉 ≤ (1 − k)||p− q||2.

Since k ∈ (0, 1), it follows that ||p− q||2 ≤ 0, which implies the uniqueness.
Since T has a bounded range, we set

M1 = ‖x0 − p‖ + sup
n≥0

‖Txn − p‖ + sup
n≥0

‖un − p‖ .

Obviously M1 < ∞.
It is clear that ||x0 − p|| ≤ M1. Let ||xn − p|| ≤ M1. Next we will prove that

||xn+1 − p|| ≤ M1.
Consider

‖xn+1 − p‖ = ‖anxn + bnTxn + cnun − p‖
= ‖an(xn − p) + bn(Txn − p) + cn(un − p)‖
≤ (1 − bn) ‖xn − p‖ + bn ‖Txn − p‖ + cn ‖un − p‖
≤ (1 − bn)M1 + bn ‖Txn − p‖ + cn ‖un − p‖
≤ ‖x0 − p‖ + (1 − bn)[sup

n≥0
‖Txn − p‖ + sup

n≥0
‖un − p‖]

+bn ‖Txn − p‖ + bn ‖un − p‖
≤ M1.

So, from the above discussion, we can conclude that the sequence {xn}∞n=0 is
bounded. Let M2 = sup

n≥0
||xn − p||.

Denote M = M1 + M2. Obviously M < ∞.
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A real valued function f defined on an interval (or on any convex subset C of
some vector space) is called generalized convex if for any three points x, y and
z in its domain C and any a, b, c in [0, 1]; a + b + c = 1, we have

f(a + b + c) ≤ af(x) + bf(y) + cf(z). (2.2)

The real function f : [0,∞) → [0,∞), f(t) = t2 is increasing and generalized convex.
For all a, b, c ∈ [0, 1] with a + b + c = 1 and t1, t2, t3 > 0, we have

(at1 + bt2 + ct3)
2 ≤ at21 + bt22 + ct23. (2.3)

Consider

‖xn+1 − p‖2 = ‖anxn + bnTxn + cnun − p‖2

= ‖an(xn − p) + bn(Txn − p) + cn(un − p)‖2

≤ [(1 − bn) ‖xn − p‖ + bn ‖Txn − p‖ + cn ‖un − p‖]2

≤(1 − bn) ‖xn − p‖2 + M2bn + M2cn. (2.4)

Now from Lemma 1 for all n ≥ 0, we obtain

‖xn+1 − p‖2 =||anxn + bnTxn + cnun − p||2
=||an(xn − p) + bn(Txn − p) + cn(un − p)||2
≤(1 − bn)2||xn − p||2 + 2bn〈Txn − p, j(xn+1 − p)〉

+ 2cn〈un − p, j(xn+1 − p)〉
≤(1 − bn)2||xn − p||2 + 2bn〈Txn+1 − p, j(xn+1 − p)〉

+ 2bn〈Txn − Txn+1, j(xn+1 − p)〉 + 2M2cn

≤(1 − bn)2||xn − p||2 + 2bn(1 − k)||xn+1 − p||2
+ 2bn ‖Txn − Txn+1‖ ‖xn+1 − p‖ + 2M2cn

≤(1 − bn)2||xn − p||2 + 2bn(1 − k)||xn+1 − p||2 + 2bndn

+ 2M2cn, (2.5)

where

dn = M ‖Txn − Txn+1‖ . (2.6)

From (2.1) we have

‖xn − xn+1‖ = ‖bn(xn − Txn) − cn(un − xn)‖
≤bn ‖xn − Txn‖ + cn ‖un − xn‖
≤2M(bn + cn). (2.7)

From the conditions (b-c) and (2.7), we obtain

lim
n→∞ ‖xn − xn+1‖ = 0,
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and the uniform continuity of T leads to

lim
n→∞ ‖Txn − Txn+1‖ = 0,

implying

lim
n→∞dn = 0. (2.8)

Substituting (2.4) in (2.5), and with the help of condition (b) we get

‖xn+1 − p‖2 ≤[(1 − bn)2 + 2(1 − k)bn(1 − bn)]||xn − p||2
+ 2bn[M2(1 − k)(bn + cn) + dn + M2tn]. (2.9)

Now by lim
n→∞bn = 0, there exists a natural number n0 ∈ N such that for all n ≥ n0,

we have bn ≤ 1
2 . From (2.9), we get

‖xn+1 − p‖2 ≤(1 − kαn)||xn − p||2
+ 2bn[M2(1 − k)(bn + cn) + dn + M2tn]. (2.10)

Now with the help of (a-c), (2.8) and Lemma 2, from (2.10) we obtain that

lim
n→∞ ||xn − p|| = 0,

completing the proof. ✷

Theorem 2. Let T : E → E be a Lipschitzian and strongly pseudocontractive
mapping with a bounded range. Let p be a fixed point of T and let the Mann iterative
scheme {xn}∞n=0 be defined by

xn+1 = anxn + bnTxn + cnun, n ≥ 0

where {an}, {bn}, {cn} are sequences in [0, 1] such that an + bn + cn = 1 satisfying
the conditions:

a)
∑∞

n=0 bn = ∞,

b) cn = 0(bn),

c) lim
n→∞bn = 0,

and {un} is a bounded sequence in E. Then the sequence {xn}∞n=0 converges strongly
to the unique fixed point p of T.

Theorem 3. Let T : E → E be a uniformly continuous and strongly accretive
operator. For a given f ∈ E, let x∗ denote the unique solution of the equation
Tx = f. Define the operator H : E → E by Hx = f + x − Tx, and suppose that
the range of H is bounded. For any x0 ∈ E let {xn}∞n=0 in E be the Mann iterative
scheme defined by

xn+1 = anxn + bnHxn + cnun, n ≥ 0

where {an}, {bn}, {cn} are sequences in [0, 1] such that an + bn + cn = 1 satisfying
the conditions:
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a)
∑∞

n=0 bn = ∞,

b) cn = 0(bn),

c) lim
n→∞bn = 0,

and {un} is a bounded sequence in E. Then the sequence {xn}∞n=0 converges strongly
to the unique solution of Tx = f.

Proof. Observe that the operator H has bounded range and x∗ is a fixed point
of H. Furthermore, for any x, y ∈ E,

〈Hx−Hy, j(x− y)〉 = 〈(f + x− Tx) − (f + y − Ty), j(x− y)〉
= ||x− y||2 − 〈Tx− Ty, j(x− y)〉
≤ (1 − k)||x− y||2,

so that the rest of the argument now follows as in the proof of Theorem 1. ✷

Theorem 4. Let T : E → E be a Lipschitzian and strongly accretive operator.
For a given f ∈ E, let x∗ denote the unique solution of the equation Tx = f. Define
the operator H : E → E by Hx = f + x − Tx, and suppose that the range of H is
bounded. For any x0 ∈ E let {xn}∞n=0 in E be the Mann iterative scheme defined
by

xn+1 = anxn + bnHxn + cnun, n ≥ 0

where {an}, {bn}, {cn} are sequences in [0, 1] such that an + bn + cn = 1 satisfying
the conditions:

a)
∑∞

n=0 bn = ∞,

b) cn = 0(bn),

c) lim
n→∞bn = 0,

and {un} is a bounded sequence in E. Then the sequence {xn}∞n=0 converges strongly
to the unique solution of Tx = f.

Remark 1. The results for the Mann iterative scheme (1.3) are now straight
forward.
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