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1. Introduction

Let u : [α, α+h] → R be a continuous real-valued function satisfying the inequality

0 ≤ u(t) ≤
∫ t

α

[a + bu(s)] ds, for all t ∈ [α, α + h],

where a, b are nonnegative constants. Then u(t) ≤ ahebh for t ∈ [α, α + h]. This
result was proved by T. H. Gronwall [8] in the year 1919, and it is a prototype for
the study of several integral inequalities of Volterra type, and also for obtaining
explicit bounds of the unknown function. Among the several publications on this
subject, the paper of Bellman [3] is very well known. It is clear that Bellman’s
result contains that of Gronwall. This is the reason why inequalities of this type
were called “Gronwall-Bellman inequalities” or “Inequalities of Gronwall type”.
The Gronwall type integral inequalities provide a necessary tool for the study of
the theory of differential equations, integral equations and inequalities of various
types (see Gronwall [8] and Guiliano [9]). Some applications of this result to the
study of stability of the solution of linear and nonlinear differential equations may
be found in Bellman [3]. Some applications to existence and uniqueness theory
of differential equations may be found in Nemyckii-Stepanov [13], Bihari [4], and
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Langenhop [10]. During the past few years several authors (see references below
and some of the references cited therein) have established several Gronwall type
integral inequalities in two or more independent real variables. Of course, such
results have application in the theory of partial differential equations and Volterra
integral equations.

Bainov and Simeonov [1, p. 101] proved the following interesting integral in-
equality involving iterated integrals:

Let u(t), a(t), and b(t) be nonnegative continuous functions in J = [α, β], and
suppose that

u(t) ≤ a(t) + b(t)
[∫ t

α

k1(t, t1)u(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, . . . , tn)u(tn) dtn

)
. . .

)
dt1

]
(1.1)

for all t ∈ J, where ki(t, t1, . . . , ti) are nonnegative continuous functions in Ji+1, i =
1, 2, . . . , n, which are nondecreasing in t ∈ J for all fixed (t1, . . . , ti) ∈ Ji, i =
1, 2, . . . , n. Then, for all t ∈ J

u(t) ≤ a(t) + b(t)
∫ t

α

R̂[a](t, s) exp
(∫ t

s

R̂[b](t, τ) dτ
)
ds,

where, for all (t, s) ∈ J2,

R̂[w](t, s)) = k1(t, s)w(s) +
∫ s

α

k2(t, s, t2)w(t2)dt2

+
n∑

i=3

∫ s

α

(∫ t2

α

· · ·
(∫ ti−1

α

ki(t, s, t2, . . . , ti)w(ti) dti

)
· · ·

)
dt2,

for each continuous function w(t) in J.
In this paper we consider simple inequalities involving iterated integrals in in-

equality (1.1) for functions when the function u on the right-hand side of inequality
(1.1) is replaced by the function up for some p, We also provide some integral
inequalities involving iterated integrals.

2. The main results

In this section we state and prove some new nonlinear integral inequalities involving
iterated integrals. Throughout the paper all functions which appear in inequalities
are assumed to be real-valued.

Before considering our first integral inequality, we need the following lemmas,
which appeared in [1, p. 2, p. 38].

Lemma 2.1. Let b(t) and f(t) be continuous functions for t ≥ α, let v(t) be a
differentiable function for t ≥ α, and suppose

v′(t) ≤ b(t)v(t) + f(t), t ≥ α
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and v(α) ≤ v0. Then, for all t ≥ α,

v(t) ≤ v0 exp
(∫ t

α

b(s) ds
)

+
∫ t

α

f(s) exp
(∫ t

s

b(τ) dτ
)
ds.

Lemma 2.2. Let v(t) be a positive differential function satisfying the inequality

v′(t) ≤ b(t)v(t) + k(t)vp(t), t ∈ J = [α, β],

where functions b and k are continuous in J, and p ≥ 0, p �= 1, is a constant. Then

v(t) ≤ exp
(∫ t

α

b(s) ds
)[

vq(α) + q

∫ t

α

k(s) exp
(
−q

∫ s

α

b(τ) dτ
)
ds

]1/q

for all t ∈ [α, β1), where β1 is chosen so that the expression between [...] is positive
in the subinterval [α, β1).

In the next theorems we consider some simple inequalities involving iterated
integrals.

Let α < β, and set

Ji = {(t1, t2, . . . , ti) ∈ Ri : α ≤ ti ≤ · · · ≤ t1 ≤ β}, i = 1, · · · , n.
Theorem 2.1. Let u(t), a(t) and b(t) be nonnegative continuous functions in

J = [α, β] and let p > 1 be a constant. Suppose that a(t)
b(t) is nondecreasing in J and

u(t) ≤ a(t) + b(t)
[∫ t

α

k1(t, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, · · · , tn)up(tn) dtn

)
· · ·

)
dt1

]
(2.1)

for any t ∈ J, where ki(t, t1, . . . , ti) are nonnegative continuous functions in Ji+1

for i = 1, 2, · · · , n, which are nondecreasing in t ∈ J for all fixed (t1, · · · , ti) ∈ Ji,
i = 1, 2, · · · , n. Then, for any t ∈ [α, βp)

u(t) ≤ a(t)
[
1− (p− 1)

∫ t

α

(
a(s)
b(s)

)p−1

R[bp](t, s) ds
] 1

1−p

(2.2)

where, for any (t, s) ∈ J2,

βp = sup{t ∈ J : (p− 1)
∫ t

α

(
a(s)
b(s)

)p−1

R[bp](t, s) ds < 1},

and

R[w](t, s) = k1(t, s)w(s) +
∫ s

α

k2(t, s, t2)w(t2)dt2

+
n∑

i=3

∫ s

α

(∫ t2

α

· · ·
(∫ ti−1

α

ki(t, s, t2, · · · , ti)w(ti) dti

)
· · ·

)
dt2,
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for each continuous function w(t) in J.
Proof. For a fixed T ∈ (α, β] and α ≤ t ≤ T we have

u(t) ≤ a(t) + b(t)v(t), (2.3)

where

v(t) =
∫ t

α

k1(T, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(T, t1, · · · , tn)up(tn) dtn

)
· · ·

)
dt1.

Since ∂ki

∂t (T, t1, . . . , ti) = 0 for i = 1, . . . , n and t ∈ [α, T ], we have

v′(t) = R[up](T, t) ≤ (R[bp](T, t))
(
a(t)
b(t)

+ v(t)
)p

,

that is,
v′(t) ≤ Q(T, t)[a(T )/b(T ) + v(t)], (2.4)

where Q(T, t) = (R[bp](T, t))[a(t)/b(t) + v(t)]p−1. Lemma 2.1 and (2.4) imply

v(t) +
a(T )
b(T )

≤ a(T )
b(T )

exp
(∫ t

α

Q(T, s) ds
)
, α ≤ t ≤ T.

Hence, for t = T,

v(t) +
a(t)
b(t)

≤ a(t)
b(t)

exp
(∫ t

α

Q(T, s) ds
)
. (2.5)

From (2.5), we successively obtain

[
v(t) +

a(t)
b(t)

]p−1

≤
[
a(t)
b(t)

]p−1

exp
(∫ t

α

(p− 1)Q(T, s) ds
)
,

Q(T, t) ≤ (R[bp](T, t))
[
a(t)
b(t)

]p−1

exp
(∫ t

α

(p− 1)Q(T, s) ds
)
,

Z(T, t) ≤ (p− 1)(R[bp](T, t))
[
a(t)
b(t)

]p−1

exp
(∫ t

α

(p− 1)Q(T, s) ds
)
,

where Z(T, t) = (p− 1)Q(T, t). Consequently, we have

Z(T, s) exp
(
−

∫ s

α

Z(T, s) ds
)

≤ (p− 1)R[bp](T, s)
[
a(s)
b(s)

]p−1

or
d

ds

[
− exp

(
−

∫ s

α

Z(T, τ) dτ
)]

≤ (p− 1)R[bp](T, s)
[
a(s)
b(s)

]p−1

.
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Integrating this from α to t yields

1− exp
(
−

∫ t

α

Z(T, s) ds
)

≤ (p− 1)
∫ t

α

(
a(s)
b(s)

)p−1

R[bp](T, s) ds,

from which we conclude that

exp
(∫ t

α

Q(T, s) ds
)

≤
[
1− (p− 1)

∫ t

α

(
a(s)
b(s)

)p−1

R[bp](T, s) ds
] 1

1−p

.

This, together with (2.3) and (2.5), implies

u(t) ≤ a(t)
[
1− (p− 1)

∫ t

α

(
a(s)
b(s)

)p−1

R[bp](T, s) ds
] 1

1−p

.

In particular, for T = t we find (2.2). This completes the proof. ✷

Theorem 2.2. Let u(t) and b(t) be nonnegative continuous functions in J =
[α, β], and suppose that

u(t) ≤ b(t)
[
a(t) +

∫ t

α

k1(t, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, . . . , tn)up(tn) dtn

)
. . .

)
dt1

]

for t ∈ J, where p ≥ 0, p �= 1 be a constant, a(t) > 0 is a nondecreasing continuous
function in t ∈ J , and ki(t, t1, . . . , ti) are nonnegative continuous functions in
Ji+1, i = 1, 2, . . . , n, which are nondecreasing in t ∈ J for all fixed (t1, . . . , ti) ∈
Ji, i = 1, 2, . . . , n. Then

u(t) ≤ b(t)
[
aq(t) + q

∫ t

α

R[bp](t, s) ds
]1/q

(2.6)

for any t ∈ [α, β1), where q = 1− p and β1 is chosen so that the expression between
[...] is positive in the subinterval [α, β1).

Proof. For a fixed T ∈ (α, β] and α ≤ t ≤ T we have

u(t) ≤ b(t)v(t)

≡ b(t)
[
a(T ) +

∫ t

α

k1(T, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(T, t1, . . . , tn)up(tn) dtn

)
. . .

)
dt1

]
.

Since v(α) = a(T ), v(t) is nondecreasing and continuous in J and ∂ki

∂t (T, t1, . . . , ti) ≡
0 for i = 1, . . . , n and t ∈ [α, T ], we have

v′(t) = R[up](T, t) ≤ R[bpvp](T, t)
≤ (R[bp](t))vp(T, t). (2.7)



68 Y. J.Cho, S. S.Dragomir and Y.-H.Kim

Lemma 2.2 and (2.7) imply

v(t) ≤
[
aq(T ) + q

∫ t

α

R[bp](T, s) ds,
]1/q

from which we obtain

u(t) ≤ b(t)
[
aq(T ) + q

∫ t

α

R[bp](T, s) ds
]1/q

for α ≤ t ≤ T. In particular, for T = t we find (2.6). This completes the proof. ✷

Theorem 2.3. Let u(t), a(t) and b(t) be nonnegative continuous functions in
J = [α, β]. Suppose that

u(t) ≤ a(t) + b(t)
[∫ t

α

k1(t, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(t, t1, . . . , tn)up(tn) dtn

)
. . .

)
dt1

]

for all t ∈ J, where 0 < p ≤ 1 be a constant, a(t)
b(t) ≥ 1 is nondecreasing in J and

ki(t, t1, . . . , ti) are nonnegative continuous functions in Ji+1, i = 1, 2, . . . , n, which
are nondecreasing in t ∈ J for all fixed (t1, . . . , ti) ∈ Ji, i = 1, 2, . . . , n. Then

u(t) ≤ a(t) exp
(∫ t

α

R[bp](t, τ) dτ
)

(2.8)

for all t ∈ [α, β].
Proof. For a fixed T ∈ (α, β] and α ≤ t ≤ T , we have

u(t) ≤ a(t) + b(t)w(t)

≡ a(t) + b(t)
[∫ t

α

k1(T, t1)up(t1) dt1 + · · ·

+
∫ t

α

(∫ t1

α

· · ·
(∫ tn−1

α

kn(T, t1, . . . , tn)up(tn) dtn

)
. . .

)
dt1

]
.

Since w(α) = 0, w(t) is nondecreasing and continuous in J and ∂ki

∂t (T, t1, . . . , ti) ≡ 0
for i = 1, . . . , n and t ∈ [α, T ], we have

w′(t) = R[up](T, t) ≤ R[bp](T, t)
(
a(t)
b(t)

+ w(t)
)p

≤ R[bp](T, t)
(
a(t)
b(t)

+ w(t)
)
. (2.9)

Lemma 2.1 and (2.9) imply

w(t) ≤
∫ t

α

R[bp](T, s)
(
a(s)
b(s)

)
exp

(∫ t

s

R[bp](T, τ) dτ
)
ds,
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from which we obtain

u(t) ≤ a(t) + b(t)
∫ t

α

R[bp](T, s)
(
a(s)
b(s)

)
exp

(∫ t

s

R[bp](T, τ) dτ
)
ds. (2.10)

Indeed, (2.10) implies that

u(t) ≤ a(t)
[
1 +

∫ t

α

R[bp](T, s) exp
(∫ t

s

R[bp](T, τ) dτ
)
ds

]

= a(t) exp
(∫ t

α

R[bp](T, τ) dτ
)

for α ≤ t ≤ T. In particular, for T = t we find (2.8). This completes the proof. ✷

Theorem 2.4. Let u, f1, . . . , fn be nonnegative continuous functions in J =
[α, β], and suppose that

u(t) ≤ a +
∫ t

α

f1(t1)up(t1) dt1 + · · ·

+
∫ t

α

f1(t1)
(∫ t1

α

f2(t2) · · ·
(∫ tn−1

α

fn(tn)up(tn) dtn

)
· · ·

)
dt1 (2.11)

for all t ∈ J, where a ≥ 1 and 0 < p ≤ 1 are constants. Then

u(t) ≤ aR1(t), t ∈ J, (2.12)

where

Rn(t) = exp
(∫ t

α

fn(s) ds
)
, t ∈ J,

and

Rn(t) = 1 +
∫ t

α

fi(t)Ri+1(s) exp
(∫ s

α

fi(τ) dτ
)
ds

for all t ∈ J and i = n− 1, · · · , 1.
Proof. We set

u1(t) = a + L1[up](t), uj+1(t) = uj + Lj+1[up](t)

for all t ∈ J and j = 1, · · · , n− 1, where

Lk[up](t) =
∫ t

α

fk(tk)up(tk) dtk + · · ·

+
∫ t

α

fk(tk)
(∫ t

α

fk+1(tk+1) · · ·
(∫ t

α

fn(tn) dtn

)
· · ·

)
dtk

for all t ∈ J and k = 1, · · · , n. Now, (2.11) implies

u(t) ≤ u1(t). (2.13)



70 Y. J.Cho, S. S.Dragomir and Y.-H.Kim

Taking into account that

uk(t) ≤ uk+1(t),
(Lk[up])′ = fk(up(t) + Lk+1[up]), k = 1, · · · , n− 1,

and
(Ln[up])′ = fn(t)up(t).

We successively find

u′
1(t) = (L1[up](t))′ = f1[up(t) + L2[up]]

≤ f1[u1(t) + L2[up]] = f1u2,

u′
k(t) ≤ (f1 + · · · + fk−1)uk(t) + fkuk(t), k = 2, . . . , n− 1, (2.14)

u′
n(t) ≤ (f1 + · · · + fn)un(t).

Since uk(α) = a, k = 1, . . . , n, (2.14) gives, by successive application of Lemma 2.1,

uk(t) ≤ aRk(t) exp
(∫ t

α

k−1∑
j=1

fj(s) ds
)
, k = n, n− 1, . . . , 1.

For k = 1 this and (2.13) imply (2.12). ✷

Remark 2.1. In the case when a ≥ 0, p = 1, the inequality given in (2.11)
reduces to the inequality established earlier by Ráb in [16] (see also [1, Theorem
11.6, p. 102]).

Corollary 2.1. Let u, f, g be nonnegative continuous functions in J = [α, β],
u0 ≥ 1 and suppose that

u(t) ≤ u0 +
∫ t

α

f(s)
[
up(s) +

∫ s

α

g(τ)up(τ) dτ
]
ds

for all t ∈ J, where 0 < p ≤ 1 is a constant. Then

u(t) ≤ u0

[
1 +

∫ t

α

f(s) exp
(∫ s

α

(f(τ) + g(τ)) dτ
)
ds

]

for all t ∈ J.
Theorem 2.5. Let u, fi, i = 1, · · · , n be nonnegative continuous functions in

J = [α, β], and suppose that

u(t) ≤ a(t) +
∫ t

α

f1(t1)up(t1) dt1 + · · ·

+
∫ t

α

f1(t1)
(∫ t1

α

f2(t2) · · ·
(∫ tn−1

α

fn(tn)up(tn) dtn

)
· · ·

)
dt1 (2.15)

for all t ∈ J, where a(t) ≥ 1 is a continuous function in J and 0 < p ≤ 1 is a
constant. Then

u(t) ≤ a(t) +
∫ t

α

f1(s)[a(s) + v2(s)] ds, (2.16)
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where

un(t) =
∫ t

α

(f1(s) + · · ·+ fn(s))a(s) exp
(∫ t

s

(f1(τ) + · · · + fn(τ)) dτ
)
ds

and

uk(t) =
∫ t

α

[( k∑
j=1

fj(s)
)
a(s) + fk(s)vk+1(s)

]
exp

(∫ t

s

k−1∑
j=1

fj(τ) dτ
)
ds

for all t ∈ J and k = n− 1, . . . , 2.
Proof. Let Lk[up](t) be defined as in Theorem 2.4 and put

v1(t) = L1[up](t), vk+1(t) = vk + Lk+1[up](t)

for all t ∈ J and k = 1, · · · , n− 1. Then (2.15) implies

u(t) ≤ a(t) + v1(t) (2.17)

and we successively find

v′1(t) = (L1[up](t))′ = f1[up(t) + L2[up]]
≤ f1[a(t) + v1(t) + L2[up]] = f1[a(t) + v2(t)],

v′k(t) ≤ (f1 + · · ·+ fk−1)vk(t) + (f1 + · · ·+ fk)a + fkvk+1(t), (2.18)
k = 2, · · · , n− 1,

v′n(t) ≤ (f1 + · · ·+ fn)vn(t) + (f1 + · · · + fn)a(t).

Since vk(α) = 0, k = 1, . . . , n, solving the system (2.18) ‘backward’ and applying
Lemma 2.1, we arrive at

v1(t) ≤
∫ t

α

f1(s)[a(s) + v2(s)] ds, (2.19)

where

vk(t) =
∫ t

α

[( k∑
j=1

fj(s)
)
a(s) + fk(s)vk+1(s)

]
exp

(∫ t

s

k−1∑
j=1

fj(τ) dτ
)
ds,

for all t ∈ J , k = n− 1, . . . , 2, and

un(t) =
∫ t

α

(f1(s) + · · ·+ fn(s))a(s) exp
(∫ t

s

(f1(τ) + · · ·+ fn(τ)) dτ
)
ds.

The inequalities (2.17) and (2.19) imply (2.16). This completes the proof. ✷

Remark 2.2. In the case when a(t) ≥ 0, p = 1, the inequality given in (2.15)
reduces to the inequality established earlier by Young in [18] (see also [1, Theorem
11.7, p. 103]).
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Corollary 2.2. Let u, f, g, h be nonnegative continuous functions in J = [α, β].
Suppose that

u(t) ≤ u0 +
∫ t

α

(f(s)up(s) + h(s)) ds +
∫ t

α

f(s)
(∫ s

α

g(τ)up(τ) dτ
)
ds

for all t ∈ J, where u0 +
∫ t

α
h(s) ds ≥ 1 is a continuous function in J and 0 < p ≤ 1

is a constant. Then

u(t) ≤ u0 +
∫ t

α

h(s) ds

+
∫ t

α

f(s)
[
u0 +

∫ s

α

h(τ) dτ
]
exp

(∫ s

α

(f(τ) + g(τ) τ
)
ds.

Proof. Indeed, the proof follows from Theorem 2.5 with f1 = f, f2 = g and
a(t) = u0 +

∫ t

α
h(s) ds. ✷
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