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Abstract. This paper reconsiders the claimed rapidity of a scheme for the
purification of the quantum state of a qubit, proposed recently in Jacobs (2003
Phys. Rev. A 67 030301(R)). The qubit starts in a completely mixed state, and
information is obtained by a continuous measurement. Jacobs’ rapid purification
protocol uses Hamiltonian feedback control to maximize the average purity of
the qubit for a given time, with a factor of two increase in the purification rate
over the no-feedback protocol. However, by re-examining the latter approach, we
show that it minimizes the average time taken for a qubit to reach a given purity.
In fact, the average time taken for the no-feedback protocol beats that for Jacobs’
protocol by a factor of two. We discuss how this is compatible with Jacobs’ result
and the usefulness of the different approaches.
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1. Introduction

Quantum feedback for continuously monitored systems has been shown to be useful for
controlling the state of a quantum system [1]–[6], and for improved parameter estimation by
adaptive measurement [7, 8]. Both applications have been demonstrated in some prominent
experiments [9]–[12]. Recently, Jacobs [13, 14] and Combes [15] have proposed an application
for quantum feedback control that incorporates aspects of both applications: rapid purification.As
for adaptive measurements, rapid purification uses feedback to increase the amount of information
extracted by the measurement. However, this information is about the final state of the quantum
system, not a pre-existing parameter. Also unlike adaptive measurements (but as in state-control
by feedback), the feedback in rapid purification does alter the system state on average. However,
unlike in state-control, it is not the goal to produce a particular final state, only a final state of
high purity (although further Hamiltonian feedback can always turn the final almost-pure state
into any desired almost-pure state).

In the cases considered [13]–[15], the objective of the feedback protocol was to maximize
the rate of increase of the average purity of the quantum state. That is, to maximize the average
purity in a given time. In the simplest case, a single qubit [13, 14], this is achieved by continually
rotating the Bloch vector on to the plane that is orthogonal to the measurement axis. Jacobs
showed that this gives rise to a factor of two improvement in the rate of purification over the
no-feedback case. (Here Jacobs assumes that the measurement basis coincides with the qubit
energy basis, so that in the no-feedback case the Bloch vector remains on the measurement axis.)

In this paper, we demonstrate that Jacobs’ approach, although of undoubted interest and
possible value, misses some important properties of the purification process. In particular, we
show that the opposite approach—keeping the Bloch vector on the measurement axis—minimizes
the average time for the qubit to reach a given purity. In fact, we also find a factor of two
improvement in the average time over Jacobs’ protocol. While our results pertain only to qubits,
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the techniques we employ and the different ways to characterize purification rates in stochastic
systems are potentially significant for broad aspects of quantum information science.

This paper is organized as follows. In section 2 we analyse continuous measurement of
a qubit with no feedback, for which we use a c subscript because it has a classical analogue
in continuous measurement of a bit. We obtain expressions for T̄c, the average time to reach
purity 1 − ε, and τc, the time for the average purity to reach 1 − ε. (We discuss the operational
meaning of the average purity in the appendix.) In section 3, we summarize Jacobs’ quantum
feedback protocol for rapid purification, for which we use a q subscript because it has no classical
analogue. We show that, for ε � 1, T̄q = 2T̄c even though T̄q = τq = τc/2. In section 4, we
explain how these apparently paradoxical results can occur by considering the (analytically
derived) distributions for qubit purities under the different protocols. We also find numerically
the full distribution of times taken to reach a given purity. Finally, we give a simple analytical
argument for why T̄c = T̄q/2, which also establishes that the no-feedback protocol is optimal for
minimizing T̄ . We conclude in section 5 with a discussion of the implications of our work for
initializing quantum registers. We emphasize that the remarkable result [15], that feedback allows
an O(d)-fold increase in purification rate for a d-level system, seems unlikely to be affected by
our argument here.

2. The no-feedback protocol

2.1. Monitoring a qubit

We start by considering the action of continuous measurement (which can be thought of as
continual weak measurements) on a simple model qubit, with no Hamiltonian (neither controlled
by feedback nor constant). The conditional evolution equation for the qubit state matrix under
continuous weak measurement of σ̂z is [13, 14, 16]

dρ = dtD[σ̂Z]ρ + dWH[σ̂Z]ρ. (1)

Here, for arbitrary operators ĉ and ρ,

D[ĉ]ρ ≡ ĉρĉ† − 1
2{ĉ†ĉ, ρ}, (2)

H[ĉ]ρ ≡ (
ĉρ − Tr[ĉρ]ρ

)
+ h.c., (3)

while dW is an infinitesimal Wiener increment satisfying dW2 = dt [17] which is the innovation
in the measurement result [4, 6]. (Note that Jacobs’ measurement strength parameter k has the
value 1/2 in our units.)

Defining z = Tr[σ̂Zρ] etc, we can represent ρ by the Bloch vector (x, y, z). By symmetry
we can, without loss of generality, take y = 0. Then the conditional evolution of the qubit is
given by

dz = 2(1 − z2) dW, (4)

dx = −2x dt − 2zx dW. (5)

In terms of these variables, the purity of the qubit is given by

p = Tr
[
ρ2

] = (1 + x2 + z2)/2. (6)

If we choose the initial condition z = z0 and x = 0 at t = 0, then it is easy to see that x(t) = 0
for all times. Then the qubit is characterized just by z(t).
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2.2. Average purity

Rather than using equation (4), it is convenient to study the probability distribution for z using
linear quantum trajectory theory [16, 18]. By this method, Jacobs has shown [14] that for a qubit
initially in the maximally mixed state (z0 = 0), z is a random variable given by

z(t) = tanh(2q), (7)

where q is a random variable having the probability distribution

℘(q)dq = e−2t

√
2πt

cosh(2q)e−q2/2t dq. (8)

From this, the average qubit purity at time t is [13, 14]

p̄(t) =
∫

1 + tanh2(2q)

2
℘(q) dq = 1 − e−2t

√
8πt

∫ ∞

−∞

e−q2/2t

cosh(2q)
dq. (9)

Note that we use p̄ for the average purity, not for 1 minus the purity as Jacobs does [14]. The
operational significance of p̄ is discussed in the appendix.

Say we are interested in reaching a certain target for the mean purity, p̄ = 1 − ε for ε � 1.
This will occur in the long time limit t � 1, but even for t = 5, it is a very good approximation
to replace equation (9) with the asymptotic (t � 1) expression

ε � e−2t

√
8πt

∫ ∞

−∞

dq

cosh(2q)
= πe−2t

4
√

2πt
. (10)

Thus, the time t = τc at which the average purity reaches the level 1 − ε is, in the asymptotic
regime of ε � 1,

τc ∼ 1
2 ln(ε−1). (11)

Here, the subscript c denotes classical, because this measurement involves no coherences (it
applies equally to a measurement of a classical bit as to a qubit). This is because, as noted above,
the action of the measurement of σ̂Z does not move the Bloch vector away from the z-axis and
we are ignoring any Hamiltonian evolution. In more general situations, where the intrinsic qubit
Hamiltonian does not commute with σ̂Z, the Bloch vector will move away from the measurement
axis. If this is the case, Hamiltonian feedback control would be required to rotate the Bloch vector
back on to the measurement axis in order to reduce the problem to the classical one solved here.

2.3. Average purification time

Rather than the time taken for the average purity to reach a given level, we may be more interested
in the time at which a particular system reaches a target purity p = 1 − ε. For this it is more
convenient to return to the (nonlinear) quantum trajectory equation (4). From this equation, an
ensemble of qubits with z = z0 and x = 0 at t = 0 is represented by the probability distribution
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℘(z; t|z0; 0) obeying the Fokker–Planck equation [17]

℘̇(z; t) = ∂2

∂z2
2(1 − z2)2℘(z; t), (12)

with initial condition ℘(z; 0) = δ(z − z0). We wish to study the time T at which |z| first attains the
value Z such that (1 + Z2)/2 = 1 − ε. We can do this by considering the above Fokker–Planck
equation with absorbing boundary conditions at Z and −Z. Writing its solution as ℘̃(z, t) (where
the tilde denotes the presence of boundary conditions), we can thereby define the probability that
T > t for an initial value of z0 as [17]

G(t|z0) =
∫ Z

−Z

dz℘̃(z; t|z0; 0). (13)

It is simple to see that the mean time until the qubit is purified to the desired level is
given by

T̄ (z0) =
∫ ∞

0
G(t|z0) dt. (14)

Following the method in [17], this quantity (known as the average time of first passage) obeys
the ordinary differential equation

2(1 − z2
0)

2T̄ ′′(z0) = −1, (15)

where the dash represents differentiation with respect to z0. The boundary conditions are
T̄ (−Z) = T̄ (Z) = 0, since a qubit with |z0| = Z is at the boundary already so T̄ = 0 there
by definition. The solution to this problem is

T̄ (z0) = 1
4(Z arc tanh Z − z0 arc tanh z0). (16)

We are again interested in the case where the qubit is initially in a completely mixed state:
z0 = 0. Then T̄ = (1/4)Z arc tanh Z. For ε small we have Z � 1 − ε, and

T̄ c � 1
8 ln(2/ε) ∼ 1

8 ln(ε−1). (17)

(Note the subscript c again.) That is, the mean time T̄ c to reach a purity of 1 − ε is one quarter
the size of the time τc to reach a mean purity of 1 − ε.

3. Jacobs’ protocol

Jacobs’ protocol is to maximize the increase in the average purity at every point in time. From
equations (5) and (6) it is easy to show (using the Itô calculus [17]) that

ds = −(8s2 + 4x2s) dt − 4zs dW. (18)

Here s = 1 − p is sometimes known as the linear entropy. Note the distinction between s, a time-
dependent random variable, and ε, a fixed parameter related to a target purity to be achieved by a
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protocol. It is clear that on average s will decrease most rapidly if x is maximized. That is,
if one uses feedback to rotate the Bloch vector on to the x-axis. Then one has z = 0 and
x2 = 1 − 2s, so

ds = −4s dt. (19)

Thus, under Jacobs’ rapid purification scheme the evolution under ideal Hamiltonian feedback
control is deterministic! The purity of the qubit is given by

Tr[ρ2] = 1 − 1
2e−4t, (20)

identically for all qubits, so p = p̄, and also T = T̄ = τ. That is, the time of first passage and
the time for the average purity to reach the desired level are equal. For a target purity of 1 − ε,
these times are

τq = Tq = − 1
4 ln 2ε ∼ 1

4 ln(ε−1). (21)

Here the subscript q stands for quantum, since this adaptive technique exploits the qubit
coherences and cannot be applied to a classical bit. For ε � 1, Tq is exactly twice as long
as T̄ c, even though τq is half as long as τc.

4. How is this possible?

4.1. Distributions of purity

Some insight into these results can be found from considering ℘(p; t)dp, the probability
distribution for the purity at time t. In terms of this, the mean purity at a given time t is
p̄(t) = ∫ 1

0 p℘(p; t)dp, so the time τ at which the purity reaches the desired value is defined
as

1 − ε =
∫ 1

0
p℘(p; τ) dp. (22)

To define T̄ , it is necessary to consider a different distribution, ℘̃(p; τ) dp, which arises
from the absorbing boundary conditions as described in section 2. In terms of this, the time T̄ is
given by

T̄ =
∫ ∞

0
dt

∫ 1−ε

0
dp℘̃(p; t). (23)

(This is derived in the same way as equation (14).) However, when ε is small it is very unlikely
(with probability of order ε in fact) for the purity of the qubit to reduce significantly below 1 − ε

once it has crossed that barrier. Thus, ℘(p; t) is sufficiently similar to ℘̃(p; t) that it can help
us to understand T̄ also. From equations (6)–(8), it follows that for the classical (no-feedback)
measurement the distribution of purities is

℘c(p; t)dp = e−2t

8
√

πt

exp
(− 1

8T
arc tanh2√2p − 1

)
√

(1 − p)3(2p − 1)
dp. (24)
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Figure 1. Probability distribution of purity values generated by the no-feedback
scheme—theoretical (black dashed line) and numerical (blue histogram)—and
Jacobs’ deterministic scheme (red solid line) at different times: (a) t = 1.72694
and (b) t = 3.2806. Note the logarithmic scale for s = 1 − p.

By contrast, under Jacobs’ quantum feedback protocol

℘q(p; t)dp = δ(p − 1 + e−4t/2) dp. (25)

The two purity distributions are plotted in figure 1 for two different times, t = T̄ c and
t = Tq = τq. With ε = 10−6, these times are t = T̄ c = 1.72694 and t = Tq = τq = 3.2806.
The agreement between the numerical histograms and theoretical results are good; the slight
differences between the two are related to the limited numbers of runs (about 20 000) and rounding
errors in the numerical calculations for very low ε values. In each case, figures 1(a) and (b), the
majority of the probability distribution for the classical (stochastic) scheme lies to the right of the
quantum (deterministic) scheme which is indicated by the red line. This means that the majority
of cases should produce a significantly lower value for the purity than Jacobs’ approach, while
the average purity for the stochastic case is unduly affected by the relatively few instances where
the purity is still relatively far from one.

4.2. Distributions of purification time

In figure 2 we plot the classical and quantum probability distribution for the time of first passage
(T ), as determined from numerical simulation of (4) and (for Jacobs’protocol) from equation (21),
for the same value of ε. As we would expect from figure 1, the majority of classical (stochastic)
cases reach the desired purity level before they would be using the deterministic, ideal feedback
scheme. In figure 3(a), we plot the average first passage time as a function of ε and in figure 3(b)
the ratio of average first passage times produced by two measurement schemes as a function of
ε. Figure 3(b) shows that the relative benefit of the classical approach tends to the theoretical
value of Tq/T̄ c → 2 as ε → 0. Note that the improvement offered by our classical protocol is
significant even for quite low target purities (e.g. ε = 0.01). Moreover, Jacobs’ purification time
and the average first passage time are separated by at least one standard deviation of the first
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Figure 2. Probability distributions of average times of first passage for ε = 10−6

for present scheme (blue histogram) and Jacobs’ deterministic scheme (red solid
line).
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Figure 3. (a) Average time to first passage for Jacobs’ scheme (solid red
line) and the scheme presented here (solid blue line) with dashed lines
indicating standard deviation of the first passage distribution for Tc, (b) ratio
of average first passage times Tq/T̄ c: data joined by solid line; theoretical curve
ln(1/2ε)/

√
1 − 2ε arctanh

√
1 − 2ε (black dashed line which asymptotes to 2 and

is partially covered by numerical results). Both graphs are plotted as functions of
ε on a log scale.

passage time for all ε � 0.003. These facts are encouraging for experimentally demonstrating
the differences between the schemes, even if Jacobs’ ideal Hamiltonian feedback scheme cannot
be realized perfectly in the laboratory.

In Jacobs’ scheme, the purity of the state always increases. The observer has no prior
knowledge about the observable σ̂Z being measured because the state is always rotated to lie on
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the horizontal plane of the sphere. As a consequence, any result always increases the observer’s
certainty about the state.

By contrast, in the classical scheme analysed here, the measurement may increase or
decrease the observer’s certainty about the system. Consider the situation where the qubit is
in a mixture of being in state σ̂Z = 1 and −1, but more likely to be in the former so that z > 0.
From equation (4), if dW > 0 in the next infinitesimal interval, then the observer will become
more certain that σ̂Z = 1 is the true state of the qubit, and z (the observer’s expectation value
for σ̂Z) will increase. On the other hand, if dW < 0, the observer will become less certain and z

will decrease. That is, in any infinitesimal interval, the purity decreases half the time! Why then
does the purity increase at all? The answer is that p varies as z2, so even though the positive
and negative changes in z balance, the change in p is positive on average. But, not surprisingly,
the increase in p̄ is slower than under Jacobs’ scheme. Also, in the classical case there is clearly
going to be a far greater spread in the purity than in Jacobs’ scheme, as shown in figure 1. But
this is exactly what allows for the average time T̄ to reach a purity threshold to be shorter in the
former case.

4.3. Simple derivation and optimality

The results already presented in this section confirm that the no-feedback protocol gives an
improvement over Jacobs’ protocol for the average time to purify a qubit, and give some insight
into how this is possible. However, what lacking is (a) a simple derivation of the factor of two
improvement and (b) a demonstration that the no-feedback protocol is optimal for this purpose.
We now provide both of these.

By considering the average of equation (18), it was easy to see that Jacobs’ protocol
maximized the decrease in the average linear entropy s̄ = 1 − p̄. However, as argued above,
for the no-feedback case this average gives undue weight to the tail of the distribution in which s

is much larger than the mean. This can be rectified by considering ln s, the distribution of which
is much more symmetrical, as seen in figure 1. From equation (18), the stochastic differential
equation for ln s is, using the Itô calculus [17],

d ln s = −4(2s + x2 + 2z2) dt − 4z dW. (26)

Taking the average of this equation, we see that the most rapid purification (for a given s) is when
z2 is maximized at 1 − 2s and x2 set to zero; that is, exactly the classical protocol considered
above. Moreover, in this classical case we obtain, for almost-pure states (z2 � 1),

d〈ln s〉/dt � −8, (27)

which is the characteristic rate for purification to a high level of purity. By contrast, under Jacob’s
protocol, we set z2 = 0 and x2 = 1 − 2s to obtain

d ln s/dt = −4. (28)

This is of course the rate of purification found in equation (19) and is slower than the classical
rate (27) by the factor of two found previously.
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5. Conclusions

In this paper, we have considered some interesting properties of the rapid purification protocol
proposed by Jacobs for quantum systems subject to continuous measurements and Hamiltonian
feedback control. In particular, we have demonstrated that, although Jacobs’scheme (keeping the
Bloch vector perpendicular to the measurement axis) provides the fastest increase in the average
purity of the qubit, the opposite approach (keeping the Bloch vector on the measurement axis)
provides the shortest average time to reach a given purity level. This counterintuitive result is
due to the following: in Jacobs’ approach the purification is deterministic, while the classical
approach is stochastic where the distribution of purities at a given time is heavily skewed. Thus,
although the majority of qubits will reach a given purity level quicker than under Jacobs’scheme,
there is a minority of qubits that have a relatively low purity, which reduces the expected (average)
purity below that of Jacobs’ scheme.

Aside from their theoretical interest, these results have most obvious application in the
initialization of qubits for quantum information processing. The fact that, under the classical
protocol, half the qubits end up in the σ̂z = 1 state and half in the σ̂z = −1 state does not matter;
it is known which state the qubit is in, so it can always be rotated to the desired fiducial state.
Since it is increasingly common to consider non-deterministic protocols in quantum computing,
it seems likely that a scheme that minimizes the average time to purify the qubits in an ensemble
would be preferred. The fact that no Hamiltonian feedback control is required for the classical
protocol is another advantage it has over Jacob’s protocol. However, if it were necessary to purify
all members of an ensemble of qubits to a given degree of purity in as short a time as possible,
then Jacobs’ rapid purification by quantum feedback should be used.

Finally, we wish to emphasize the following. In very recent work, Combes and Jacobs [15]
have shown that Hamiltonian feedback control can be used to purify a qubit (that is, a d-level
quantum system) a factor of order d faster than can be achieved without feedback. There is
nothing in our analysis to suggest that this factor of d would change if one calculated the average
time to purify (as we considered here) rather than the average purity, as Jacobs has always
considered [13]–[15]. We suggest that any difference between the two types of purification time
would be of order unity, but that remains to be confirmed by future work.
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Appendix

One could question whether the average purity p̄ (9) as used by Jacobs is a meaningful concept
operationally. If one were to monitor a qubit (or bit) as above, then forget the particular
measurement record obtained, and then ask what is the purity of the resulting state, the answer
is not given by equation (9). The reason is that purity is a nonlinear function of the state, unlike z

for example. Of course if one were to ignore completely the measurement record then the purity
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of the resultant state would be 1/2, because the state is as likely to be purified towards z = 1 as to
z = −1. Thus, it is only sensible to say that at the end of the measurement the state is first rotated
(if necessary) so that z > 0 and then the measurement record is forgotten. The resultant state is
then defined by the expected value of σ̂Z, which in terms of the unrotated stochastic variable z

is given by 〈|z|〉. From above, this evaluates to

〈|z|〉 = 2
∫ ∞

0
sinh(2q)℘(q)dq = 1 − 2e−2t

√
2πt

∫ ∞

0
e−q2/2t−2qdq. (A.1)

The purity of this average state is pav = 1 + 〈|z|〉2. Putting pav = 1 − ε, in the limit t � 1 this
evaluates to

ε � 2e−2t

√
2πt

∫ ∞

0
e−2qdq = e−2t

√
2πt

. (A.2)

This is only a constant factor (4/π) larger than that calculated above (10), so the asymptotic
expression for τc in equation (11) is unchanged. For these reasons, in the body of this paper, we
just use Jacobs’ p̄ for simplicity.
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