

Partial Encryption of Compressed Images
Employing FPGA

M. B. I. Reaz, F. Mohd-Yasin, S. L. Tan, H. Y. Tan
Faculty of Engineering
Multimedia University

63100 Cyberjaya, Selangor, Malaysia
mamun.reaz@mmu.edu.my

M. I. Ibrahimy
Dept. of Electrical and Computer Engineering

International Islamic University Malaysia
53100 Jalan Gombak, Kuala Lumpur, Malaysia

Abstract— In this paper, we present the realization of of partial
encryption of compressed images on Altera FLEX10K FPGA
device that allows for efficient hardware implementation. The
compression algorithm decomposes images into several
different parts. A secure encryption algorithm is then used to
encrypt only the crucial parts, which are considerably smaller
than the original image. This will result in significant reduction
in processing time and computational requirement for
encryption and decryption. The breadth-first traversal linear
lossless quadtree decomposition method is used for the partial
compression and RSA is used for the encryption. Functional
simulations are carried out to verify the functionality of the
individual modules and the system on four different images.
Comparisons, verification and analysis made validate the
advantage of this approach. The design has utilized 2928 units
of LC and a system frequency of 13.42MHz.

I. INTRODUCTION
The rapid growth of image and video communication

nowadays is powered by ever-faster systems demanding greater
speed and security. Real-time secure image and video
communication is challenging due to the processing time and
computational requirement for encryption and decryption. In order
to cope with these concerns, innovative image compression and
encryption techniques are required.

Although a vast number of compression and encryption
algorithms exist, they have been traditionally developed
independently of each other. A partial encryption scheme for
images that takes advantage of the image compression algorithm
has been proposed by Cheng and Li in [1], [2] and [3]. The scheme
makes use of a compression algorithm that decomposes an image
into several different parts. A secure encryption algorithm is then
used to encrypt only the crucial parts, which are considerably
smaller than the original image. This will result in significant
reduction in processing time and computational requirement for
encryption and decryption.

Other researchers have also proposed partial encryption, or
combined compression and encryption methods. Dang and Chau
[4] has proposed the joint image compression and encryption
scheme using Discrete Wavelet Transform (DWT) and Data
Encryption Standard (DES). Jakobsson et al. [5] developed a
“Scramble All, Encrypt Small” technique that encrypts only a
small block of an arbitrarily long message. However, the former is
less efficient than a partial encryption scheme and utilizes an
encryption algorithm (DES) that is no longer secure. The latter

requires an ideal hash function that is hard to realize and may not
be suitable for images as it was designed for data encryption.

Traditionally, image compression and encryption algorithms
have been restricted to the software realm and developed
separately. Although the advantages of software are ease of update,
flexibility and portability, hardware implementation is faster and
more physically secure, especially when secret key storage security
are concerned.

This work aims to investigate the hardware feasibility and
performance of a novel partial encryption scheme for compressed
images using FPGA, which combines compression and a secure
encryption algorithm that encrypts only crucial parts of the
compressed image. The algorithms chosen for implementation are
the lossless quadtree compression and the RSA algorithm. The
hardware implementation was done using Altera FLEX10KE
device.

II. DESIGN METHODOLOGY
The partial encryption scheme depends on a compression

algorithm that decomposes the input image into a number of
different logical parts. The output consists of parts that provide
significant amount of information about the original image, referred
to as the important parts. The remaining parts have little meaning
without the important parts, hence known as the unimportant parts.
In this partial encryption approach, only the important part needs to
be encrypted by a secure encryption algorithm. When the important
part is considerably smaller than the total output of the
compression, the encryption and decryption time can be reduced
significantly.

A. Quadtree Compression
The quadtree decomposition method converts an image into a

quadtree structure with intensity values attached to the leaf nodes of
the tree. The quadtree structure reveals the outline of objects in the
original image [1]. Since the quadtree indicates the location and size
of each homogeneous block in the image while the intensity values
do not reveal much information, partial encryption is possible by
encrypting only the quadtree structure. Here, the quadtree structure
is the important part whereas the intensity values form the
unimportant part.

In the case of lossless compression on a b-bit image, the total
size of the leaf values is)13(+kb bits, where k is the number of
internal nodes, which is equivalent to multiplying the size of each
leaf value with the number of leaf nodes in the quadtree. An

23850-7803-8834-8/05/$20.00 ©2005 IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Griffith Research Online

https://core.ac.uk/display/143857788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

approximate upper bound on the relative quadtree size, which is
the ratio of the size of the quadtree and the total size of the
compressed image, is given in equation 1:

43
4

143

14

)13(14
14

+
≈

+++

+
=

+++
+

b
k

bb

k
kbk

k
 (1)

where,
Size of quadtree = number of nodes = 14 +k
Size of compressed image = size of quadtree + size of leaf

values =)13(14 +++ kbk

For 8-bit images, 8=b , the size of the quadtree relative to the
lossless quadtree compression output is at most 14.3%. The
approximation is valid for large value of k, which is typically at
least 1000 for 256256 × images and greater for larger images.
For lossy compression, this calculation is not applicable because
variable number of bits is used to represent leaf values. Results
collected from experiments performed by Cheng H. [2] on test
images show that for typical images, the relative quadtree size is
between 13% and 27%. Therefore, only 13 to 27% of the output of
lossy quadtree algorithm is encrypted for typical images.

The lossless quadtree compression algorithm with Leaf ordering
II has been used in this research, as it is computationally simpler
and secure.

B. Linear Lossless Quadtree
Representing quadtrees in a tree structure requires the use of

pointers. However, the amount of space required for pointers from
a node to its children is not trivial. Samet [6] suggested that each
node in a quadtree is stored as a record containing six fields. The
first five fields contain pointers to the node’s parent and its four
children labeled as NW, NE, SW and SE; whereas the sixth field
describes the intensity value (color) of the image block that the
node represents. The pointers would occupy nearly 90% of the
memory space required to store the quadtree [7]. As a result,
several pointerless quadtree representations have been proposed by
researchers such as Lin [7], and Gargantini [8].

This research is based on the breadth-first traversal of linear
quadtree proposed by Chan [9]. It consists of two lists, i.e. a tree list
and a color list. The tree list stores the quadtree structure, where ‘0’
denotes a leaf node and ‘1’ denotes an internal node. The color list
simply stores the pixel values of the image in a sequence defined by
the tree structure.

C. RSA Encryption
Since the encrypted part of the proposed partial encryption

scheme is preferably small, public-key algorithms has been applied
directly to it.

In RSA a plaintext block M is encrypted to a ciphertext block
C by:

nMC e mod= (2)

and the plaintext block is recovered by:

nCM d mod= (3)

RSA encryption and decryption are mutual inverses and
commutative, due to symmetry in modular arithmetic. Also, (2) and
(3) show that both encryption and decryption are based on the same

operation, which is modular exponentiation. Therefore, hardware
implementation of RSA allows the encryption and decryption to
share the same architecture, which helps reduce the hardware size.

III. VHDL MODELING
The VHDL model for the proposed work consists of four sub-

modules. The overall implementation is known as the
PARTIAL_ENCRYPT chip and it consists of the functional sub-
modules Compression, Encryption, Decryption and Decompression.

A. Linear Quadtree Compression/Decompression
Linear quadtree compression and decompression are implemented
in two separate blocks, QT_ENCODER and QT_DECODER
respectively. The combination of these two functional blocks is
named QT_CODEC. The linear quadtree codec connects both
QT_ENCODER and QT_DECODER in parallel and to the
memory block RAM256X8. There are four input control signals,
i.e. CLK, RESET, GO and E_D. The architectures of QT_CODEC,
QT_ENCODER and QT_DECODER are implemented using
Moore state machines with asynchronous reset. The reset signal
(RESET) is used to set the state machine to its initial idle state,
while a high GO signal switches it from idle state to the next state.
A low E_D signal activates the QT_ENCODER while a high E_D
activates the QT_DECODER. The READY signal is high when the
compression operation is completed.

For compression, the input image is scanned in an order, where
each quadrant is scanned in the NW, NE, SW and SE directions.
The input image is stored in the RAM from addresses 00 to 3F
(hex) in raster scan order, i.e. from left to right and from top to
bottom. For a pixel in an 88× image indexed by row I and
column J where I, J = 0, 1, 2, , 7, its corresponding address in the
RAM is expressed by:

JIAddress +×=)8((4)

For 88× input images, the sequence of RAM addresses in the
appropriate scan order is:

012345 8216432 KKKKKKAddress +++++= (5)
where K5, K4, K3, K2, K1 and K0 are the individual bit (0 or 1)

values of a 6-bit counter that counts from 0 to (111111)2.

The output of the compression is a tree list that describes the
quadtree structure (‘0’ for leave node and ‘1’ for internal node),
and a color list that contains the intensity values of the quadtree.
On the other hand, the linear quadtree decompression performed
by the QT_DECODER block is just the reverse process of the
compression.

In linear quadtree compression, if a 22× block of an image is
homogeneous, it is reduced to one block containing the pixel value;
otherwise it is reduced to an ‘I’ block. The intensity values in an ‘I’
block are stored in a list. This continues recursively until the 88×
image is reduced to only one block. The tree list and color list are
stored at RAM addresses beginning with 40(hex) and 80(hex)
respectively.

B. RSA Encryption Implementation
RSA Module consists of 3 sub-modules. They are RSA_LOAD,

RSA_CORE and RSA_OUTPUT. RSA_CORE performs
encryption and decryption, RSA_LOAD serially captures incoming
message to be encrypted or decrypted and RSA_OUTPUT serially
outputs the decrypted/encrypted message. A RAM with 2048 bits

2386

in size was design to provide the storage element for the RSA
encryption modules.

Arithmetic Logic Unit accepts 32 bits data as input, and
produce 32 bits output. The input data is stored temporary in a
larger register (34-bits). Arithmetic operations are performed on
the temporary register. The working result is then moved to the
output port when the operation is done. The design uses four large
registers (34 bits) to hold the working results, and 2 small registers
(5 bits) to hold the loop variables (i, j). The extra 2 bits in the 4
registers are used in order to prevent overflowing during addition
operations.

After consideration on the trade-off between security and
speed, the size of parameters and signals of the RSA_CORE
module for the VHDL model are chosen as follow:

 M is the 32-bit plaintext for encryption, or the 32-bit
ciphertext for decryption.

 E and N_C are the 32-bit public key (e, n) used for
encryption, or the 32-bit private key (d, n) used for decryption.

 CLK is the clock input signal.
 RST sets the state machine implemented in RSA_CORE

architecture to the initial idle state.
 GO switches the state machine from idle state to the next

state.
 C is the 32-bit ciphertext produced by encryption, or the

32-bit plaintext recovered by decryption.
 DONE is high when the encryption or decryption

operation is completed, otherwise it is always low.

C. Top Level Design
The overall design incorporates the RSA_CORE module into

the linear quadtree codec. The top-level entity is named as
PARTIAL_ENCRYPT where a low E_D signal activates the
QT_ENCODER block to perform linear quadtree compression on
the input image stored in the RAM256X8 block. When
compression is completed, the RSA_CORE is activated to encrypt
the tree list stored at RAM addresses 80 to 82 (hex). The encrypted
tree list is then stored at addresses 88 to 8B. On the other hand, a
high E_D signal starts the decryption operation of RSA_CORE on
the encrypted tree list to recover the tree list. Then decompression
is performed by the QT_DECODER to reconstruct the original
image.

Four test images are used as inputs to verify the correctness of
the design using functional simulation. All of the test images are
grayscale with dimensions 88× . For clarity, each image is
arranged in a 88× table, in which the cells correspond to the pixel
intensity values (grayscale level or color). The size of each pixel is
8 bits and its value is expressed in 2 hexadecimal digits.

IV. SIMULATION, SYNTHESIS AND DISCUSSION

A. Theoretical Results for Test Image 1 and its Quadtree
The output of linear lossless quadtree compression is a tree list

that contains the quadtree nodes and a color list that contains the
pixel values of the image. In the tree list, binary ‘0’ denotes a leaf
node and ‘1’ denotes an internal node. The root node and
bottommost leaf nodes are omitted in the tree list in order to achieve
better compression ratio, as the decompression algorithm does not
need them. Since decompression is simply the reverse process of
compression, its results can be deduced from those of the
compression.

The results of linear lossless quadtree compression are:

Tree list = 1001110000012 = 9C1
Color list = 00 FF 00 FF 00 00 FF 00 00 FF FF 00 FF 00 FF FF

FF 00 00
Size of image = 864× bites = 512 bits
Size of tree list = 12 bits
Size of color list = 152 bits
Compression ratio = Size of image / (Size of tree list + Size of

color list)

=
15212

512
+

= 3.12:1

B. Functional Simulation for Linear Quadtree
Compression / Decompression
Functional simulation is performed to test the logic function of

the hardware design and it is presented to verify the correctness of
the algorithms implemented by the quadtree codec and the partial
encryption module.

Functional simulation of the linear quadtree codec
(QT_CODEC) is performed on the four test images with 20ns
simulation clock period (50 MHz). The time interval between high
GO signal and high READY signal is divided by the simulation
clock period to calculate the processing time for compression or
decompression. From the results it is observed that the processing
time is longer with smaller compression ratio and decompression is
faster than compression. Table I shows the functional simulation
results on four test images.

TABLE I: COMPARISON OF FUNCTIONAL SIMULATION

IMAGE Compression
Ratio

Compression
(clock cycles)

Decompression
(clock cycles)

Test Image 1 3.12:1 291 291
Test Image 2 1.91:1 350 332
Test Image 3 56.89:1 219 200
Test Image 4 0.96:1 489 350

C. Partial Encryption Simulation
Functional simulation of the partial encryption module

(PARTIAL_ENCRYPT) is performed on four-test image with
40ns simulation clock period (25 MHz). In this paper the
simulation for test image 1 is shown in Fig. 1 and 2 using
following key pairs:

 Public key for encryption, E = 0000041B16, N_C =
FCB1720816.

 Private key for decryption, E = 013A0C2316, N_C =
FCB1720816.

The time interval between high GO signal and high READY
signal is divided by the simulation clock period to calculate the
processing time for combined compression and partial encryption or
partial decryption and decompression, and the results are compared
in Table II. It is concluded that the partial decryption and
decompression is much slower because the decryption time of the
RSA_CORE module is twice longer than the encryption time.

TABLE II: COMPARISON OF THE COMBINED PROCESSING TIME
FOR TEST IMAGE 1 (FUNCTIONAL SIMULATION).

IMAGE Compression
Ratio

Compression and
Partial Encryption
(clock cycles)

Partial Decryption
and Decompression
(clock cycles)

Test Image 1 3.12:1 1918 4173

2387

Fig. 1. Simulation of Test Image 1 compression and partial encryption.

Fig. 2. Simulation of Test Image 1 partial decryption and decompression.

D. Synthesis
In regard to the designated hardware realization, The VHDL

code is synthesized by considering Altera FLEX10K:
EPF10K10LC84 FPGA chip on LC84 package. The FLEX 10K
family provides the density, speed, and features to integrate entire
systems, including multiple 32-bit buses into a single chip. The
RTL view for the output layer is shown in Fig. 3.

Fig. 3. RTL view of the PARTIAL_ENCRYPT (1 of 3 sheets)

Throughout the synthesis results, there are a few points worth to
be discussed. Firstly, from the synthesis results, the RSA Core
module utilized around 20% of the chosen FLEX 10KE device.
Nevertheless, the clock frequency report showed the critical
frequency is only 34.7MHz. This has given the limitation of the
frequency of the RSA Module, even though the serial to parallel
and parallel to serial converters could achieve 133.9MHz and
89.6MHz respectively. For the RSA Core module, though the
34.7MHz is acceptable, it is not fast enough compare to today’s
FPGA technology. However, the critical frequency can possibly be
increased further by optimizing the circuit through place & route the

internal probes. The synthesis of the whole RSA encryption, which
included the RAM implementation, has taken up 554 units of logic
cell (LC). This is about 35% utilization of the chosen device. Lastly
the top level design, which is the PARTIAL ENCRYPT entity, was
synthesized. A total of 2928 units of LC were used and it is about
58% utilization of the device (Altera EPF10K100EQC208-1). The
frequency achieved was 13.42MHz.

V. CONCLUSION
In this research project, the FPGA prototyping of a partial

encryption of compressed images algorithm that allows for efficient
hardware implementation had been implemented. The lossless
quadtree compression and RSA encryption algorithms are chosen
for implementation due to their computational simplicity in
hardware.

It is found from the simulation results that in linear quadtree
approach the compression process is faster than the decompression
process. Moreover, the RSA simulations show that the encryption
process is faster than the decryption process for all four images
tested.

REFERENCES
[1] Cheng, H., and Li, X. “Partial Encryption of Compressed

Images and Videos.” IEEE Transactions on Signal
Processing, Vol. 48, No. 8, pp. 2439-2451, August 2000.

[2] Cheng, H. “Partial Encryption for Image and Video
Communication.” M.S. Thesis, University of Alberta,
Edmonton, Canada, 1998.

[3] Cheng, H., and Li, X. “On the Application of Image
Decomposition to Image Compression and Encryption.”
Communications and Multimedia Security II: Proceedings of
the IFIP TC6/TC11 International Conference on
Communications and Multimedia Security, pp. 116-127,
Essen, Germany, September 1996.

[4] Dang, P.P., and Chau, P.M. “Image Encryption for Secure
Internet Multimedia Applications.” IEEE Transactions on
Consumer Electronics, Vol. 46, No. 3, pp. 395-403, August
2000.

[5] Jakobsson, M., Stern, J.P., and Yung, M. “Scramble All,
EncryptSmall.”http://www.julienstern.org/files/scramble/scra
mble.html, visited in December 2002.

[6] Samet, H. “Data Structures for Quadtree Approximation and
Compression.” Communications of the ACM, Vol. 28, No. 9,
pp. 973-993, September 1985.

[7] Lin, T.W. “Image Compression Using Fixed Length Quadtree
Coding.” Proceedings of the 3rd International Conference on
Signal Processing (ICSP), pp. 970-973, Beijing, China,
October 1996.

[8] Gargantini, I. “An Effective Way to Represent Quadtrees.”
Communications of the ACM, Vol. 25, No. 12, pp. 905-910,
December 1982.

[9] Chan, Y.K., and Chang, C.C. “Concealing a Secret Image
Using the Breadth First Traversal Linear Quadtree Structure.”
Proceedings of the Third International Symposium on
Cooperative Database Systems for Advanced Applications
(codas), pp. 194-199, Beijing, China, April 2001.

[10] Rivest, R., Shamir, A., and Adleman, L. “A Method for
Obtaining Digital Signatures and Public Key Cryptosystems.”
Communications of the ACM, Vol. 21, No. 2, pp. 120-126,
February 1978.

2388

