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Abstract— In this paper, we present the realization of of partial 
encryption of compressed images on Altera FLEX10K FPGA 
device that allows for efficient hardware implementation.   The 
compression algorithm decomposes images into several 
different parts. A secure encryption algorithm is then used to 
encrypt only the crucial parts, which are considerably smaller 
than the original image. This will result in significant reduction 
in processing time and computational requirement for 
encryption and decryption.  The breadth-first traversal linear 
lossless quadtree decomposition method is used for the partial 
compression and RSA is used for the encryption.  Functional 
simulations are carried out to verify the functionality of the 
individual modules and the system on four different images. 
Comparisons, verification and analysis made validate the 
advantage of this approach.  The design has utilized 2928 units 
of LC and a system frequency of 13.42MHz. 

I. INTRODUCTION 
The rapid growth of image and video communication 

nowadays is powered by ever-faster systems demanding greater 
speed and security. Real-time secure image and video 
communication is challenging due to the processing time and 
computational requirement for encryption and decryption. In order 
to cope with these concerns, innovative image compression and 
encryption techniques are required. 

Although a vast number of compression and encryption 
algorithms exist, they have been traditionally developed 
independently of each other. A partial encryption scheme for 
images that takes advantage of the image compression algorithm 
has been proposed by Cheng and Li in [1], [2] and [3]. The scheme 
makes use of a compression algorithm that decomposes an image 
into several different parts. A secure encryption algorithm is then 
used to encrypt only the crucial parts, which are considerably 
smaller than the original image. This will result in significant 
reduction in processing time and computational requirement for 
encryption and decryption. 

Other researchers have also proposed partial encryption, or 
combined compression and encryption methods. Dang and Chau 
[4] has proposed the joint image compression and encryption 
scheme using Discrete Wavelet Transform (DWT) and Data 
Encryption Standard (DES). Jakobsson et al. [5] developed a 
“Scramble All, Encrypt Small” technique that encrypts only a 
small block of an arbitrarily long message. However, the former is 
less efficient than a partial encryption scheme and utilizes an 
encryption algorithm (DES) that is no longer secure. The latter 

requires an ideal hash function that is hard to realize and may not 
be suitable for images as it was designed for data encryption.  

Traditionally, image compression and encryption algorithms 
have been restricted to the software realm and developed 
separately. Although the advantages of software are ease of update, 
flexibility and portability, hardware implementation is faster and 
more physically secure, especially when secret key storage security 
are concerned.  

This work aims to investigate the hardware feasibility and 
performance of a novel partial encryption scheme for compressed 
images using FPGA, which combines compression and a secure 
encryption algorithm that encrypts only crucial parts of the 
compressed image. The algorithms chosen for implementation are 
the lossless quadtree compression and the RSA algorithm. The 
hardware implementation was done using Altera FLEX10KE 
device. 

II. DESIGN METHODOLOGY 
The partial encryption scheme depends on a compression 

algorithm that decomposes the input image into a number of 
different logical parts. The output consists of parts that provide 
significant amount of information about the original image, referred 
to as the important parts. The remaining parts have little meaning 
without the important parts, hence known as the unimportant parts. 
In this partial encryption approach, only the important part needs to 
be encrypted by a secure encryption algorithm. When the important 
part is considerably smaller than the total output of the 
compression, the encryption and decryption time can be reduced 
significantly. 

A. Quadtree Compression 
The quadtree decomposition method converts an image into a 

quadtree structure with intensity values attached to the leaf nodes of 
the tree. The quadtree structure reveals the outline of objects in the 
original image [1]. Since the quadtree indicates the location and size 
of each homogeneous block in the image while the intensity values 
do not reveal much information, partial encryption is possible by 
encrypting only the quadtree structure. Here, the quadtree structure 
is the important part whereas the intensity values form the 
unimportant part.  

In the case of lossless compression on a b-bit image, the total 
size of the leaf values is )13( +kb bits, where k is the number of 
internal nodes, which is equivalent to multiplying the size of each 
leaf value with the number of leaf nodes in the quadtree. An 
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approximate upper bound on the relative quadtree size, which is 
the ratio of the size of the quadtree and the total size of the 
compressed image, is given in equation 1: 
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where,  
Size of quadtree = number of nodes = 14 +k  
Size of compressed image = size of quadtree + size of    leaf 

values = )13(14 +++ kbk  

For 8-bit images, 8=b , the size of the quadtree relative to the 
lossless quadtree compression output is at most 14.3%. The 
approximation is valid for large value of k, which is typically at 
least 1000 for 256256 ×  images and greater for larger images. 
For lossy compression, this calculation is not applicable because 
variable number of bits is used to represent leaf values. Results 
collected from experiments performed by Cheng H. [2] on test 
images show that for typical images, the relative quadtree size is 
between 13% and 27%. Therefore, only 13 to 27% of the output of 
lossy quadtree algorithm is encrypted for typical images.   

The lossless quadtree compression algorithm with Leaf ordering 
II has been used in this research, as it is computationally simpler 
and secure. 

B. Linear Lossless Quadtree 
Representing quadtrees in a tree structure requires the use of 

pointers. However, the amount of space required for pointers from 
a node to its children is not trivial. Samet [6] suggested that each 
node in a quadtree is stored as a record containing six fields. The 
first five fields contain pointers to the node’s parent and its four 
children labeled as NW, NE, SW and SE; whereas the sixth field 
describes the intensity value (color) of the image block that the 
node represents. The pointers would occupy nearly 90% of the 
memory space required to store the quadtree [7]. As a result, 
several pointerless quadtree representations have been proposed by 
researchers such as Lin [7], and Gargantini [8]. 

This research is based on the breadth-first traversal of linear 
quadtree proposed by Chan [9]. It consists of two lists, i.e. a tree list 
and a color list. The tree list stores the quadtree structure, where ‘0’ 
denotes a leaf node and ‘1’ denotes an internal node. The color list 
simply stores the pixel values of the image in a sequence defined by 
the tree structure.  

C. RSA Encryption 
Since the encrypted part of the proposed partial encryption 

scheme is preferably small, public-key algorithms has been applied 
directly to it.  

In RSA a plaintext block M is encrypted to a ciphertext block 
C by: 

nMC e mod=            (2) 

and the plaintext block is recovered by: 

nCM d mod=           (3) 

RSA encryption and decryption are mutual inverses and 
commutative, due to symmetry in modular arithmetic. Also, (2) and 
(3) show that both encryption and decryption are based on the same 

operation, which is modular exponentiation. Therefore, hardware 
implementation of RSA allows the encryption and decryption to 
share the same architecture, which helps reduce the hardware size. 

III. VHDL MODELING 
The VHDL model for the proposed work consists of four sub-

modules.  The overall implementation is known as the 
PARTIAL_ENCRYPT chip and it consists of the functional sub-
modules Compression, Encryption, Decryption and Decompression. 

A. Linear Quadtree Compression/Decompression 
Linear quadtree compression and decompression are implemented 
in two separate blocks, QT_ENCODER and QT_DECODER 
respectively. The combination of these two functional blocks is 
named QT_CODEC.  The linear quadtree codec connects both 
QT_ENCODER and QT_DECODER in parallel and to the 
memory block RAM256X8. There are four input control signals, 
i.e. CLK, RESET, GO and E_D. The architectures of QT_CODEC, 
QT_ENCODER and QT_DECODER are implemented using 
Moore state machines with asynchronous reset. The reset signal 
(RESET) is used to set the state machine to its initial idle state, 
while a high GO signal switches it from idle state to the next state. 
A low E_D signal activates the QT_ENCODER while a high E_D 
activates the QT_DECODER. The READY signal is high when the 
compression operation is completed.  

For compression, the input image is scanned in an order, where 
each quadrant is scanned in the NW, NE, SW and SE directions. 
The input image is stored in the RAM from addresses 00 to 3F 
(hex) in raster scan order, i.e. from left to right and from top to 
bottom. For a pixel in an 88×  image indexed by row I and 
column J where I, J = 0, 1, 2,  , 7, its corresponding address in the 
RAM is expressed by: 

JIAddress +×= )8(                                          (4) 

For 88×  input images, the sequence of RAM addresses in the 
appropriate scan order is: 

012345 8216432 KKKKKKAddress +++++=     (5) 
where K5, K4, K3, K2, K1 and K0 are the individual bit (0 or 1) 

values of a 6-bit counter that counts from 0 to (111111)2.  

The output of the compression is a tree list that describes the 
quadtree structure (‘0’ for leave node and ‘1’ for internal node), 
and a color list that contains the intensity values of the quadtree. 
On the other hand, the linear quadtree decompression performed 
by the QT_DECODER block is just the reverse process of the 
compression. 

In linear quadtree compression, if a 22×  block of an image is 
homogeneous, it is reduced to one block containing the pixel value; 
otherwise it is reduced to an ‘I’ block. The intensity values in an ‘I’ 
block are stored in a list. This continues recursively until the 88×  
image is reduced to only one block. The tree list and color list are 
stored at RAM addresses beginning with 40(hex) and 80(hex) 
respectively. 

B. RSA Encryption Implementation 
RSA Module consists of 3 sub-modules. They are RSA_LOAD, 

RSA_CORE and RSA_OUTPUT.  RSA_CORE performs 
encryption and decryption, RSA_LOAD serially captures incoming 
message to be encrypted or decrypted and RSA_OUTPUT serially 
outputs the decrypted/encrypted message.  A RAM with 2048 bits 
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in size was design to provide the storage element for the RSA 
encryption modules.  

Arithmetic Logic Unit accepts 32 bits data as input, and 
produce 32 bits output. The input data is stored temporary in a 
larger register (34-bits). Arithmetic operations are performed on 
the temporary register. The working result is then moved to the 
output port when the operation is done.  The design uses four large 
registers (34 bits) to hold the working results, and 2 small registers 
(5 bits) to hold the loop variables (i, j). The extra 2 bits in the 4 
registers are used in order to prevent overflowing during addition 
operations.   

After consideration on the trade-off between security and 
speed, the size of parameters and signals of the RSA_CORE 
module for the VHDL model are chosen as follow: 

 M is the 32-bit plaintext for encryption, or the 32-bit 
ciphertext for decryption. 

 E and N_C are the 32-bit public key (e, n) used for 
encryption, or the 32-bit private key (d, n) used for decryption. 

 CLK is the clock input signal. 
 RST sets the state machine implemented in RSA_CORE 

architecture to the initial idle state. 
 GO switches the state machine from idle state to the next 

state. 
 C is the 32-bit ciphertext produced by encryption, or the 

32-bit plaintext recovered by decryption. 
 DONE is high when the encryption or decryption 

operation is completed, otherwise it is always low. 

C. Top Level Design 
The overall design incorporates the RSA_CORE module into 

the linear quadtree codec. The top-level entity is named as 
PARTIAL_ENCRYPT where a low E_D signal activates the 
QT_ENCODER block to perform linear quadtree compression on 
the input image stored in the RAM256X8 block. When 
compression is completed, the RSA_CORE is activated to encrypt 
the tree list stored at RAM addresses 80 to 82 (hex). The encrypted 
tree list is then stored at addresses 88 to 8B. On the other hand, a 
high E_D signal starts the decryption operation of RSA_CORE on 
the encrypted tree list to recover the tree list. Then decompression 
is performed by the QT_DECODER to reconstruct the original 
image. 

Four test images are used as inputs to verify the correctness of 
the design using functional simulation. All of the test images are 
grayscale with dimensions 88× . For clarity, each image is 
arranged in a 88×  table, in which the cells correspond to the pixel 
intensity values (grayscale level or color). The size of each pixel is 
8 bits and its value is expressed in 2 hexadecimal digits. 

IV. SIMULATION, SYNTHESIS AND DISCUSSION 

A. Theoretical Results for Test Image 1 and its Quadtree 
The output of linear lossless quadtree compression is a tree list 

that contains the quadtree nodes and a color list that contains the 
pixel values of the image. In the tree list, binary ‘0’ denotes a leaf 
node and ‘1’ denotes an internal node. The root node and 
bottommost leaf nodes are omitted in the tree list in order to achieve 
better compression ratio, as the decompression algorithm does not 
need them. Since decompression is simply the reverse process of 
compression, its results can be deduced from those of the 
compression.   

The results of linear lossless quadtree compression are: 

Tree list = 1001110000012 = 9C1 
Color list = 00 FF 00 FF 00 00 FF 00 00 FF FF 00 FF 00 FF FF 

FF 00 00 
Size of image = 864×  bites = 512 bits 
Size of tree list = 12 bits 
Size of color list = 152 bits 
Compression ratio = Size of image / (Size of tree list + Size of 

color list)  

= 
15212

512
+

= 3.12:1 

B. Functional Simulation for Linear Quadtree  
Compression / Decompression 
Functional simulation is performed to test the logic function of 

the hardware design and it is presented to verify the correctness of 
the algorithms implemented by the quadtree codec and the partial 
encryption module.  

Functional simulation of the linear quadtree codec 
(QT_CODEC) is performed on the four test images with 20ns 
simulation clock period (50 MHz). The time interval between high 
GO signal and high READY signal is divided by the simulation 
clock period to calculate the processing time for compression or 
decompression. From the results it is observed that the processing 
time is longer with smaller compression ratio and decompression is 
faster than compression.  Table I shows the functional simulation 
results on four test images. 

TABLE I: COMPARISON OF FUNCTIONAL SIMULATION 

IMAGE Compression 
Ratio 

Compression 
(clock cycles) 

Decompression 
(clock cycles) 

Test Image 1 3.12:1 291 291 
Test Image 2 1.91:1 350 332 
Test Image 3 56.89:1 219 200 
Test Image 4 0.96:1 489 350 

C. Partial Encryption Simulation 
Functional simulation of the partial encryption module 

(PARTIAL_ENCRYPT) is performed on four-test image with 
40ns simulation clock period (25 MHz). In this paper the 
simulation for test image 1 is shown in Fig. 1 and 2 using 
following key pairs: 

 Public key for encryption, E = 0000041B16, N_C = 
FCB1720816. 

 Private key for decryption, E = 013A0C2316, N_C = 
FCB1720816. 

The time interval between high GO signal and high READY 
signal is divided by the simulation clock period to calculate the 
processing time for combined compression and partial encryption or 
partial decryption and decompression, and the results are compared 
in Table II. It is concluded that the partial decryption and 
decompression is much slower because the decryption time of the 
RSA_CORE module is twice longer than the encryption time. 

TABLE II:  COMPARISON OF THE COMBINED PROCESSING TIME 
FOR TEST IMAGE 1 (FUNCTIONAL SIMULATION). 

IMAGE Compression 
Ratio 

Compression and 
Partial Encryption 
(clock cycles) 

Partial Decryption 
and Decompression 
(clock cycles) 

Test Image 1 3.12:1 1918 4173 
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Fig. 1. Simulation of Test Image 1 compression and partial encryption. 

 
Fig. 2. Simulation of Test Image 1 partial decryption and decompression. 

D. Synthesis 
In regard to the designated hardware realization, The VHDL 

code is synthesized by considering Altera FLEX10K: 
EPF10K10LC84 FPGA chip on LC84 package. The FLEX 10K 
family provides the density, speed, and features to integrate entire 
systems, including multiple 32-bit buses into a single chip. The 
RTL view for the output layer is shown in Fig. 3. 

 
Fig. 3. RTL view of the PARTIAL_ENCRYPT (1 of 3 sheets) 

Throughout the synthesis results, there are a few points worth to 
be discussed. Firstly, from the synthesis results, the RSA Core 
module utilized around 20% of the chosen FLEX 10KE device. 
Nevertheless, the clock frequency report showed the critical 
frequency is only 34.7MHz. This has given the limitation of the 
frequency of the RSA Module, even though the serial to parallel 
and parallel to serial converters could achieve 133.9MHz and 
89.6MHz respectively.  For the RSA Core module, though the 
34.7MHz is acceptable, it is not fast enough compare to today’s 
FPGA technology. However, the critical frequency can possibly be 
increased further by optimizing the circuit through place & route the 

internal probes.  The synthesis of the whole RSA encryption, which 
included the RAM implementation, has taken up 554 units of logic 
cell (LC). This is about 35% utilization of the chosen device.  Lastly 
the top level design, which is the PARTIAL ENCRYPT entity, was 
synthesized. A total of 2928 units of LC were used and it is about 
58% utilization of the device (Altera EPF10K100EQC208-1). The 
frequency achieved was 13.42MHz. 

V. CONCLUSION 
In this research project, the FPGA prototyping of a partial 

encryption of compressed images algorithm that allows for efficient 
hardware implementation had been implemented.  The lossless 
quadtree compression and RSA encryption algorithms are chosen 
for implementation due to their computational simplicity in 
hardware.   

It is found from the simulation results that in linear quadtree 
approach the compression process is faster than the decompression 
process.  Moreover, the RSA simulations show that the encryption 
process is faster than the decryption process for all four images 
tested.  
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