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Frugivorous animals disperse the seeds of the majority of rainforest plant species and 

hence play a key role in the trajectory of rainforest regeneration. This study 

investigated whether changes in the species composition of the frugivore community 

in fragmented rainforest in subtropical Australia is likely to impact the dispersal of 

native plant species. The potential of frugivorous bird and bat species to disperse the 

seeds of plant species in fragmented rainforest was assessed using published dietary 

information together with field surveys of their abundance within intact forest, forest 

fragments and patches of regrowth. Frugivore species with reduced abundance in 

fragmented rainforest were the only known dispersers of 27 of the 221 native plant 

species in the data set (12% of species). These frugivore species were also major 

dispersers of plant species producing fruits wider than 10 mm and species from the 

families Rubiaceae, Lauraceae, Myrtaceae, Meliaceae, Lamiaceae and Vitaceae. 

Except for Rubiaceae, these plant taxa are also potentially dispersed by two of the 

frugivore species that were widespread in fragmented rainforest, Lopholaimus 

antarcticus and Ptilonorhynchus violaceus, although dispersal rates are likely to be 

lower in fragmented than in extensive rainforest. Consistent with other regions, large-

seeded plants are susceptible to reduced dispersal in fragmented rainforest in 

subtropical Australia. However, we predict a smaller deficit in seed dispersal in 

fragmented forests than has been reported from other regions, due to factors such as 

functional overlap among frugivore species, the ability of many Australian rainforest 

vertebrates to persist in fragmented rainforest, and a lack of hunting in these forests. 

Nevertheless, rainforest fragmentation has reduced the abundance of a suite of 

frugivorous rainforest fauna, which in turn is likely to reduce the dispersal of a certain 
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plant taxa and may alter patterns of plant regeneration in subtropical Australian 

rainforest fragments.  
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Throughout the world, rainforest clearing and fragmentation have resulted in 

decreased populations of many frugivore species (Corlett, 1998; Renjifo, 1999; 

Castelletta et al., 2000; da Silva and Tabarelli 2000; Cordeiro and Howe, 2001, 2003). 

This may lead to reduced or failed dispersal of many plant species, because over 70% 

of tree, shrub and vine species in tropical and subtropical rainforests produce seeds 

enclosed in fleshy fruit that are dispersed by frugivorous vertebrates (Howe and 

Smallwood, 1982; Willson et al., 1989). In particular, it has been predicted that large-

seeded plant species are unlikely to be dispersed in many fragmented tropical 

rainforest regions as a result of widespread declines in the suite of frugivore species 

that are capable of dispersing large seeds (Corlett, 1998, 2002; da Silva and Tabarelli, 

2000; Kitamura et al., 2002; McConkey and Drake, 2002). In turn, reduced seed 

dispersal may lead to lower rates of plant recruitment (Bleher and Böhning-Gaese, 

2001; Cordeiro and Howe, 2003), increased vulnerability of plant populations to 

localised extinction (Fahrig and Merriam, 1994), and limited potential for plant 

colonisation of regrowth and restoration sites on previously- cleared land (Duncan 

and Chapman, 2002; Kanowski et al., 2008).  

 

However, there may be cases where the dispersal of plant species are resilient to 

changes in the composition of the frugivore assemblage in fragmented rainforest. 

First, most fleshy-fruited plant species appear to be dispersed by multiple frugivore 

species (Wheelwright and Orians, 1982; Brown and Hopkins, 2002; Silva et al., 

2002). Second, some frugivore species usually persist in fragmented landscapes or 

colonise these landscapes from other habitat types (Corlett, 1998; Renjifo, 1999; 
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Moran et al., 2004a). Hence, the decline of any particular frugivore species could 

potentially be offset by other, functionally similar frugivore species.   

 

Frugivorous birds and bats are the main seed dispersers in Australian subtropical 

rainforests (Green, 1995), where 42 bird species and five bat species are at least partly 

frugivorous (Moran et al., 2004a; Moran, 2007). Moran et al. (2004a) identified a 

suite of frugivorous bird species, predominantly Ptilinopus spp., that was much less 

abundant in fragmented than extensive rainforest in this region. Moran (2007) showed 

that among frugivorous bats, one species (Nyctimene robinsonii) was less frequent in 

rainforest regrowth than in remnant or extensive rainforest, whereas Pteropus spp. 

were found in extensive, remnant and regrowth rainforest in the region.  

 

This study aims to evaluate whether the low abundance of some frugivorous bird and 

bat species in fragmented rainforest is likely to lead to the reduced dispersal of certain 

plant taxa or whether these plants could potentially be dispersed by the frugivore 

species that persist in fragmented rainforest. This work uses quantitative information 

on the diets of frugivorous bird and bat species, together with data on their abundance 

in fragmented rainforest, to assess the potential for reduced seed dispersal in 

fragmented rainforest in subtropical Australia. A frugivore species’ potential to 

disperse seeds is assessed in terms of plant species, genus and family and fruit size. 

Comparisons are made among individual frugivore species and among groups of 

frugivores that showed different responses to fragmentation. We assert that the initial 

difference between frugivore species in terms of their roles in seed dispersal is 

whether or not they consume and potentially disperse viable seeds from a plant 
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species. This study is focused on whether a frugivore consumes and passes intact 

seed, and does not consider subsequent variation in frugivore behaviour, which 

determines the timing of dispersal, volume of seeds dispersed and spatial patterns of 

seed deposition (Schupp, 1993). Following seed dispersal, factors that influence seed 

germination, seedling survival and growth become important in terms of patterns of 

plant recruitment away from parent plants (Wang and Smith, 2002; Clark et al., 

2007), but are not relevant if seed dispersal has failed.  

 

The community-level approach used in this study is novel; previous studies of 

frugivore species’ roles in seed dispersal have generally been limited to a subset of the 

frugivore and/or plant taxa comprising regional assemblages, and have been 

especially concerned with large frugivores and large-fruited plants (e.g., Kitamura et 

al., 2002; McConkey and Drake, 2002; Silva et al., 2002; although see Dennis and 

Westcott, 2006).  

 

Methods 

The study region and site network 

The study was conducted in a 4 000 km2 subtropical rainforest landscape in the region 

known as the Sunshine Coast, approximately 100 km north of the city of Brisbane in 

southeast Queensland, Australia (approximately 26˚ - 27˚ S 152˚ - 153˚ E). 

Continuous subtropical rainforest previously occurred on fertile soil on basalt lava 

flows in the area (e.g., the Maleny plateau), and in areas of less fertile soils that 

receive high rainfall, are locally nutrient-enriched and moist (e.g., along 

watercourses), or are associated with topographic features that provide protection 
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from fire (e.g., gullies) (Webb and Tracey, 1981). Extensive areas of subtropical 

rainforest have been cleared in Australia, especially from basalt plateaux, in the 

lowlands and along watercourses, with large forest tracts now mostly restricted to 

steeper slopes (Webb and Tracey, 1981). Contemporary rainforest landscapes in 

Australia resemble those in many other regions of the world in comprising a mosaic 

of remnant forest patches, grazed land, agricultural cropland, tree crops, regrowth and 

urban development, interspersed with small areas of rainforest restoration. 

 

Study sites were chosen to represent three states of rainforest context and condition in 

which rainforest remained or had re-established in the Sunshine Coast region. Sixteen 

replicate sites within each of three different states of rainforest landscape context 

(fragmented or continuous) and condition (remnant or regrowth) were selected: (i) 

rainforest within extensive tracts of forest; (ii) remnant rainforest isolated from 

extensive forest by surrounding cleared and modified land; and (iii) regrowth, also 

isolated from other rainforest (n = 48).  Remnant forest sites were chosen to have 

similar floristic and structural attributes to extensive forest, although remnant sites 

tended to have more native pioneer and exotic plant species and a simpler forest 

structure than extensive forest, especially near edges. The sizes of remnant sites 

ranged from 2 ha - 100 ha (mean 46.1 (s.e. 9.4) ha). Regrowth sites had been 

regenerating for at least 10 – 20 years, mostly on former grazing land. Regrowth sites 

had developed a tree layer, approximately 10 –15 m in height, but lacked the 

abundance and diversity of large diameter trunks that were present in remnant and 

extensive forest sites. Regrowth sites were 2 – 10 ha in size (mean 3.4 (s.e. 0.5) ha). 

Sites of the same type were separated by at least 2 km, and most were more than 5 km 
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apart. Sites of different types were also usually well separated. Most remnant and 

regrowth sites were 5-10 km from extensive forest, although some sites were located 

further away. Many of the study sites (34 of 48) were located near a watercourse. The 

abundance of 42 frugivorous bird species and distribution of three frugivorous bat 

species were surveyed in this network of 48 sites. 

  

Frugivorous bird and bat species’ abundances and fragmentation response patterns 

The patterns of abundance of 42 frugivorous bird species were determined from 40 

minute searches of a 1 ha plot at each site, conducted twice in summer and twice in 

winter, during 2001 by CM (described in detail in Moran et al., 2004a). Of the 26 bird 

species that were recorded frequently enough to assign a fragmentation response 

pattern (i.e., detected in at least five of the 48 sites during either summer or winter 

surveys), nine are known to destroy seeds (i.e., ‘seed crushers’; see Moran et al., 

2004b) and are not considered further in this paper as they probably disperse few 

viable seeds compared with non-seed crushing frugivore species. One additional 

species (Myzomela sanguinolenta) was also excluded from analyses presented here 

due to the low number of observations of fruit consumption that had been recorded at 

the level of plant species. Therefore, 16 frugivorous bird species are considered in this 

study.  

 

The occurrence of three species of foraging frugivorous bats (Pteropus poliocephalus, 

P. alecto and Nyctimene robinsonii) was assessed using a single, hour-long nocturnal 

search along a 400-500 m trajectory at each site during summer (January-February) 

2003 (described in Moran, 2007). Surveys were timed to occur during the period of 
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maximum fruit abundance in rainforest in subtropical Australia (Innis, 1989; Church, 

1997). Presence-absence data were used as the quantitative measure of site use for 

frugivorous bat species. Because it was often not possible to distinguish between the 

two Pteropus species, data for were combined in analyses (Pteropus spp.). Two 

additional frugivorous bat species (P. scapulatus and Syconycteris australis) were 

recorded only once during surveys and are not considered further. 

 

Earlier work has detailed the results of surveys of the abundance and distribution of 

frugivorous bird and bat species in the site network (Moran et al., 2004a, b; Moran, 

2007). In summary, based on statistical comparisons of their abundance using 

Analysis of Variance (ANOVA), frugivore species were classified as showing one of 

three patterns of abundance in remnants and regrowth, relative to extensive forest: (i) 

lower numbers in remnant and/or regrowth rainforest patches compared with 

extensive forest (‘decreaser’ pattern, four bird species and one bat species); (ii) higher 

numbers in remnant and/or regrowth rainforest patches compared with extensive 

forest (‘increaser’ pattern, five bird species); or (iii), no clear difference in numbers 

between the three site types (‘tolerant’ pattern, seven bird species and Pteropus spp.) 

(Moran et al., 2004a; Moran, 2007). Because of their absence or low abundance in 

fragmented rainforest, frugivore species that showed the decreaser response have a 

relatively low potential to disperse seeds in these areas. Species showing the tolerant 

or increaser response patterns potentially disperse seeds in fragmented rainforest. 

Frugivore species were grouped by their abundance pattern (‘fragmentation response 

groups’) for some statistical analyses.  
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192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

Information about the fleshy-fruited plant species consumed was collected for the 16 

frugivorous bird species, N. robinsonii, P. poliocephalus and P. alecto. Data for the 

two Pteropus spp. were combined in analyses to be consistent with the treatment of 

abundance data and because there is substantial overlap in the diets of these species 

(Eby, 2006). Pteropus spp. are henceforth treated as a single species in analyses and 

discussion. Dietary data were obtained from 107 published sources (contained in 

Appendices of Moran, 2007) and several unpublished data sets (see 

Acknowledgements). Most of the feeding records were based on direct field 

observation although a small number were obtained from gut contents, scats, or 

regurgitated seeds. For a given frugivore species, the data potentially included 

foraging records from multiple years, seasons and geographic locations. There was 

large variation among frugivore species in the amount of foraging information 

available. Because of the wide geographical range of many of the frugivore species 

that occur in subtropical Australia, feeding records may have been collected from an 

area extending from temperate southern Australia to tropical Papua New Guinea. 

Plant species that are introduced to Australia from other countries, or that are native to 

other regions of Australia but do not naturally occur in subtropical Australia, were 

considered to be exotic plant species (native and exotic plant taxa are shown in the 

Appendices of Moran (2007)). Three data sets were compiled from this information: 

i) a binary matrix showing whether or not each fleshy-fruited plant species had been 

recorded in the diet of each of the frugivore species; ii) the number of native plant 

species from each genus that had been recorded in the diet of each frugivore species; 

and iii) the number of native plant species from each family that had been recorded in 
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the diet of each frugivore. This information was considered to reflect the potential of 

each frugivore species to disperse the seeds of each plant taxon. 

 

Dietary data were also used to examine frugivore species’ patterns of fruit size 

consumption. The measure of fruit size used in this work was the width of the 

minimum dispersal unit (‘the diaspore’, van der Pijl, 1982). For most plant species, 

this was the shorter axis (usually diameter) of the whole fruit. However, because 

piecemeal consumption of soft fruits with small seeds (e.g., many species in the 

Moraceae or Solanaceae) and dehiscent arillate fruits (e.g., many species in the family 

Sapindaceae), may result in the dispersal of viable seed (Corlett, 1998; Kitamura et 

al., 2002), the size of the diaspore for these plant species was taken as the width of the 

seed or the width of the seed plus the fleshy aril, respectively. Diaspore size data were 

collected from literature (Williams et al., 1984; Floyd, 1989; Cooper and Cooper, 

1994; Hauser and Blok, 1998; Butler, 2003), supplemented with data from field 

collections (S. McKenna, C. Moran) and biological web sites. In most cases, a range 

of diaspore size values was reported and the median of these was used in analyses.  

 

Diaspore size information was also used to exclude likely instances of fruit theft by 

birds (i.e., consumption of the fruit flesh without dispersal of the seed (Howe and 

Estabrook, 1977)) from reported feeding records. Because the size of fruit that a bird 

can swallow is constrained by its gape width (Herrera, 1981; Wheelwright, 1985), 

records were excluded from the data set if the median diaspore size was more than 

twice the gape width of the bird species (Moran et al., 2004b). A small percentage 
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(approximately 5%) of records were excluded on this basis. This approach accounts 

for the potential for substantial intraspecific variation in fruit size (Edwards, 2005).  

 

Data analyses 

Comparison of dietary composition among frugivore species and fragmentation 

response groups 

The number of native plant species, genera and families, the proportion of plant 

species with a median diaspore size ≥10 mm, and the average diaspore size of plant 

species consumed were calculated for each frugivore species. To examine similarities 

among the frugivore species in terms of their dietary composition, a classification tree 

was generated using the UPGMA algorithm (Manly, 1994) in PRIMER (5.2.9) 

(Clarke and Warwick, 2001), with the Bray-Curtis similarity metric. Exotic plant 

species and species that had been recorded in the diet of less than two frugivore 

species were excluded from multivariate analyses. For analyses at higher taxonomic 

levels, genera or families with only one plant species in the data set were excluded. 

The bird species Scythrops novaehollandiae, Gymnorhina tibicen and Anthochaera 

chrysoptera were not included in multivariate analyses because of the low number of 

native plant species that had been recorded in their diets. Data for N. robinsonii were 

not included in any statistical analyses of dietary patterns because of the small amount 

of dietary information available for this species. 

 

The statistical significance of overall dietary differences between frugivore species 

that showed decreaser, tolerant and increaser patterns was tested using Analysis of 

Similarity, with 9 999 iterations (ANOSIM; Clarke and Green, 1988), also in 
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PRIMER. ANOSIM tests for statistical differences among sampling units (e.g., 

fragmentation response groups) using Monte Carla randomisation to determine 

whether the rank similarities within groups are greater than those between groups. 

Spearman rank correlations were used to test for associations between the 

susceptibility   of a frugivore species to decline in fragmented forest (scored as 

increaser (low) = 1, tolerant = 2, decreaser (high) = 3) and the total number of native 

plant species, genera and families that each consumed, as well as for the number of 

native plant species consumed from each of the 13 plant families with at least five 

species in the data set. The dietary proportions of exotic plant species and of native 

plant species with large (≥10 mm diameter) diaspores were compared among 

decreaser, tolerant and increaser frugivore species, also using Spearman’s rank 

correlations. The statistical test included a correction for multiple tied ranks. 

 

 

The potential for functional substitution in fragmented rainforest by frugivore species 

was quantified as the percentage of plant species in the diet of each decreaser 

frugivore that was also consumed by each other frugivore species. The potential for 

substitution for individual decreaser species by particular groupings of other frugivore 

species was also quantified in this way. 

 

The number of native plant species that would be without a known disperser if each 

individual frugivore species was absent was calculated as the number of plant species 

recorded solely in the diet of that frugivore species. The attributes of the plant species 

that were recorded only in the diet of decreaser frugivores were identified in terms of 
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taxonomic affiliation at the family and genus levels, growth form and diaspore size. 

The occurrence of these attributes among the plants only consumed by decreaser 

frugivores was compared with their frequency among remaining plant species in the 

data set using chi-squared tests on cross-tabulations of plant species’ frequencies 

within attribute classes in SPSS (2001).  

 

Results 

Dietary comparisons among frugivore species 

The diet data matrix comprised information for 221 native plant species from 146 

genera and 62 families. An additional 33 plant species had been introduced to 

subtropical eastern Australia from other continents, and three had been introduced 

from tropical Australia (collectively referred to as “exotic species”). The data on the 

occurrence of these plant species' in the diets of the 18 frugivore species yielded 

records of 978 unique combinations of plant and frugivore species. Most of the native 

(71%) and exotic (75%) plant species had been recorded in the diet of more than one 

frugivore species.  

 

There was considerable variation among frugivore species in the numbers of native 

plant species they were known to consume, ranging from one (G. tibicen) to 106 (both 

Meliphaga lewinii and Ptilonorhynchus violaceus; Table 1). This variation may 

reflect differences among frugivore species in their diet breadth or level of frugivory, 

as well as differences in sampling effort.  
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The plant species composition of the diets of three decreaser frugivore species 

(Ptilinopus magnificus, P. regina and Ailurioedus crassirostris) were similar to one 

another and were also similar to two tolerant bird species: Lopholaimus antarcticus 

(which closely resembled the Ptilinopus species) and P. violaceus (similar to A. 

crassirostris). The tolerant M. lewinii, Strepera graculina, Pteropus spp. and 

increaser Sphecotheres viridis had the next most similar dietary composition to the 

group containing these decreaser species (Figure 1). The superb fruit-dove’s diet 

comprised a subset of the other decreaser bird species, probably a reflection of it 

being an uncommon summer migrant to the study region (Innes, 1989; Date et al., 

1996). ANOSIM showed that the overall native plant composition of the diets of four 

decreaser frugivore species was statistically different from that of the four increaser 

frugivores at the level of plant species (global R = 0.264, p = 0.03; pairwise 

comparison between decreasers and increasers p = 0.03), genus (global R = 0.188, p = 

0.06; pairwise p = 0.03) and family (global R = 0.242, p = 0.04; pairwise p = 0.06).  

 

There was a positive association between a frugivore species’ susceptibility to decline 

in fragmented forest and the number of native plant species (Rs = 0.45, p = 0.04), 

genera (Rs = 0.46, p = 0.03) and families (Rs = 0.46, p = 0.03) that they consumed 

(Table 1) and the average dietary proportion of native plant species with large 

diaspores (≥10 mm diameter) (Rs = 0.67, p =0.003, Figure 2). There was substantial 

variation among individual frugivore species within the tolerant response group, with 

only two bird species (L. antarcticus, P. violaceus) and Pteropus spp. consuming 

dietary proportions of native plants with large diaspores within the range shown by 

decreaser birds (Figure 2). There was a negative association between a frugivore 
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species’ susceptibility to decline in fragmented forest and the percentage of exotic 

plant species in the diet, with exotic plant species comprising an average of 41% of 

species in the diets of increaser frugivores, 17% of tolerant species’ diets and only 8% 

of decreasers’ diets (Rs = -0.72, p = 0.001).  

 

Among the 13 plant families that had more than five species represented in the data 

set, there was a positive association between a frugivore species’ susceptibility to 

decline in fragmented forest and the number of plant species consumed from 

Lauraceae, Meliaceae, Myrtaceae, Rubiaceae, Lamiaceae and Vitaceae (Table 2, 

Figure 3). One or more of several tolerant frugivores (L. antarcticus, P. violaceus, M. 

lewinii, S. graculina and Pteropus spp.) consumed numbers of plant species from all 

of these families within the range shown by decreaser species. The only increaser 

frugivore known to consume comparable numbers of native plant species from any of 

these families was S. viridis, which consumed numbers of species from Lauraceae and 

Meliaceae within the range of decreaser bird species (Figure 3). 

 

Specific substitution potential among frugivore species  

Among tolerant and increaser frugivores, two tolerant species, L. antarcticus and P. 

violaceus, consumed the greatest percentage of plant species that were consumed by 

individual decreaser species (Table 3; 56-73% and 52-66% respectively). A moderate 

percentage of the plant species recorded in the diets of individual decreaser frugivore 

species was consumed by the tolerant M. lewinii  (38-49%), S. graculina (35-48%), 

Pteropus spp. (27-36%) and increaser S. viridis (40-53%), while other non-decreaser 

frugivore species consumed only a small percentage of the plant species that had been 
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recorded in the diets of decreasers (Table 3). In combination, L. antarcticus and P. 

violaceus consumed 72-81% of the plants recorded in the diets of individual decreaser 

frugivore species. The cumulative effect of remaining tolerant frugivores increased 

the percentage of shared plant species to 80-86%, while the addition of increaser 

species did not increase this further (80-88%) (Table 3).  
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Twenty-seven native plant species were recorded only in the diet of decreaser bird 

species. These plants varied widely in their taxonomy, growth form and diaspore size, 

although plant species from the Rubiaceae comprised a much greater percentage of 

the 27 species (26%), than they did in the remainder of the data set (2%) (χ2 = 27.1, 

p<0.0001). Tree species comprised a smaller percentage of plants consumed only by 

decreaser frugivores (29%), compared with the percentage of trees among the 

remaining species in the data set (52%) (χ2 = 4.02,  p = 0.045). Among the plant 

species that were only known to be consumed by decreasers, there was no significant 

difference in the number of species that were shrubs (41% of the plants only 

consumed by decreasers, 33% of plants in the remainder of the dataset, χ2 = 0.32, p = 

0.57), vines (29%, 15%, χ2 = 2.93, p = 0.086) had large (≥10 mm) diaspores (48%, 

40%; χ2 = 0.37,  p = 0.54). Eight of the 27 plant species that were only known to be 

consumed by decreaser frugivores belong to genera that were consumed by other (i.e., 

non-decreaser) frugivore species, and all but one of the plant species (Elaeagnus 

triflora, the only Australian representative of the family Elaeagnaceae) were from 

families that were known to be consumed by non-decreaser species.  
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Among non-decreaser birds, M. lewinii, P. violaceus and S. viridis were the unique 

consumers of a relatively high number of native plant species (20, 12 and 8, 

respectively, Table 1). Most other non-decreaser frugivore species had few native 

plant species for which they were the only recorded consumer (Table 1). All of the 

plant species that had been recorded in the diets of Pteropus spp. were known to be 

consumed by at least one frugivorous bird species. 
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Discussion 

Reduced dispersal of native rainforest plants as a consequence of rainforest 

fragmentation 

The reduced abundance of a small number of frugivore species in fragmented 

rainforest in subtropical Australia is likely to have reduced the dispersal of a number 

of native plant species in these parts of the landscape. Assessment of the functional 

roles of frugivorous bird and bat species in seed dispersal indicates that 12% of native 

rainforest plant species may lack a dispersal agent in fragmented rainforest. The 

ecological process of seed dispersal appears to be more intact in fragmented 

rainforests of subtropical Australia than in other heavily cleared regions of the world, 

where it has been predicted that approximately one-third of native rainforest plants 

may suffer failed dispersal as a consequence of frugivore declines (e.g., da Silva and 

Tabarelli, 2000). The persistence of most frugivore species in fragmented rainforest in 

subtropical Australia means that there is the potential for maintained seed dispersal of 

many plant taxa.  It has been proposed that Australian rainforest fauna may have a 

relatively high resilience to anthropogenic fragmentation of rainforest, given that 

extant species have persisted through the ‘natural fragmentation’ of rainforest 
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resulting from contractions to refugial sites during the Pleistocene (Corlett and 

Primack, 2006). Furthermore, frugivores are rarely hunted in subtropical Australia, 

whereas hunting is a ubiquitous feature of rainforests in other regions (Corlett, 1998, 

2002; Hamman and Curio, 1999; McConkey and Drake, 2002; Terborgh and Nuñez-

Iturri, 2006).   

 

While many plant species do regenerate despite reduced or even failed seed dispersal 

(Janzen and Martin, 1982; Corlett and Turner, 1997), their recruits are likely to be less 

abundant and more spatially aggregated, and populations are more vulnerable to 

extinction, than in forest with an intact disperser assemblage (Bleher and Böhning-

Gaese, 2001; Cordeiro and Howe, 2003). These plant species would also have limited 

potential to colonise secondary regrowth or restoration sites on previously cleared 

land (Duncan and Chapman, 2002; Kanowski et al., 2008).  

 

The plant family Rubiaceae appears to be particularly vulnerable to reduced dispersal 

in fragmented rainforest landscapes of subtropical Australia. Low recruitment of 

plants in the Rubiaceae has been shown in remnant rainforest patches in both Brazil 

(Tabarelli et al., 1999) and Singapore (Turner et al., 1996), although this has been 

attributed to unsuitable germination conditions for these plants in fragments. While 

germination conditions play an important role in plant regeneration patterns, low 

recruitment of plants from the Rubiaceae in fragments may also be a consequence of 

reduced seed dispersal in fragmented forest. The pattern we document of only a small 

number of potential dispersers of plants from the Rubiaceae in subtropical Australia 

may also be a general pattern in other regions. Izhaki et al. (2002) found that 

 19



428 

429 

430 

431 

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

449 

450 

anthraquinone, which deter consumption by some bird species, were common in 

species of Rubiaceae in Israel, indicating that fruit chemistry may play a role in 

limiting the consumption of Rubiaceae to a small subset of frugivores.  

 

Other plants that are likely to have suffered reduced dispersal in fragmented rainforest 

in subtropical Australia include species that produce diaspores wider than 10 mm, or 

from the families Lauraceae, Meliaceae, Myrtaceae, Lamiaceae and Vitaceae. A 

susceptibility of Lauraceae, Myrtaceae and Meliaceae to reduced recruitment in 

rainforest fragments has been identified other regions (Turner et al., 1996; Tabarelli et 

al., 1999), where they are also only consumed by a subset of the frugivore assemblage 

(Snow, 1981; da Silva and Tabarelli, 2000).  

 

We predict that reduced seed dispersal of certain plant families will lead to reduced 

recruitment of some plant taxa and ultimately to changed patterns of forest 

regeneration in fragmented rainforest. These predictions depend on the assumption 

that changes in factors that affect seedling establishment, such as microclimatic 

conditions or the abundance and behaviour of seed and seedling predators, do not 

overwhelm the influence of altered seed dispersal patterns (Clark et al., 2007). 

Empirical data on plant recruitment could be used to test the predictions that there will 

be reduced rates and increased spatial aggregation of recruitment of plants in 

Lamiaceae, Lauraceae, Meliaceae, Myrtaceae, Rubiaceae, Vitaceae, and species with 

diaspores ≥ 10 mm in fragmented rainforest (e.g., Neilan et al., 2006).  

 

 20 



Key substitute seed dispersers in fragmented forest 451 
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Many native plant species are likely to retain the potential for seed dispersal in 

fragmented rainforest of subtropical Australia. Although the frugivore species with 

reduced abundance in fragmented parts of the landscape disperse a large number and 

diversity of plant species, most of these are also probably dispersed by at least one 

non-decreaser frugivore. However, dispersal rates of these plant species may still be 

lower in fragmented rainforest, since substitute dispersers may not compensate for the 

absence of decreaser frugivores by consuming higher quantities of fruits (Kirika et al., 

2008). Quantitative differences in the contributions of different plant species to 

frugivores' diets (e.g., Poulsen et. al 2002) may increase the impacts of losing some 

frugivores beyond any expectations based on the simple presence of plant species in 

their diets. Furthermore, because different frugivore species may vary in their small-

scale patterns of habitat use, the absence or reduced abundance of one species may 

have consequences for dispersal of seeds to certain microsites or over certain 

distances (Spiegel and Nathan, 2007). 

 

The two non-decreaser species with the greatest potential to substitute for decreasers 

as seed dispersers in fragmented parts of the landscape are L. antarcticus and P. 

violaceus . Other frugivore species that potentially substitute for decreaser frugivore 

species as dispersers of some of the plant taxa identified in this work as being 

susceptible to reduced dispersal in fragmented rainforest are M. lewinii, S. graculina, 

Pteropus spp. and S. viridis. Among the frugivorous bird species whose diets were not 

analysed in this study because they were very uncommon in field surveys, only 

Sericulus chrysocephalus had a diet that was similar in terms of plant species 
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composition to decreaser species (Moran, 2007). In particular, S. chrysocephalus may 

contribute to the dispersal of plants with large diaspores and from the families 

Rubiaceae, Meliaceae, Myrtaceae, and Vitaceae, although it is uncertain whether or 

not this species is likely to disperse seeds among fragmented rainforest patches. 

Although frugivory and seed dispersal by possums (e.g., Trichosurus vulpecular) and 

small rodents (e.g., Rattus fuscipes) are likely to be uncommon, they may disperse the 

seeds of some native plant species at a local scale, although would probably destroy 

most seeds.  
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Despite the potential for tolerant and increaser frugivores to disperse native plant 

species, a large proportion of the seeds dispersed in fragmented rainforest may 

actually be exotic plant species. Exotic plant species are ubiquitous in fragmented 

parts of the landscape (Buckley et al., 2006) and the frugivore species that use 

fragmented rainforest in subtropical Australia, particularly increaser bird species, 

consume fruits from large numbers of exotic plant species.  

 

This study assessed the potential of frugivore species to substitute for one another as 

seed dispersers based on their dietary composition. The actual capacity of a frugivore 

to disperse seeds within and between fragmented rainforest habitats is also influenced 

by the spatial scale of its foraging and ranging behaviour, combined with its gut 

passage rate (Schupp, 1993; Dennis and Westcott, 2006). Among the frugivore 

species identified as key substitute seed dispersers in fragmented rainforest, L. 

antarcticus and S. viridis regularly travel rapidly over many kilometres across cleared 

land and consequently may disperse seeds among widely spaced rainforest patches 
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(Frith, 1957; Price et al., 1999; Dennis and Westcott, 2006; Neilan et al., 2006). The 

short gut passage rate of S. viridis (Dennis and Westcott, 2006) may limit its potential 

to transport seeds over long distances (e.g., kilometres). On the contrary, the slow 

transit of seeds through the gut of L. antarcticus may mean that it disperses few seeds 

over short distances (e.g., within a remnant patch). Pteropus spp. travel tens of 

kilometres in a night and may disperse very small seeds (e.g., 1- 4 mm diameter) over 

long distances (Eby, 1991; Shilton et al., 1999). Pteropus  spp. may disperse 

moderately-sized diaspores over tens of metres in their cheek pouches, whereas large 

diaspores may only be transported a short distance away from parent plants in claws 

(Eby, 1991, 1995). Of the remaining key substitute dispersers, both P. violaceus and 

M. lewinii move slowly over short distances (Dennis and Westcott, 2006), and hence 

may disperse relatively few seeds between isolated rainforest fragments.  

 

In subtropical Australian rainforest, frugivorous bats have the potential to disperse 

seeds from many of the plants that are dispersed by birds. Consistent with Eby (1998), 

the present study has shown high dietary similarity among birds and bats in this 

region. There is no suggestion of a ‘bat fruit syndrome’ (van der Pijl, 1982), 

previously proposed on the basis of limited overlap between the diets of frugivorous 

birds and certain pteropid (e.g., Hamann and Curio, 1999; Bollen et al., 2004; 

Richards, 1990) or phyllostomid (e.g., Gorchov et al., 1995) bat species.  Although 

frugivorous bats do not disperse a different suite of plant species to frugivorous birds 

in Australia, they may play an important role in the transport of seeds to treeless 

areas, because they can defecate in flight, whereas birds tend to eliminate seeds while 

perched. 
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Implications for rainforest conservation and ecological restoration  

Because of changes in the composition of the frugivore assemblage, the regenerative 

potential of a substantial proportion of native rainforest plant species is likely to have 

been reduced in fragmented parts of subtropical Australia. Continued rainforest 

clearing would probably exacerbate the situation for frugivore species whose numbers 

are already low in fragmented rainforest, and may lead to population declines of 

additional frugivore species, with ensuing reductions in the dispersal and regeneration 

of native plant species.  

 

Rainforest restoration that meets the needs of fragmentation-sensitive frugivore 

species should also eventually restore the seed dispersal potential of plant species that 

have suffered reduced dispersal as a consequence of frugivore declines. In the short-

term, the reduced regenerative capacity of these plant species means that forest 

regeneration in rainforest remnants, regrowth or replanting sites will not proceed 

along successional trajectories observed in intact forest systems (Kanowski et al., 

2008). Changes in the abundance of seed predators or herbivores in fragmented 

rainforest will also affect the process of forest regeneration because of their influence 

on patterns of seed survival and germination, and seedling growth (Clark et al., 2007). 

It is recommended that rainforest restoration programs incorporate the direct 

introduction, via planting or direct-seeding, of native plant species with diaspores 

10mm and wider, and from the Rubiaceae, as well as Lauraceae, Meliaceae, 

Myrtaceae, Lamiaceae to enhance the resilience of populations of these species in 

fragmented forests and to enable their representation among regenerating forest on 
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previously-cleared land. Because of their potential to smother young plants, it is not 

recommended that vines from the family Vitaceae be included in early stages of 

restoration. 

 

Developing our understanding of the factors that influence distribution patterns in 

fragmented rainforest of key potential substitute dispersers is required because the 

loss of these species would have a disproportionate effect over seed dispersal. For 

example, L. antarcticus is widespread throughout fragmented subtropical rainforest in 

some landscapes (Date et al., 1996; Gosper and Holmes, 2002; Neilan et al., 2006; 

this study), but this species has previously undergone dramatic population declines 

(Frith, 1952, 1957; Date et al., 1996), and has a restricted distribution in small 

subtropical rainforest fragments (Howe et al., 1981). Similarly, numbers of Pteropus 

spp. (especially P. policephalus) have declined drastically in subtropical Australia 

(Eby and Lunney, 2002), as have pteropid populations throughout the Old World 

tropics (Fujita and Tuttle, 1991). The abundance of Ptilonorhynchus violaceus may be 

limited in certain parts of fragmented rainforest landscapes, for example in areas 

dominated by weedy regrowth (Neilan et al., 2006). The distribution of this species 

may also be related to the location of display sites (‘bowers’), which may in turn be 

associated with landscape topography (Crome and Moore, 1989). Populations of M. 

lewinii appear to be stable (Blakers et al., 1984; Higgins et al., 2001), although 

interspecific interactions in fragmented rainforest (e.g., with the aggressive noisy 

miner Manorina melanocephala (Piper and Catterall, 2003)) may affect the 

distribution of closely related M. lewinii. S. viridis appears to be ubiquitous in 

fragmented rainforest throughout its range, including in weedy regrowth and 
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replanted rainforest (Crome et al., 1994; Neilan et al., 2006; this study), and 

populations of S. graculina also appear to be increasing (Higgins et al., 2006). 

 

This study has developed an approach to understanding the consequences of changes 

in the species composition of a frugivore assemblage for the important ecosystem 

function of seed dispersal. Despite a relatively high level of resilience to rainforest 

fragmentation among the frugivore species in subtropical Australia, the dispersal of 

12 % of native plant species may have been substantially reduced in fragmented 

rainforest in this region. As a consequence, the plant species composition of 

fragmented rainforest may diverge from that in extensive tracts of forest over time, 

with follow-on effects for other rainforest biota and ecological processes.  
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Table legends 

 

Table 1 For each frugivore species, their frequency in field surveys, the number of 

native and exotic plant species, and the number of species that bear diaspores with a 

median width < 10 mm and ≥ 10 mm, consumed. The number of genera and families 

represented among the native plant species consumed by each frugivore species are 

shown. ‘Only known consumer’ shows the number of plant species for which there 

was no other known consumer.  

 

Table 2 The average number of native plant species from selected families consumed 

by decreaser (n = 4), tolerant (n = 8) and increaser (n = 5) species. The total number 

of native plant species in the data set from each of these families is shown. Significant 

(p <0.05) results are shown in bold.  

 

Table 3 The percentages of native plant species that were recorded in the diets of 

each decreaser bird species (column head) and also consumed by each other frugivore 

(bird or bat) species (row head)1, and by particular groups of species (‘Frugivore 

groups’). The number of native plant species consumed by each frugivore species, and 

the species codes used in this table are shown in Table 1. 

 
 
 



Table 1 

     Number of plant taxa  

Response 
pattern1 Common name2 Genus and species Family 

Frequency in 
surveys4 Species Genera Families 

Only 
known 
consumer 

    Total number Native Exotic    

    Sites Indivs 
<10 
mm 

≥10 
mm Total 

<10
mm 

≥10
mm Total    

Decreaser 
 

 
wompoo fruit-dove 
superb fruit-dove 
rose-crowned fruit-dove 
green catbird 
eastern tube-nosed bat 

Ptilinopus magnificus 
P. superbus 
P. regina 
Ailurioedus crassirostris 
Nyctimene robinsonii 

Columbidae 
Columbidae 
Columbidae 
Ptilonorhynchidae 
Pteropidae 

25 
13 
36 
35 
13 

120 
15 
101 
148 
13 

34 
13 
41 
60 
1 

47 
13 
33 
44 
3 

81 
26 
74 
104 
4 

4 
3 
6 
7 
1 

0 
1 
1 
0 
0 

4 
4 
7 
7 
1 

50 
19 
50 
75 
4 

31 
14 
28 
38 
4 

6 
1 
5 
8 
0 

Tolerant  
topknot pigeon 
common koel 
channel-billed cuckoo 
little wattlebird * 
Lewin’s honeyeater 
pied currawong 
satin bowerbird 
flying-foxes3 

Lopholaimus antarcticus 
Eudynamys scolopacea 
Scythrops novaehollandiae 
Anthochaera chrysoptera 
Meliphaga lewinii 
Strepera graculina 
Ptilonorhynchus violaceus 
Pteropus spp. 

Columbidae 
Cuculidae 
Cuculidae 
Meliphagidae 
Meliphagidae 
Artamidae 
Ptilonorhynchidae 
Pteropidae 

6 
17 
7 
6 
48 
38 
7 
39 

28 
22 
8 
6 
398 
161 
10 
201 

31 
19 
6 
3 
82 
32 
58 
26 

42 
6 
0 
0 
24 
18 
48 
22 

73 
25 
6 
3 
106 
50 
106 
48 

3 
5 
0 
3 
19 
9 
9 
6 

1 
3 
0 
0 
3 
1 
3 
2 

4 
8 
0 
3 
22 
10 
12 
8 

46 
18 
2 
3 
78 
30 
79 
30 

28 
14 
2 
3 
43 
20 
48 
23 

1 
0 
0 
0 
20 
1 
12 
0 

Increaser  
black-faced cuckoo-shrike 
figbird 
Australian magpie 
Torresian crow 
silvereye * 

Coracina novaehollandiae 
Sphecotheres viridis 
Gymnorhina tibicen 
Corvus orru 
Zosterops lateralis 

Campephagidae 
Oriolidae 
Artamidae 
Corvidae 
Zosteropidae 

10 
41 
26 
35 
20 

33 
465 
121 
144 
144 

10 
49 
1 
9 
35 

0 
25 
0 
1 
1 

10 
74 
1 
10 
37 

5 
13 
4 
5 
15 

0 
4 
1 
1 
2 

5 
17 
5 
6 
17 

6 
48 
1 
6 
27 

5 
27 
1 
5 
19 

1 
8 
0 
0 
3 

     
Mean 
 SE 

28.6 
5.5 

17.9 
4.3 

46.5 
9.0 

6.7 
1.2 

1.1 
0.3 

7.8 
1.4 

31.8    
6.4 

19.6          
3.5 

-                   
- 

     Total 134 87 221 25 11 36 146 62 - 
1 From Moran et al. (2004a) (birds) or Moran (2007) (bats); comparisons of abundance in extensive forest (E), remnants (M) and regrowth (G); 
Decreasers' abundance pattern is E>M>G except for A. crassirostris (E=M>G); Tolerant pattern is E=M=G; Increasers' pattern is E=M<G 
except for G. tibicen (E<M<G).  
2 Bird species’ nomenclature follows Christidis and Boles (1994). * species have small (<10 mm) gapes. 
3 data for grey-headed (Pteropus poliocephalus) and black flying-foxes (P. alecto) were combined. 
4 The total number of sites in which each frugivore species was present during surveys (max. possible =  48) and total number of individuals 
(Indivs) recorded during all surveys (four bird surveys, one bat survey in each site). 
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Table 2 
 
 No. in 

data set 
Average number consumed Spearman rank 

correlation 
Plant family  Decreasers Tolerant Increasers Rs P 
Arecaceae 5 1.8  1.3 0.6 0.40 0.05 
Elaeocarpaceae 6 3.3 2.5 1.4 0.35 0.08 
Euphorbiaceae 8 0.8 2.0 1.8 -0.20 0.22 
Lamiaceae 5 1.3 0.6 0.0 0.50 0.02 
Lauraceae 21 12.8 4.9 2.0 0.61 0.005 
Meliaceae 7 2.8 2.0 0.6 0.44 0.04 
Moraceae 13 8.0 7.8 5.8 0.23 0.19 
Myrtaceae 19 6.5 5.1 1.0 0.53 0.02 
Oleaceae 5 1.5 0.8 0.4 0.36 0.08 
Rubiaceae 10 3.0 0.6 0.2 0.64 0.003 
Rutaceae 10 2.8 1.4 0.8 0.43 0.04 
Sapindaceae 15 2.5 3..0 3.0 -0.07 0.39 
Vitaceae 6 4.3 2.3 0.2 0.69 0.001 
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Table 3 

 Decreaser frugivores 
 P. magnificus P. superbus P. regina A. crassirostris 
Decreaser frugivores     
Ptilinopus magnificus · 80 70 55 
P. superbus 25 · 23 15 
P. regina 64 68 · 51 
Ailurioedus crassirostris 70 64 72 · 
     
Tolerant frugivores     
Lopholaimus antarcticus 73 68 68 56 
Eudynamys scolopacea 19 16 22 16 
Scythrops novaehollandiae 7 8 7 5 
Anthochaera chrysoptera 0 0 0 1 
Meliphaga lewinii 38 40 49 46 
Strepera graculina 41 48 42 35 
Ptilonorhynchus violaceus 58 52 61 66 
Pteropus spp. 36 27 31 34 
     
Increaser frugivores     
Coracina novaehollandiae 6 8 7 8 
Sphecotheres viridis 44 52 53 40 
Corvus orru 9 8 9 9 
Zosterops lateralis 12 24 18 18 
Gymnorhina tibicen 1 0 1 1 
     
Fruigvore groups     
L. antarcticus & P. violaceus 80 72 78 81 
Tolerant spp. (excluding L. 
antarcticus & P. violaceus) 

59 64 66 58 

Tolerant & Increaser spp. 
(excluding L. antarcticus & P. 
violaceus) 

64 68 70 63 

all Tolerant spp. 86 80 86 86 
all Increaser spp. 46 56 55 48 
all Tolerant & Increaser spp. 86 80 86 88 

e.g., the top right cell of the table show that P. magnificus is known to eat 55% of the plants recorded in the diet 
of A. crassirostris.  For non-decreaser species, only the percentage of plant species in each decreaser’s diet that 
they share is shown.  
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Figure 1 Classification of frugivore species (based on Bray-Curtis similarity matrix and 

UPGMA sorting) according to presence / absence of native plant species in the diet. Symbols 

next to names show the fragmentation response pattern for each frugivorous bird species. 

Anthochaera chrysoptera, Gymnorhina tibicen and Nyctimene robinsonii were not included 

because less than five native plant species had been recorded in their diets. 

 

Figure 2 The proportion of native plant species with large (≥10 mm) diaspores that were 

consumed by decreaser, tolerant and increaser  species. Only species with gape widths >10 

mm are included (see Table 1). Among tolerant species, data points for Lopholaimus 

antarcticus (Lopant), Ptilonorhynchus violaceus (Ptivio) and Pteropus spp (Ptespp) are 

highlighted. 

 

Figure 3 The number of native plant species consumed by decreaser, tolerant and increaser 

frugivore species, for plant families where there was a significant (p < 0.05) association 

between frugivore species’ sensitivity to fragmentation and the number of plant species 

consumed (see Table 2). Among tolerant species, data points for tolerant Lopholaimus 

antarcticus (Lopant), Meliphaga lewinii (Mellew), Strepera graculina (Strgra), 

Ptilonorhynchus violaceus (Ptivio) and Pteropus spp (Ptespp) and increaser Sphecotheres 

viridis (Sphvir) are highlighted where these are within the range shown by decreaser species. 
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