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Recent evidence indicates that 5-hydroxytryptamine 3 (5-HT3) antagonists such as ondansetron and tropisetron
exert positive behavioral effects in animal models of depression. Due to the ionotropic nature of 5-HT3 and N-
methyl-D-aspartate (NMDA) receptors, plus their contribution to the pathophysiology of depression, we investi-
gated the possible role of NMDA receptors in the antidepressant-like effect of 5-HT3 receptor antagonists inmale
mice. In order to evaluate the animals' behavior in response to different treatments,we performed open-field test
(OFT), forced swimming test (FST), and tail-suspension test (TST), which are considered as valid tasks for mea-
suring locomotor activity and depressive-like behaviors in mice. Our data revealed that intraperitoneal (i.p.) ad-
ministration of tropisetron (5, 10, and 30 mg/kg) and ondansetron (0.01, and 0.1 μg/kg) significantly decreased
the immobility time in FST and TST. Also, co-administration of subeffective doses of tropisetron (1mg/kg, i.p.) or
ondansetron (0.001 μg/kg, i.p.) with subeffective doses of NMDA receptor antagonists, ketamine (1 mg/kg, i.p.),
MK-801 (0.05 mg/kg, i.p.) and magnesium sulfate (10 mg/kg, i.p.) resulted in a reduced immobility time both
in FST and TST. The subeffective dose of NMDA (NMDA receptor agonist, 75 mg/kg, i.p.) abolished the effects
of 5-HT3 antagonists in FST and TST, further supporting the presumed interaction between 5-HT3 and NMDA re-
ceptors. These treatments did not affect the locomotor behavior of animals in OFT. Finally, the results of our study
suggest that the positive effects of 5-HT3 antagonists on the coping behavior of mice in FST and TST are at least
partly mediated through NMDA receptors participation.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Nowadays, depression is one of the most common psychiatric disor-
ders (Kessler et al., 2009) and has become a public health concern (Silva
et al., 2014), since it is associated with high morbidity and mortality
(Cakmakci et al., 2013). Because of the high prevalence of depression
(Compton et al., 2006), introducing new antidepressant agents with fa-
vorable pharmacological properties and lower side effects is of benefit.

Antidepressant effect of some 5-hydroxytryptamine subtype 3 (5-
HT3) receptor antagonists has been demonstrated in animal models.
Tropisetron and ondansetron exhibited antidepressant properties in be-
havioral tests such as forced swimming test (FST) and tail suspension
test (TST) (Bravo and Maswood, 2006; Martin et al., 1992; Nakagawa
et al., 1998; Ramamoorthy et al., 2008). Also, some clinical experiments
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have assessed the beneficial effect of tropisetron and ondansetron
in anxiety and depression states which were comorbidities of other
conditions such as fibromyalgia and obsession (Haus et al., 2000;
Hewlett et al., 2003; Lecrubier et al., 1993), even though this effect has
not been widely experimented in major depressive individuals. These
5-HT3 antagonists have desirable pharmacological profile and cause
few adverse effects and thus they are well-tolerated in patients
(Greenshaw and Silverstone, 1997; Rajkumar and Mahesh, 2010). A
number of reports focused on the interaction of 5-HT3 and N-methyl-
D-aspartate (NMDA) receptors. Some evidence suggests that NMDA an-
tagonists exert inhibitory effect on 5-HT3 receptors besides acting on
NMDA receptors (Kos et al., 2006; Rammes et al., 2001).

Discovery of the antidepressant effect of NMDA receptor antagonists
has linked the glutamatergic pathway to the pathophysiology of depres-
sion (Manji et al., 2001) and the mechanism of action of some antide-
pressants (Berman et al., 2000; Szasz et al., 2007). Antidepressant-like
behavior following acute NMDA receptor antagonist treatment have
been previously observed inmany rodents tests of depression, including
the TST (Mantovani et al., 2003) and FST (Autry et al., 2011; Maj et al.,
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1992; Yildiz et al., 2000). It is nowwell recognized that NMDA receptors
blockade by certain drugs can exhibit antidepressant activity.

Although the antidepressant effect of 5-HT3 antagonists in clinical
and animal studies is established, the underlying mechanism of this ef-
fect has not been completely discovered. Therefore, we aimed to evalu-
ate the possible role of NMDA receptors in the antidepressant-like effect
of tropisetron and ondansetron, selective 5-HT3 receptor antagonists,
through the mouse FST and TST, which are extensively used methods
for behavioral changes measurement.

2. Methods and materials

2.1. Animals

In this study, we used 20–30 g male NMRI mice (from Pasteur Insti-
tute, Tehran, Iran). Animals were housed in groups (4–5 mice per cage)
and were kept under standard laboratory condition (temperature: 21–
23 °C, 12-h light/dark cycle) and with free access to food and water.
All experiments were carried out between 12:00 and 16:00. All proce-
dures were performed in accordance with the NIH Guide for the Care
and Use of Laboratory Animals (National Institutes of Health Publica-
tions #80-23) and the institutional guidelines for animal care and use
(Department of Pharmacology, School of Medicine, TUMS). Each exper-
imental group consisted of 6 to 9 animals.

2.2. Drugs

The following drugs were used in this study: tropisetron, ondan-
setron, fluoxetine, ketamine, MK-801 (dizocilpine), magnesium sulfate,
and NMDA (All were purchased from Sigma, St. Louis, MO, USA). All
drugs were dissolved in saline and administered through intraperitone-
al (i.p.) route in a constant volume of 5 ml/kg body weight.

2.3. Open-field test (OFT)

The OFT was used to evaluate the locomotor behavior of animals
(Amiri et al., 2015b; Kulesskaya and Voikar, 2014). The open-field appa-
ratus was made of white opaque Plexiglas (50 cm × 50 cm × 30 cm).
Each mouse was placed gently on the center square (30 cm × 30 cm)
and its behaviors were recorded by a camera for 5 min and then data
were analyzed by Ethovision software version 8 (Noldus, Netherlands).
Thedistancemoved (horizontal activity) in theOFTwas evaluated to en-
sure that the decrease or increase in animal's motionlessness in FST/TST
is not due to alterations in locomotor activity.

2.4. Forced swimming test (FST)

The FST was used to assess behavioral despair in mice as a standard
rodent test for screening antidepressant activity of drugs (Ghasemi
et al., 2009b; Porsolt et al., 1977). Animals were placed in an open
cylinder-shaped flask (diameter 10 cm, height 25 cm) filled with
water (19 cm, 24 ± 1 °C). Each mouse was regarded as immobile
when stopped struggling and floated motionless on the water, making
only the movements for keeping its head above water. The behaviors
were assessed in a 6 min period and the duration of immobility within
the last 4 min of the test was recorded.

2.5. Tail suspension test (TST)

In order to perform TST, each mouse was suspended from the edge
of a rod (50 cm above a table top) using adhesive Scotch tape placed
approximately 1 cm from the tip of the tail. Tail climbingwas prevented
by passing the mouse's tail through a small plastic cylinder prior to
suspension. The duration of immobility was scored in a 6 min period.
Mice were considered immobile when they hung down passively and
remained completely motionless (Cryan et al., 2005; Steru et al., 1985).
2.6. Treatments

In order to investigate the behavioral effects of tropisetron and
ondansetron on mice, we used FST, TST, and OFT. Ondansetron (0.001,
0.005, 0.01, 0.1 μg/kg, i.p.) and tropisetron (1, 5, 10, and 30 mg/kg, i.p.)
were injected tomice 30min before the behavioral tests in order for de-
termination of the effective and subeffective doses of the drugs. Time of
administration and doses of drugs were chosen based on our pilot stud-
ies and previous reports (Bravo and Maswood, 2006; Ramamoorthy
et al., 2008). Fluoxetine (5 mg/kg) was administered 30 min before
the tests and the results were considered as the positive control group
(Kordjazy et al., 2015; Moretti et al., 2012). Also, in order to exclude
the effect of saline administration on behavioral tests, saline (5 ml/kg)
was injected 30 min before the tests into control group.

After defining the effective and subeffective doses of aforemen-
tioned drugs, in order to assess the behavioral measures in animals,
Ketamine (1 and 3 mg/kg, 60 min prior to the tests) (Ghasemi et al.,
2009a), MK-801 (0.05 and 0.1 mg/kg, 45 min prior to the tests)
(Ghasemi et al., 2009a), magnesium sulfate (10 and 30 mg/kg, 30 min
prior to the tests) (Poleszak et al., 2006, 2007), and NMDA (75 and
150 mg/kg, 30 min prior to the tests) (Ghasemi et al., 2009a) were
injected to animals. The doses were chosen based on our pilot study
and previous reports (Haj-Mirzaian et al., 2015a, 2015b). The corre-
sponding control group received saline prior to the test. Investigating
the possible involvement of NMDA receptors in antidepressant-like
activity of 5-HT3 antagonists, we co-administered subeffective doses
of tropisetron or ondansetron with subeffective doses of NMDA antago-
nists. Further, we co-administered the subeffective dose of NMDA with
the effective doses of tropisetron or ondansetron.

2.7. Statistical analysis

All data are expressed as mean ± S.E.M and the statistical analyses
and data interpretations and also preparing the illustrations were per-
formed using the SPSS and graph-pad Prism software package. The
one-way and two-way analyses of variance (ANOVAs), followed by
Tukey's post hoc, were used for comparison of the immobility times
and locomotor activities between the experimental groups and controls.
Finally, p b 0.05 was considered as the significance level.

3. Results

3.1. Effects of 5-HT3 antagonists on the behavioral profile of mice in the FST,
TST and OFT

Fig. 1 shows that treatment of mice with tropisetron (5, 10, and
30 mg/kg) significantly decreased the immobility time both in the FST
(F (5, 42) = 6.891, P b 0.05, P b 0.01, and P b 0.001 respectively,
Fig. 1A) and TST (F (5, 36) = 6.519, P b 0.05, P b 0.01, and P b 0.01 re-
spectively, Fig. 1B) compared with saline-treated animals. However,
tropisetron (1 mg/kg) did not show any antidepressant-like effect in
these tests (P N 0.05). Also, tropisetron did not cause significant changes
in the distance moved in OFT compared with saline-injected control
group (F (5, 42) = 0.2830, P N 0.05, Fig. 1C).

Although ondansetron (0.001 μg/kg) did not produce anti-
immobility effect (P N 0.05), at doses 0.005, 0.01, and 0.1 μg/kg it sig-
nificantly decreased the immobility time in the FST when compared
with saline-injected group (F (5, 42) = 4.752, P b 0.05, P b 0.05, and
P b 0.01 respectively, Fig. 1D). In the TST, administration of ondanse-
tron (0.01 and 0.1 μg/kg) induced anti-immobility effect compared
with saline-injected group (F (5, 34) = 4.719, P b 0.05 and P b 0.01 re-
spectively, Fig. 1E). However, lower doses of this drug (0.005
and 0.001 μg/kg) did not alter the duration of immobility in the TST
(P N 0.05). None of the applied doses of ondansetron affected the total
distance moved in the OFT (F (5, 42) = 0.1843, P N 0.05, Fig. 1F).



Fig. 1. Effect of acute administration of tropisetron (1, 5, 10, and 30 mg/kg, i.p.) and ondansetron (0.001, 0.005, 0.01, and 0.1 μg/kg, i.p.) on: (A, D) Duration of immobility in FST.
(B, E) Duration of immobility in TST. (C, F) Distance moved in OFT. Values are expressed as the mean ± S.E.M (n = 6–9) using one-way ANOVA followed by Tukey's post hoc.
*P b 0.05, **P b 0.01 and ***P b 0.001 compared with saline-treated group.
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Data showed that the anti-immobility effect of tropisetron/
ondansetron was similar to fluoxetine, which significantly reduced the
immobility time in both FST and TST.

3.2. Effect of different doses of NMDA antagonists and agonist on FST, TST
and OFT

Fig. 2 presents effects of treatment with different doses of NMDA
receptor antagonists in FST, TST, and OFT. Ketamine (1 mg/kg) did not
significantly reduce the immobility time of mice (P N 0.05). However,
a significant decrease in the immobility time was observed in FST
and TST when ketamine (3 mg/kg) was administered to animals (F
(2, 21) = 2.79, P b 0.05, Fig. 2A and F (2, 21) = 7.009, P b 0.01, Fig. 2B,
respectively). Also, a significant anti-immobility effect was observed in
MK-801-treated animals (0.1 mg/kg) in FST (F (2, 21) = 8.381,
P b 0.01, Fig. 2A) and TST (F (2, 21)= 8.992, P b 0.01, Fig. 2B). However,
MK-801 at the dose 0.05 mg/kg did not induce significant decrease
in the immobility time in FST and TST (P N 0.05). Magnesium sulfate
(30 mg/kg) showed anti-immobility effect in FST and TST ((F (2,
21) = 5.539, P b 0.05, Fig. 2A) and (F (2, 21) = 7.521, P b 0.05,
Fig. 2B)), while, treating mice with 10 mg/kg magnesium sulfate did
not produce the same effects (P N 0.05). While administration of
NMDA (150 mg/kg) significantly increased the immobility time in FST
(F (2, 18) = 3.399, P b 0.05, Fig. 2D) and TST (F (2, 21) = 3.971,
P b 0.05, Fig. 2E), NMDA (75 mg/kg) did not affect the behavior of
mice in FST and TST (P N 0.05). Moreover, treating mice with NMDA
receptor agonist/antagonists with doses mentioned above did not
make significant changes in the distance moved in the OFT (P N 0.05,
Fig. 2C and F).

3.3. Effect of NMDA antagonists on the behavioral effects of tropisetron in
the FST, TST and OFT

As shown in Fig. 3, administration of the subeffective dose of keta-
mine (1 mg/kg) in combination with subeffective dose of tropisetron
(1 mg/kg) produced anti-immobility effect as compared with the
administration of either drug alone. Two-way ANOVA proved signifi-
cant differences in FST and TST for tropisetron treatment ((F (1, 14) =
10.62, P b 0.01) and (F (1, 14)= 17.39, P b 0.001)), ketamine treatment
((F (1, 14) = 6.682, P b 0.05) and (F (1, 14) = 4.254, P b 0.05)), and
tropisetron × ketamine interaction ((F (1, 14) = 4.915, P b 0.05) and
(F (1, 14) = 5.64, P b 0.05)). Also, administration of the subeffective
dose of MK-801 (0.05 mg/kg) to tropisetron-treated (1 mg/kg) animals
caused an obvious anti-immobility effect in FST and TST. Two-way
ANOVA revealed significant differences in FST and TST for tropise-
tron treatment ((F (1, 14) = 19.23, P b 0.001) and (F (1, 14) = 11.34,
P b 0.01)), MK-801 treatment ((F (1, 14) = 12.66, P b 0.01) and (F (1,
14) = 9.357, P b 0.01)), and tropisetron × MK-801 interaction ((F (1,
14) = 7.797, P b 0.01) and (F (1, 14) = 4.625, P b 0.05)). Moreover,
combination of the subeffective doses of tropisetron (1 mg/kg) and
magnesium sulfate (10 mg/kg) significantly reduced the immobility
time of mice in FST and TST and in two-way ANOVA, we observed sig-
nificant effect for tropisetron treatment ((F (1, 14) = 13.48, P b 0.01)
and (F (1, 14) = 11.40, P b 0.01)), magnesium treatment ((F (1,
14)=8.69, P b 0.01) and (F (1, 14)=6.567, P b 0.05)), and tropisetron×
magnesium interaction ((F (1, 14) = 4.667, P b 0.05) and (F (1, 14) =
11.24, P b 0.01)). None of the treatments made changes in the ambula-
tory behavior of mice in the OFT when compared to control animals
(P N 0.05, Fig. 3).

3.4. Effect of NMDA antagonists on the behavioral effects of ondansetron in
the FST, TST and OFT

Data illustrated in Fig. 4 shows that co-administration of the
subeffective dose of ondansetron (0.001 μg/kg) with subeffective
doses of ketamine (1 mg/kg), MK-801 (0.05 mg/kg), and magnesium
sulfate (10 mg/kg) resulted in a significant decrease in immobility
time of mice both in FST (P b 0.001, P b 0.01, and P b 0.01) and TST
(P b 0.001, P b 0.01, and P b 0.001). Two-way ANOVA verified signifi-
cant effects in FST and TST for ondansetron treatment ((F (1, 14) =

Image of Fig. 1


Fig. 2.Effect of acute administrationofNMDAantagonists (ketamine,MK-801, andmagnesiumsulfate) andNMDAagonist (NMDA)on: (A,D)Durationof immobility inFST. (B, E)Duration
of immobility in TST. (C, F)Distancemoved in OFT. Values are expressed as themean± S.E.M (n= 8) using one-way ANOVA followed by Tukey's post hoc. *P b 0.05, **P b 0.01 compared
with saline-treated group.
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15.8, P b 0.001) and (F (1, 14)= 23.38, P b 0.001)), ketamine treatment
((F (1, 14) = 11.12, P b 0.01) and (F (1, 14) = 12.86, P b 0.01)), and
ondansetron × ketamine interaction ((F (1, 14) = 9.694, P b 0.01) and
(F (1, 14) = 6.52, P b 0.05)). Also, two way ANOVA revealed significant
differences in FST and TST for ondansetron treatment ((F (1, 14) =
27.25, P b 0.001) and (F (1, 14) = 10.24, P b 0.01)), MK-801 treatment
((F (1, 14) = 8.352, P b 0.01) and (F (1, 14) = 9.413, P b 0.01)), and
ondansetron × MK-801 interaction ((F (1, 14) = 8.889, P b 0.01) and
(F (1, 14) = 4.865, P b 0.05)). Moreover, data analysis showed signifi-
cant differences for ondansetron effect ((F (1, 14) = 9.356, P b 0.01)
and (F (1, 14) = 21.44, P b 0.001)), magnesium effect ((F (1, 14) =
8.017, P b 0.01) and (F (1, 14) = 12.13, P b 0.01)), and ondansetron ×
magnesium interaction ((F (1, 14) = 4.816, P b 0.05) and (F (1, 14) =
7.204, P b 0.05)). The aforementioned treatments did not result in
significant changes in the ambulation of mice in the OFT when com-
pared to control group (P N 0.05, Fig. 4).
3.5. Effect of NMDA agonist on the behavioral effects of 5-HT3 antagonists
in the FST, TST and OFT

Fig. 5 shows that the anti-immobility effect of tropisetron (10mg/kg)
was significantly abolished by pretreatment of mice with NMDA
(75 mg/kg). A two-way ANOVA proved significant differences in im-
mobility time in FST and TST for the tropisetron-treated group ((F (1,
14) = 15.02, P b 0.001) and (F (1, 14) = 13.54, P b 0.001)), NMDA-
treated group ((F (1, 14) = 6.524, P b 0.05) and (F (1, 14) = 16.29,
P b 0.001)), and NMDA × tropisetron interaction ((F (1, 14) = 13.28,
P b 0.01) and (F (1, 14) = 11.65, P b 0.01)).

Also, treating mice with NMDA (75 mg/kg) reversed the anti-
immobility effect of ondansetron (0.01 μg/kg). Two-way ANOVA
showed significant differences for ondansetron treatment, NMDA-
treatment, and ondansetron × NMDA interaction in FST ((F (1, 14) =
10.19, P b 0.01), (F (1, 14) = 20.04, P b 0.001), and (F (1, 14) = 24.76,

Image of Fig. 2


Fig. 3.Effect of pretreatmentwith subeffective doses of NMDAantagonists on subeffective tropisetron-treated animals in FST, TST, andOFT. Values are expressed as themean±S.E.M (n=
8) using two-way ANOVA and **P b 0.01, ***P b 0.001, #P b 0.05, ##P b 0.01, $$P b 0.01 compared with saline-treated group.
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P b 0.001) respectively), and TST ((F (1, 14) = 6.989, P b 0.05), (F (1,
14) = 16.05, P b 0.001), and (F (1, 14) = 33.176, P b 0.001)
respectively).

Administration of NMDA alone or in combination with tropisetron/
ondansetron did not affect the total distance moved in the OFT
(P N 0.05, Fig. 5).

4. Discussion

Our current experiments demonstrated that tropisetron and
ondansetron, 5-HT3 receptor antagonists, exhibit antidepressant-like
effect in TST and FST. We investigated the possible involvement of glu-
tamatergic NMDA receptors in the antidepressant-like effect of these 5-
HT3 antagonists. Results showed that NMDA receptor antagonists en-
hanced the anti-immobility effect of tropisetron and ondansetron;
whereas, NMDA agonist treatment weakened the antidepressant-like
effect of these 5-HT3 antagonists.

Amongst the 5-HT receptor subtypes, 5-HT3 receptors are the only
ligand-gated ion channels (Rajkumar and Mahesh, 2010). Tropisetron
and ondansetron are highly selective, competitive inhibitors of 5-HT3
receptors (Broocks, 1992, Färber et al., 2000) and are known as the
main drug of choice in management of chemotherapy-induced nausea
and vomiting (Rajkumar and Mahesh, 2010). 5-HT3 receptors are
not only available at a high density in the area postrema (the nausea
and vomiting regulatory center in brain) but also in the hippocampal
and amygdala region of the limbic system; as a result, it is speculated
that 5-HT3 selective agents exhibit psychotropic effects (Broocks,
1992; Ostadhadi et al., 2015). In this regard, some researches suggest
that 5-HT3 antagonists exhibit protective and therapeutic effects in
variety of psychiatric disorders, such as depression (Greenshaw and
Silverstone, 1997; Lecrubier et al., 1993). Using FST and TST as valid
behavioral tests for screening the antidepressant effect of novel drugs
(Cryan et al., 2002), we showed that both tropisetron and ondansetron
(similar to fluoxetine) reduce the immobility time in these tests,
indicating the ability of these drugs to attenuate the behavioral despair
in mice. The antidepressant-like behavior due to ondansetron and
tropisetron treatment in our experiments was not related to the
changes of locomotion, since the mice treated with ondansetron and

Image of Fig. 3


Fig. 4. Effect of pretreatment with subeffective doses of NMDA antagonists on subeffective ondansetron-treated animals in FST, TST, and OFT. Values are expressed as the mean ± S.E.M.
(n = 8) using two-way ANOVA and ***P b 0.001, ##P b 0.01, $$P b 0.01 and $$$P b 0.001 compared with saline-treated group.
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tropisetron did not show enhanced ambulation in the OFT. Our
results are in agreement with previous studies that reported selective
antagonists of 5-HT3 receptors exert antidepressant-like properties in
animal models of depression such as learned helplessness, olfactory
bulbectomy and chronic unpredictable mild stress (Gupta et al., 2014;
Martin et al., 1992; Ramamoorthy et al., 2008). Antidepressant-like
effect of ondansetron in FST in male mice had been discovered in past
studies; however, our study for the first time reveals the dose–response
effect of tropisetron inmodels of depression inmalemice. A few studies
have investigated the effect of tropisetron on behaviors related to
depression in animal models, such as the learned-helplessness para-
digm (Martin et al., 1992). Likewise, Bravo and Maswood observed
that treatment with tropisetron reduced immobility of female rats in
FST (Bravo and Maswood, 2006). In addition, many studies detected
the antidepressant-like effect of novel serotonin subtype 3 antagonists
in rodent behavioral tests such as FST (Bhatt et al., 2013; Kurhe et al.,
2014; Mahesh et al., 2014). Focusing on the clinical investigations, we
realize that ondansetron and tropisetron have been shown to improve
depression scores in obsessive-compulsive patients (Hewlett et al.,
2003) as well as patients with fibromyalgia, respectively (Haus et al.,
2000).

Vast majority of evidence showed the rapid antidepressant effect of
NMDA receptor antagonists both in humans and animals (Berman et al.,
2000; Haj-Mirzaian et al., 2015a; Rosa et al., 2003; Tokita et al., 2012). In
our study, considering the anti-immobility effects of NMDA receptor
antagonists, we determined the effective and subeffective doses of keta-
mine, MK-801, and magnesium sulfate in FST and TST. We showed that
ketamine (3 mg/kg) significantly decreased the immobility duration,
but at the dose 1mg/kg, it did not affect the immobility time. In previous
studies, these doses of ketamine were also recognized as effective
and sub-effective doses, respectively (Owolabi et al., 2014). MK-801
(0.1 mg/kg) reduced the immobility time of mice significantly, but at
the dose 0.05mg/kg, it did not cause significant reduction in the immo-
bility time. These results are in accordance with the previous findings
which determined 0.05 mg/kg MK-801 as the sub-effective dose and
0.1 mg/kg as the effective dose in FST (Haj-Mirzaian et al., 2014). It
was observed that the immobility time of mice and rats in FST was sig-
nificantly reduced by magnesium ions (Poleszak et al., 2005a, 2005b).

Image of Fig. 4


Fig. 5. Effect of pretreatmentwith subeffective dose of NMDA(75mg/kg) on the effective doses of 5-HT3 antagonists in FST, TST, andOFT. Values are expressed as themean±S.E.M (n=8)
using two-way ANOVA and *P b 0.05 and ***P b 0.001 compared with the saline-treated group. #P b 0.05 and ##P b 0.01 compared with the ondansetron/tropisetron-treated groupwith
saline pretreatment.
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Also, administration ofmagnesium sulfate to rats subjected to traumatic
brain injury significantly decreased the incidence and severity of post-
traumatic depression (Frommet al., 2004). In our current study,magne-
sium sulfate exerted antidepressant-like effect in behavioral tests at
the dose 30 mg/kg, but it did not significantly alter the immobility
time of mice at the dose 10 mg/kg (Poleszak et al., 2006, 2007). Thus,
our data are consistent with the variety of evidence illustrating the
role of NMDA receptors in major depression and mechanism of action
of antidepressants.

Surprisingly, few studies have focused on the interaction of 5-HT3
and NMDA receptors in psychiatric disorders. It has been reported that
inhibition of 5-HT3 receptors by their selective antagonists could be
used as a strategy to enhance the positive effects of NMDA antagonists
on depressive-like behaviors. In a study by Kos et al., authors showed
that MDL 72222, a 5-HT3 antagonist, potentiated the anti-immobility
effect of ketamine in TST (Kos et al., 2006). Another study also demon-
strated that uncompetitive NMDA receptor antagonists might antago-
nize 5-HT3 receptors in vitro. Ketamine has been shown to have a
weak 5-HT3 antagonist-like property in addition to its NMDA antago-
nistic effects (Rammes et al., 2001). On the other hand, 5-HT3 receptors
have been reported to directly interact with NMDA receptor-mediated
response in pyramidal cells of the rat cortex (Liang et al., 1998). Interest-
ingly, it was shown that pretreatmentwith ondansetron prevents some
undesirable side effects of ketamine and MK-801 (Suzuki et al., 1999).

Although the antidepressant effect of some 5-HT3 receptor antago-
nists had been demonstrated in the past studies, the exact mechanism
of action through which these drugs exert this effect was not fully un-
derstood. Investigating the underlying mechanisms involved in these
effects improves our knowledge in order to introduce and design
more efficient pharmacological agents for the treatment of mental dis-
orders. Based on the results of the current study and previous reports,
it could be speculated that the effect of 5-HT3 antagonists is possibly
mediated through NMDA receptors, or these drugs act through the
same signaling pathway and induce synergic effects. Both 5-HT3 and
NMDA receptors are ion channels and activation of these receptors re-
sults in a considerable increase in intracellular calcium level. Calcium in-
flux triggers multiple intracellular signaling cascades including nitric
oxide (NO) pathway, thereby activating the nitric oxide synthase en-
zymewhich has been revealed to play a role in pathobiology of depres-
sive disorders (Esplugues, 2002). In order to explain the synergistic
effect of NMDA antagonists with 5-HT3 antagonists regarding their
antidepressant-like properties, it has been reported that a decrease in
NO content in limbic regions such as the hippocampus is associated
with the antidepressant activity of variousmedications such as selective
serotonin reuptake inhibitors and imipramine (Dhir andKulkarni, 2007;
Krass et al., 2011; Zomkowski et al., 2010). Since 5-HT3 and NMDA re-
ceptors are basically ion-channels, it is plausible that blocking these re-
ceptors through these co-treatments results in the reduction of calcium
influx, and finally leads to antidepressant effect through NO production
diminution (Joca and Guimarães, 2006). This hypothesis is in line with
our recent published studywhich presented that tropisetron attenuated
the anxiety-like behaviors of socially isolated animals throughmoderat-
ing the nitrergic system and mitochondrial dysfunction in the hippo-
campus (Amiri et al., 2015a).

In conclusion, the results of our current study revealed that applying
5-HT3 antagonists, provokes antidepressant-like effects through reduc-
ing the passive behavior of animals in FST and TST. Also, we suggested a
possible connection between 5-HT3 receptors and NMDA receptors,
meaning that co-administration of subeffective doses of their antago-
nists synergistically produced antidepressant effects.
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