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In this article we studied the differential protein abundance of Penicillium chrysogenum in
response to either 1,3-diaminopropane (1,3-DAP) or spermidine, which behave as inducers
of the penicillin production process. Proteins were resolved in 2-DE gels and identified by
tandem MS spectrometry. Both inducers produced largely identical changes in the
proteome, suggesting that they may be interconverted and act by the same mechanism.
The addition of either 1,3-DAP or spermidine led to the overrepresentation of the last
enzyme of the penicillin pathway, isopenicillin N acyltransferase (IAT). A modified form of
the IAT protein was newly detected in the polyamine-supplemented cultures. Both
inducers produced a rearrangement of the proteome resulting in an overrepresentation of
enzymes involved in the biosynthesis of valine and other precursors (e.g. coenzyme A) of
penicillin. Interestingly, two enzymes of the homogentisate pathway involved in the
degradation of phenylacetic acid (a well-known precursor of benzylpenicillin) were reduced
following the addition of either of these two inducers, allowing an increase of the
phenylacetic acid availability. Both inducers produced also an increase in the intracellular
content of vesicles that derived to vacuoles in late stages and promoted sporulation of
P. chrysogenum in solid medium.

Biological significance
The analysis of global protein changes produced in response to polyamines 1,3-DAP and
spermidine provides a valuable information for the understanding of the molecular
mechanisms underlying the production of penicillin. This represents useful information to
improve the production of this antibiotic andmany other bioactive secondarymetabolites not
only in P. chrysogenum, but in other filamentous fungi as well.
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1. Introduction

The biosynthesis of penicillin in Penicillium chrysogenum is an
excellent model to study the molecular mechanisms of
biosynthesis, control of gene expression and secretion of
secondary metabolites in fungi [1–3] due to the excellent
knowledge accumulated on the biosynthesis [4,5] and molec-
ular genetics of this β-lactam compound [3,6,7]. The penicillin
biosynthetic pathway (Fig. 1) has been extensively reviewed
[2–7]. Penicillin biosynthesis starts in the cytosol with the
formation of the tripeptide δ-L-(α-aminoadipyl)-L-cysteinyl-
D-valine (ACV) after the non-ribosomal condensation of
L-α-aminoadipic acid, L-cysteine and L-valine. This reaction
is catalyzed by the 426-kDa ACV synthetase (ACVS), which is
encoded by the 11-kbp intron-free pcbAB gene. ACVS is
synthesized as an inactive apoprotein that requires activation
by means of the addition of a 4´-phosphopantetheine arm
(derived from coenzyme A (CoA)) in a reaction carried out by a
4´-phosphopantetheinyl transferase (PPTase). During the next
step, the oxidative ring closure of the tripeptide occurs, thus
giving rise to the penam nucleus structure of isopenicillin N
pcbAB ACV synthetase
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Fig. 1 – Schematic representation of the benzylpenicillin
biosynthetic pathway.
(IPN). This reaction takes place in the cytosol and is catalyzed
by the 38-kDa IPN synthase or cyclase (encoded by the
intronless pcbC gene). Once IPN is synthesized, it enters the
peroxisome, where the L-α-aminoadipic side-chain of this
intermediate is replaced by a hydrophobic acyl molecule. Side
chain replacement is catalyzedby theperoxisomal acyl-CoA: IPN
acyltransferase (IAT), which is encoded by the penDE gene. IAT is
synthesized as a preprotein of 40 kDa termed proacyltransferase
or proIAT. The proacyltransferase is autocatalytically self-
processed into subunits α (11 kDa, corresponding to the
N-terminal fragment) and β (29 kDa, corresponding to the
C-terminal region), which constitute an active heterodimer. A
two-step enzymatic process has been proposed for side chain
replacement reaction. During the first step, the amidohydrolase
activity removes the L-α-aminoadipate side chain of IPN, thus
forming 6-aminopenicillanic acid (6-APA). Next, the acyl-CoA:
6-APA acyltransferase activity introduces the new activated
acyl side chain. Activation of the precursor acyl molecules as
CoA thioesters (phenylacetyl-CoA from phenylacetate in the
case of benzylpenicillin) is a prerequisite for the incorporation
of acyl side chains during the biosynthesis of hydrophobic
penicillins and peroxisomal acyl-CoA ligases are in charge of
such activation [2,3].

The expression of the penicillin biosynthetic genes pcbAB,
pcbC and penDE is greatly increased by the inducers 1,3-
diaminopropane (1,3-DAP) and spermidine [8] that were
initially identified in a screening of autoinducers synthesized
by P. chrysogenum andAcremonium chrysogenum [9]. The inducing
effect of 1,3-DAP and spermidine is not exerted by other
diamines (e.g. putrescine, cadaverine or the triamine spermine),
suggesting that the inducing effect is specific of those
two compounds 1,3-DAP and spermidine that might be
interconnected through conversion reactions. This induction
is independent of the pH control mediated by the general pH
regulator PacC. However, it appears to be mediated, at least
partially, by the LaeA regulatory protein, since 1,3-DAP and
spermidine restore the expression of penicillin biosynthesis
genes and, therefore, penicillin production in a laeA defective
mutant [8,10].

The stimulatory effect of 1,3-DAP and spermidine is observed
not only on penicillin biosynthesis, but also on the formation of
the green spore pigment and the brownmycelia pigment [8]. This
effect is similar to that exerted by the LaeA regulatory protein
both in P. chrysogenum [10] and in Aspergillus nidulans [11].

It is well known that the last two enzymes required for
benzylpenicillin biosynthesis, namely phenylacetyl-CoA ligase
(Phl) and isopenicillin N acyltransferase (IAT) are located in the
peroxisome lumen [12–14]. Recent evidence in several filamen-
tous fungi revealed an important role of endoplasmic reticulum
(ER)-derived vesicles in the production of several secondary
metabolites, including aflatoxins in Aspergillus species [15–17].

Proteomics is an interesting tool to study global protein
changes in response to different inducers or stressing factors
[18]. Proteomics has been applied to investigate changes in the
proteome of P. chrysogenum during the strain improvement
program [19,20]. Therefore, it was interesting to apply a
combination of proteomics and other biochemical and micros-
copy tools to elucidate the role of 1,3-DAP on the shift of
P. chrysogenum metabolism that leads to penicillin over-
production. In this article we report that both inducers
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1,3-DAP and spermidine exert a strong effect on cellular
metabolism resulting in a rearrangement of pathways for the
synthesis of amino acids precursors of penicillin and an
increase of the penicillin biosynthetic enzymes, in addition to
the previously reported transcriptional activation of the peni-
cillin biosynthetic genes pcbAB, pcbC and penDE [8]. Both
inducers produce a significant increase of internal vesicles in
the cytoplasm of the supplemented cells and also promote
sporulation of P. chrysogenum.
2. Materials and methods

2.1. Strains and growth conditions

P. chrysogenumWisconsin 54-1255 (reference laboratory strain for
the genome sequencing project) was used in this work. For
sporulation, Petri dishes containing solid Power medium [21]
were initially sown with 1 × 108 spores from P. chrysogenum and
were grown for six days at 25 °C. Conidia from one Petri dish
were collected and inoculated into a flask with 100 ml of defined
medium PMMY. It contains (g/l): NaNO3 (3.0), yeast extract (2.0),
NaCl (0.5), MgSO4 · 7H2O (0.5), FeSO4 · 7H2O (0.01) and glucose
(40.0). For polyamine supplementation experiments, 5 mM of
either 1,3-DAP or spermidine was added to the culture medium.

2.2. Protein samples preparation and 2-DE gel electrophoresis

Cultures were incubated in an orbital shaker for 48 h at 25 °C
and 250 rpmand themyceliawas collected by filtration through
a Nytal membrane, washed once with 0.9% NaCl, twice with
doubledistilledwater and stored at−80 °C. Frozenmyceliawere
ground to a fine powder in a precooled mortar using liquid
nitrogen. Proteins were solubilized using phosphate buffer and
precipitated with 2,2,2-tri-chloroacetic acid (TCA)/acetone as
previously described [19]. The final pellet was washed twice
with acetone followed by a final wash with 80% acetone and
solubilized in 500 μl of sample buffer: 8 M urea, 2% (w/v)
3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
(CHAPS), 0.5% (v/v) ampholytes, 25 mM DTT and 0.002%
bromophenol blue) and stored at −80 °C. The insoluble fraction
was discarded by centrifugation at 13,200 rpm for 5 min. The
supernatant was collected and the protein concentration was
determined according to the Bradford method (Bio-Rad), which
showed ahigh reproducibility for this protein extraction protocol.

A solution containing 350 μg of soluble proteins in the
sample buffer (see above), was loaded onto 18-cm IPG strips
(GE Healthcare), with non-linear (NL) pH 3–10 gradient. Focus-
ing of proteins, equilibration of the focused IPG strips and the
12.5% SDS-PAGE for the second dimension (carried out in an
Ettan Dalt Six apparatus (GE Healthcare)) were performed as
previously described [19]. Gels were dyed with Colloidal
Coomassie (CC) following the “Blue Silver” stainingmethod [22].

2.3. Analysis of differential protein abundance

Scanned 2D gels were analyzed using an ImageScanner III (GE
Healthcare) as described before [19]. Three biological repli-
cates were used for each condition. Variability in the number
of protein spots detected among biological replicates was less
than 10%, which may be due to experimental variability. Spot
normalization (internal calibration to make the data indepen-
dent from experimental variations among gels) was made
using relative volumes to quantify and compare the gel spots.
Relative spot volumes correspond to the volume of each
spot divided by the total volume of all the spots in the gel.
Differentially expressed proteins between two conditions
were consideredwhen the ratio of the relative volume average
for one specific spot (present in the three biological replicates)
was higher than 1.5 and the p-value was <0.05.

2.4. Protein identification by tandem MS spectrometry

The protein spots of interest were manually excised, digested
and processed as indicated before [19]. Samples were analyzed
with a 4800 Proteomics Analyzer MALDI-TOF/TOF mass spec-
trometer (Applied Biosystems). A 4700 proteomics analyzer
calibrationmixture (Cal Mix 5; Applied Biosystems) was used as
external calibration. All MS spectra were internally calibrated
using known peptides from the trypsin digestion. The analysis
by MALDI-TOF/TOFmass spectrometry produced peptide mass
fingerprints, and the peptides observed (up to 65 peptides per
spot) were collected and represented as a list of monoisotopic
molecular weights with a signal to noise ratio greater than
20 using the 4000 Series Explorer v3.5.3 software (Applied
Biosystems). All known contaminant ions (trypsin- and
keratin-derived peptides) were excluded for later MS/MS anal-
ysis. From each MS spectra, the six most intensive precursors
with a S/N greater than 20 were selected for MS/MS analyses
with CID (atmospheric gas was used) in 2-kV ion reflector mode
and precursor mass windows of ±7 Da. The default calibration
was optimized for the MS/MS spectra.

Mascot Generic Files combining MS and MS/MS spectra
were automatically created for protein identification, and
used to interrogate a nonredundant protein database using a
local license of Mascot v 2.2 from Matrix Science through the
Protein Global Server (GPS) v 3.6 (Applied Biosystems). The
search parameters for peptide mass fingerprints and tandem
MS spectra obtainedwere set as follows: (i) NCBInr (2009.11.03)
sequence databases were used; (ii) taxonomy: All entries
(9993394 sequences, 3409286210 residues); (iii) fixed and vari-
able modifications were considered (Cys as S carbamidomethyl
derivative and Met as oxidized methionine); (iv) one missed
cleavage site was allowed; (v) precursor tolerance was 100 ppm
and MS/MS fragment tolerance was 0.3 Da; (vi) peptide charge:
1+; and (vii) the algorithmwas set to use trypsin as the enzyme.
Protein candidates produced by this combined peptide mass
fingerprinting (PMF)/tandem MS search were considered valid
when the global Mascot score was greater than 83 with a
significance level of p < 0.05. Additional criteria for confident
identification were that the protein match should have at least
15% sequence coverage; for a lower coverage, only those
proteins with a Mascot ions score above 54 and at least two
peptides identified in the tandem MS analysis (with a signifi-
cance level of p < 0.05), were considered valid.

2.5. Analysis of the sporulation level

Spores were collected from Petri dishes sown with 1 × 108

spores of P. chrysogenum Wisconsin 54–1255 after six days of
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incubation in the absence (control) or presence of either
1,3-DAP or spermidine, and counted. Those values provided by
the control condition were set to 100. Results were provided as
the mean plus standard deviation of three independent
experiments carried out in triplicate. Data were subjected to
one-way analysis of variance (ANOVA) and statistical signifi-
cance was represented as “***” (P ≤ 0.001).

2.6. Scanning electron microscopy

P. chrysogenum was grown on Power solid medium for six days
at 28 °C in the absence and presence of either 5 mM 1,3-DAP or
spermidine. Then, a portion of the sporulated solid medium
from each conditionwas removed from the Petri dish, dried to a
critical point using a dryer (BALZERS CPD 030), sputtered with
10 nmAu/Pd (BALZERSSCD004) and examinedwith a JEOL 6100
scanning electron microscope.
3. Results

3.1. Effect of 1,3-DAP on the intracellular proteome of
P. chrysogenum

It was previously reported that the addition of 1,3-DAP to
pH-controlled fermentor cultures stimulate the biosynthesis
of benzylpenicillin in P. chrysogenum, both in defined and in
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oxidase (see Discussion) and there might be a direct conversion
of 1,3-DAP into the three-carbon propylamino moiety of
spermidine.

Another interesting enzyme only detected under 1,3-DAP
supplementation conditions is a probable UTP-glucose-1-
phosphate uridylyltransferase Ugp1 (spot Dc8). This enzyme,
also known as UDP-glucose pyrophosphorylase, catalyzes the
interconversion between MgUTP + glucose-1-phosphate and
UDP-glucose + MgPPi and in addition to its role in glycogen-
esis, it has been suggested to be essential for the completion



Table 1 – Proteins overrepresented in the P. chrysogenum Wisconsin 54-1255 intracellular proteome after the addition of 1,3-DAP. Fold increase and p-value are indicated for
those proteins detected under both conditions. Proteins that are only detected after the addition of 1,3-DAP are denoted as N/A.

Spot ORF
name

Accession
no.

Title Theoretical Estimated

Mass
(kDa)

pI Mass
(kDa)

pI Peptides
identified

Un-matched
peptides

Score Percent
coverage

(%)

Fold
increase

p-value Function

Metabolism and energy
Dc6 Pc21g01110 gi|255952859 Strong similarity to

3-methylcrotonyl-CoA carboxylase
(MCC) non-biotin-containing beta
subunit like protein An07g04270—
Aspergillus niger

62.6 7.7 64.7 7.1 19 41 683 44 N/A N/A Leucine
metabolism

Dc7 Pc18g05320 gi|211587092 Strong similarity to IMP dehydro-
genase IMH3 — Candida albicans

57.9 6.5 60.3 7.8 17 46 696 45 3.46 4.28E−04 Purine
metabolism

Dc8 Pc21g12790 gi|211590017 Strong similarity to
UTP-glucose-1-phosphate
uridylyltransferase Ugp1 —
Saccharomyces cerevisiae

57.7 6.4 59.1 7.5 19 46 552 51 N/A N/A Glycogenesis

Dc11 Pc12g03370 gi|211581841 Strong similarity to mitochondrial
F1-ATPase alpha-subunit Atp1 —
Saccharomyces cerevisiae

59.8 9.0 55.1 8.4 18 19 614 39 N/A N/A ATP biosynthesis

Dc12 Pc12g03370 gi|211581841 Strong similarity to mitochondrial
F1-ATPase alpha-subunit Atp1 —
Saccharomyces cerevisiae

59.8 9.0 55.1 8.6 22 32 575 43 N/A N/A ATP biosynthesis

Dc13 Pc21g17880 gi|211590494 Strong similarity to
4-aminobutyrate transaminase
gatA — Aspergillus nidulans

55.2 8.8 53.6 8.0 27 33 693 72 2.75 2.75E−04 β-alanine
biosynthesis

Dc14 Pc20g04720 gi|211587749 Strong similarity to precursor of
dihydrolipoamide
dehydrogenase Lpd1 —
Saccharomyces cerevisiae

54.6 7.7 51.7 7.3 30 29 999 64 2.05 6.95E−06 Acetyl-CoA
biosynthesis

Dc16 Pc21g01100 gi|255952857 Strong similarity to isovaleryl-
coenzyme A dehydrogenase like
protein An07g04280 — Aspergillus
niger

47.0 5.8 43.2 5.2 25 39 745 63 2.91 3.06E−04 Leucine
metabolism

Dc17 Pc18g02760 gi|211586850 Strong similarity to hypothetical
aldehyde dehydrogenase
CAB63554.1 — Schizosaccharomyces
pombe

54.2 5.5 42.8 5.8 17 48 712 46 N/A N/A b-alanine
biosynthesis

Dc18 Pc21g20480 gi|255956565 Strong similarity to ATP citrate
lyase ACL1 — Sordaria macrospora

71.9 7.6 42.3 8.1 15 48 784 27 N/A N/A Acetyl-CoA
biosynthesis

Dc19 Pc21g20480 gi|255956565 Strong similarity to ATP citrate
lyase ACL1 — Sordaria macrospora

71.9 7.6 42.1 7.6 20 44 657 31 N/A N/A Acetyl-CoA
biosynthesis

Dc20 Pc18g02760 gi|211586850 Strong similarity to hypothetical
aldehyde dehydrogenase
CAB63554.1 — Schizosaccharomyces
pombe

54.2 5.5 38.5 5.8 19 46 731 47 N/A N/A b-alanine
biosynthesis
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Un-matched
peptides

Score Percent
coverage

(%)

Fold
increase
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Dc21 Pc18g02760 gi|211586850 Strong similarity to hypothetical
aldehyde dehydrogenase
CAB63554.1 — Schizosaccharomyces
pombe

54.2 5.5 37.9 5.8 17 43 786 46 N/A N/A b-alanine
biosynthesis

Dc22 Pc18g02760 gi|211586850 Strong similarity to hypothetical
aldehyde dehydrogenase
CAB63554.1 — Schizosaccharomyces
pombe

54.2 5.5 37.4 5.4 10 38 401 32 N/A N/A b-alanine
biosynthesis

Dc23 Pc20g11650 gi|255945767 Strong similarity to bifunctional
purine synthase like protein
An15g00570 — Aspergillus niger

85.1 5.3 36.6 4.7 4 10 259 9 N/A N/A Purine
metabolism

Dc25 Pc20g01610 gi|211587455 Strong similarity to mitochondrial
malate dehydrogenase Mdh1 —
Saccharomyces cerevisiae

36 8.4 34.5 7.2 16 12 1030 62 N/A N/A Krebs cycle

Dc26 Pc13g12400 gi|211584276 Strong similarity to spermidine
synthase Spe3 — Saccharomyces
cerevisiae

33 5.5 30.4 5.5 11 54 413 40 3.28 8.89E−04 Polyamine
metabolism

Dc30 Pc12g00830 gi|211581603 Strong similarity to sorbitol
utilization protein sou2— Candida
albicans

29 5.3 27.4 5.2 17 47 531 80 6.10 6.33E−07 Carbohydrate
metabolism

Dc37 Pc22g10040 gi|211592030 Strong similarity to glucosamine-6-
phosphate deaminase like protein
An16g09070 — Aspergillus niger

40 6.1 14.8 7.1 7 23 368 36 N/A N/A Aminosugar
metabolism

Dc40 Pc13g08270 gi|211583872 Adenylylsulfate kinase AAA81521—
Penicillium chrysogenum

24 6.0 27.1 6.6 12 53 321 72 N/A N/A Purine, seleno
amino acids and
sulfur metabolism

Pc21g21370 gi|211590823 Acyl-coenzyme A:isopenicillin N
acyltransferase (acyltransferase)
AAT/PenDE— Penicillium chrysogenum

40 6.2 27.1 6.6 11 54 281 37 N/A N/A Penicillin
biosynthesis

Information pathways
Dc2 Pc22g19990 gi|211592918 Strong similarity to endonuclease

SceI 75 kDa subunit Ens1 —
Saccharomyces cerevisiae

72.6 5.6 80.5 4.9 28 34 769 49 4.39 5.32E−04 Protein fate

Dc3 Pc22g10220 gi|211592047 Strong similarity to dnaK-type mo-
lecular chaperone Ssb2 —
Saccharomyces cerevisiae

67.0 5.3 69.7 4.9 11 54 232 31 N/A N/A Protein fate

Dc4 Pc22g10220 gi|211592047 Strong similarity to dnaK-type
molecular chaperone Ssb2 —
Saccharomyces cerevisiae

67.0 5.3 68.5 4.6 20 44 705 47 N/A N/A Protein fate

Dc5 Pc22g10220 gi|211592047 Strong similarity to dnaK-type mo-
lecular chaperone Ssb2 —
Saccharomyces cerevisiae

67.0 5.3 65.8 4.7 25 38 1060 50 4.70 1.25E−04 Protein fate

Dc10 Pc15g00640 gi|211584913 Strong similarity to GDP dissocia-
tion inhibitor in the secretory path-
way Gdi1 — Saccharomyces cerevisiae

52.1 5.3 54.6 5.4 19 46 293 54 N/A N/A Protein fate

Dc24 Pc13g08810 gi|211583926 Strong similarity to elongation factor
1beta EF-1— Oryctolagus cuniculus

25.0 4.4 33.9 3.8 8 41 748 59 N/A N/A Protein synthesis

(continued on next page)
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Table 1 (continued)

Spot ORF
name

Accession
no.

Title Theoretical Estimated

Mass
(kDa)

pI Mass
(kDa)

pI Peptides
identified

Un-matched
peptides

Score Percent
coverage

(%)

Fold
increase

p-value Function

Dc31 Pc16g01190 gi|211585160 Strong similarity to actin-binding
protein like protein An03g06960 —
Aspergillus niger

84 4.9 24.8 5.5 11 14 462 20 N/A N/A Protein with
binding function
or cofactor
requirement

Dc32 Pc18g00860 gi|255942327 Weak similarity to suppressor of
tom1 protein Mpt4 —
Saccharomyces cerevisiae

34.5 9.7 22.7 6.5 9 36 143 28 N/A N/A Protein synthesis

Dc33 Pc18g00860 gi|255942327 Weak similarity to suppressor of
tom1 protein Mpt4 —
Saccharomyces cerevisiae

34.5 9.7 22.6 7.4 11 50 347 30 4.30 4.59E−04 Protein synthesis

Dc34 Pc21g03140 gi|211589089 Strong similarity to cell
cycle regulator p21 protein
wos2p — Schizosaccharomyces
pombe

22 4.5 18.6 4.0 9 54 203 39 N/A N/A Cell cycle and
DNA processing

Dc36 Pc20g13270 gi|211588542 Strong similarity to nascent
polypeptide-associated complex
alpha chain alpha-NAC — Mus
musculus

22 4.7 14.8 4.2 3 62 88 20 2.64 2.04E−05 Transcription

Dc38 Pc22g16880 gi|211592618 Strong similarity to steroid
membrane binding protein like
protein An04g00560 — Aspergillus
niger

14 5.1 13.1 4.7 8 48 464 80 N/A N/A Protein with
binding function
or cofactor
requirement

Cellular transport and transport routes
Dc3 Pc21g15100 gi|211590231 Strong similarity to H+-

transporting ATPase vma-1 —
Neurospora crassa

66.6 5.2 69.7 4.9 23 42 483 49 N/A N/A Proton transport

Dc9 Pc22g13480 gi|211592291 Strong similarity to vacuolar
H(+)-transporting ATPase
subunit B Vma2 — Saccharomyces
cerevisiae

56.1 5.7 57.6 6.0 22 39 788 55 N/A N/A Proton transport

Information pathways
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ORF name Accession
no.

Title Theoretical Estimated

Mass
(kDa)

pI Mass
(kDa)

pI Peptides
identified

Un-matched
peptides

Score Percent
coverage

(%)

Fold
increase

p-value Function

Perception and response to stimuli
Dc8 Pc16g13280 gi|211586250 Strong similarity to glutathione

reductase Glr1 — Saccharomyces
cerevisiae

51.5 6.2 59.1 7.5 11 54 338 33 N/A N/A Cell rescue,
defense and
virulence

Dc10 Pc22g01020 gi|255946760 Strong similarity to choline
sulfatase betC — Sinorhizobium
meliloti

66.5 5.7 54.6 5.4 22 40 653 53 N/A N/A Cell rescue,
defense and
virulence

Dc35 Pc22g23760 gi|211593284 Strong similarity to type 2
peroxiredoxin like
protein An12g08570 — Aspergillus
niger

19 4.9 15.5 4.2 12 53 752 68 3.24 3.74E−05 Cell rescue,
defense and
virulence

Developmental processes
Dc1 Pc22g09380 gi|211591967 Strong similarity to

glycosylphosphatidylinositol-
anchored beta(1–3)
glucanosyltransferase gel3 —
Aspergillus fumigatus

57.6 4.9 82.4 4.2 11 36 427 24 3.51 3.54E−04 Biogenesis of
cellular
components

Dc15 Pc20g11630 gi|211588384 Gamma-actin act-Penicillium
chrysogenum

41.8 5.5 44.4 5.4 5 17 343 17 N/A N/A Biogenesis of
cellular
components

Other proteins
Dc22 Pc22g04410 gi|211591496 Strong similarity to

Ngg1p-interacting factor Nif3 —
Saccharomyces cerevisiae

38.8 5.4 37.4 5.4 7 44 242 31 N/A N/A Unknown

Dc27 Pc21g12310 gi|255955019 Hypothetical protein [Penicillium
chrysogenum]

30.4 5.6 28.9 5.8 18 38 505 67 3.03 3.52E−04 Unknown

Dc28 Pc12g08070 gi|211582258 Weak similarity to hypothetical
protein Ta1372 — Thermoplasma
acidophilum

27 5.0 28.8 6.9 13 49 418 61 N/A N/A Unknown

Dc29 Pc12g08070 gi|211582258 Weak similarity to hypothetical
protein Ta1372 — Thermoplasma
acidophilum

27 5.0 27.8 5.7 4 18 222 25 N/A N/A Unknown

Dc36 gi|144952798 16 kDa allergen [Penicillium
chrysogenum]

16 5.2 14.8 4.2 4 61 404 21 2.64 2.04E−05 Unknown

Dc39 Pc20g07680 gi|255945047 Strong similarity to hypothetical
protein contig1487_1.tfa_820cg —
Aspergillus fumigatus

16.3 9.1 13.0 5.9 5 35 314 40 N/A N/A Unknown
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Table 2 – Proteins underrepresented in the P. chrysogenum Wisconsin 54-1255 intracellular proteome after the addition of 1,3-DAP. Fold decrease and p-value are indicated
for those proteins detected under both conditions. Proteins that are not detected after the addition of 1,3-DAP are denoted as N/A.

Spot ORF
name

Accession
no.

Title Theoretical Estimated

Mass
(kDa)

pI Mass
(kDa)

pI Peptides
identified

Un-matched
peptides

Score Percent
coverage

(%)

Fold
decrease

p-value Function

Information pathways
Cd5 Pc22g11240 gi|211592088 Strong similarity to heat shock protein 70

hsp70 — Ajellomyces capsulatus
69.7 5.03 32.9 4.0 18 47 586 39 2.92 7.03E−04 Protein fate

Cd6 Pc22g11240 gi|211592088 Strong similarity to heat shock protein 70
hsp70 — Ajellomyces capsulatus

69.7 5.03 32.1 4.0 15 46 469 32 3.16 1.11E−03 Protein fate

Cd7 Pc22g19990 gi|211592918 Strong similarity to endonuclease SceI
75 kDa subunit Ens1 — Saccharomyces
cerevisiae

72.6 5.58 31.4 4.1 19 46 438 27 3.44 1.33E−04 Protein fate

Cd9 Pc21g02360 gi|211589011 Strong similarity to GU4 nucleic-binding
protein 1 Arc1 — Saccharomyces cerevisiae

47.8 6.4 29.8 8.3 13 36 662 40 2.50 7.53E−04 Protein with binding
function or cofactor
requirement

Cd11 Pc21g11890 gi|255954935 Strong similarity to RNA binding protein
47 RBP47 — Nicotiana plumbaginifolia

44.0 6.00 20.9 8.3 10 42 387 35 3.17 1.90E−04 Protein with binding
function or cofactor
requirement

Cd14 Pc22g02800 gi|61380693 Calreticulin [Penicillium chrysogenum]. strong
similarity to calcium-binding protein pre-
cursor cnx1p— Schizosaccharomyces pombe

61.8 4.78 67.4 4.0 10 55 324 22 N/A N/A Protein fate

Pc21g11280 gi|211589871 Strong similarity to protein disulfide
isomerase A pdiA — Aspergillus niger

57 4.7 67.4 4.0 11 54 222 28 N/A N/A Protein fate

Cd17 Pc20g11850 gi|211588406 Strong similarity to elongation factor
1-gamma 1 Tef3— Saccharomyces cerevisiae

46 5.8 23.3 4.7 7 58 112 24 2.01 1.22E−05 Protein synthesis

Cd20 Pc12g10670 gi|255932663 Strong similarity to dnaK-type molecular
chaperone bipA — Aspergillus niger

73.7 4.81 30.4 3.6 8 22 477 14 2.10 4.11E−06 Protein fate

Cd21 Pc22g11240 gi|211592088 Strong similarity to heat shock protein 70
hsp70 — Ajellomyces capsulatus

69.7 5.03 29.3 4.2 16 46 562 33 3.20 3.07E−03 Protein fate

Cd22 Pc22g11240 gi|211592088 Strong similarity to heat shock protein 70
hsp70 — Ajellomyces capsulatus

69.7 5.03 28.4 4.2 14 51 428 29 2.27 1.31E−03 Protein fate

Cd23 Pc21g03140 gi|211589089 Strong similarity to cell cycle regulator p21
proteinwos2p— Schizosaccharomyces pombe

22 4.5 14.1 4.2 10 55 315 39 2.31 7.76E−03 Cell cycle and DNA
processing

Cd25 Pc16g13060 gi|211586228 Strong similarity to cyclophilin cypB —
Aspergillus nidulans

18 6.9 15.1 7.7 8 57 408 44 2.03 3.50E−04 Protein fate

Perception and response to stimuli
Cd2 Pc12g03130 gi|211581818 Strong similarity to acetyl-CoA hydrolase

Ach1 — Saccharomyces cerevisiae
58.3 6.17 63.4 7.4 23 42 697 63 5.61 7.78E−05 Cell rescue, defense

and virulence
Cd3 Pc12g03130 gi|211581818 Strong similarity to acetyl-CoA hydrolase

Ach1 — Saccharomyces cerevisiae
58.3 6.17 63.4 7.1 26 35 746 63 3.31 3.43E−03 Cell rescue, defense

and virulence
Cd4 Pc12g03130 gi|211581818 Strong similarity to acetyl-CoA hydrolase

Ach1 — Saccharomyces cerevisiae
58.3 6.17 62.0 7.2 22 42 758 63 3.57 4.05E−07 Cell rescue, defense

and virulence
Cd8 Pc12g09030 gi|255932349 Strong similarity to fumarylacetoacetase—

Homo sapiens
46.6 6.01 29.4 5.2 12 53 297 31 2.53 1.89E−04 Homogentisate

pathway
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ORF name Accession
no.

Title Theoretical Estimated

Mass
(kDa)

pI Mass
(kDa)

pI Peptides
identified

Un-matched
peptides
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(%)

Fold
decrease

p-value Function

Cd12 Pc12g09030 gi|255932349 Strong similarity to fumarylacetoacetase—
Homo sapiens

46.6 6.01 16.8 4.6 6 14 320 22 3.41 6.73E−06 Homogentisate
pathway

Cd16 Pc12g09020 gi|255932347 Strong similarity to maleylacetoacetate
isomerase maiA — Aspergillus nidulans

24.9 6.45 25.0 7.0 18 47 667 84 2.73 1.41E−03 Homogentisate
pathway

Cd19 Pc12g09030 gi|255932349 Strong similarity to fumarylacetoacetase—
Homo sapiens

46.6 6.01 31.0 5.2 14 50 560 40 2.13 9.09E−04 Homogentisate
pathway

Cd24 Pc21g16940 gi|255955883 Strong similarity to Cu,Zn superoxide
dismutase sodC — Aspergillus fumigatus

16.0 5.94 13.6 7.1 11 54 562 88 2.12 1.77E−03 Cell rescue, defense
and virulence

Metabolism and energy
Cd1 Pc22g03660 gi|211591424 Strong similarity to isocitrate lyase acuD—

Aspergillus nidulans
60.1 6.52 63.0 7.8 19 28 523 49 3.98 1.04E−05 Glyoxylate and

dicarboxilate
metabolism

Cd10 Pc06g01600 gi|255930411 Strong similarity to FAD dependent
L-sorbose dehydrogenase SDH —
Gluconobacter oxydans

65.3 6.1 28.5 7.5 11 54 288 28 2.55 2.82E−04 L-ascorbic acid
synthesis

Pc22g10040 gi|211592030 Strong similarity to glucosamine-6-
phosphate deaminase like protein
An16g09070 — Aspergillus niger

40 6.1 28.5 7.5 10 55 133 43 2.55 2.82E−04 Aminosugar
metabolism

Pc12g06870 gi|211582144 Strong similarity to succinyl coenzyme A
synthase alpha subunit SYRTSA — Rattus
norvegicus

35 8.9 28.5 7.5 8 57 123 31 2.55 2.82E−04 Krebs cycle

Pc12g04650 gi|211581953 Strong similarity to purine-nucleoside
phosphorylase — Bos taurus

33 5.9 28.5 7.5 7 58 98 35 2.55 2.82E−04 Purine metabolism

Cd26 Pc16g07470 gi|211585695 Strong similarity to glycine decarboxylase
subunit T Gcv1 — Saccharomyces cerevisiae

52 8.9 47.6 7.6 24 39 953 64 2.19 2.13E−04 Glycine to 5,10
methylene
tetrahydrofolate
catabolism

Cd27 Pc20g13510 gi|211588565 Strong similarity to methylcitrate
synthase mcsA — Aspergillus nidulans

51 8.4 45.2 7.9 23 40 645 59 4.01 1.55E−04 Propionate to pyruvate
oxidation through
methylcitrate cycle

Cellular transport and transport routes
Cd17 Pc20g04810 gi|211587757 Strong similarity to estrogen

receptor-binding cyclophilin cypD — Bos
primigenius taurus

41 5.9 23.3 4.7 10 55 478 37 2.01 1.22E−05 Component of the
mitochondrial
permeability
transition pore

Other proteins
Cd8 Pc22g09910 gi|255948466 Strong similarity to hypothetical protein

SPAC1F3.09 — Schizosaccharomyces pombe
64.5 5.71 29.4 5.2 13 52 115 29 2.53 1.89E−04 Unknown

Cd13 Pc12g00650 gi|211581586 Similarity tohypothetical proteinCC3092—
Caulobacter crescentus

15 6.1 12.5 7.4 12 53 811 95 3.45 2.16E−04 Unknown

Cd15 Pc23g00350 gi|255951667 Hypothetical protein BAC82546 —
Penicillium chrysogenum

22.5 6.05 20.2 7.3 11 54 605 47 2.33 4.30E−04 Unknown

Pc24g02750 gi|34392437 Hypothetical protein [Penicillium
chrysogenum]

23.2 5.58 20.2 7.3 9 56 442 36 2.33 4.30E−04 Unknown

Cd18 Pc21g02210 gi|211588997 Strong similarity to hypothetical protein
contig31_part_ii.tfa_2190wg — Aspergillus
fumigatus

35 5.6 33.1 5.9 6 4 489 23 2.23 1.58E−06 Unknown
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of development of the slime mold Dictyostelium discoideum
[23–25], probably through its contribution to the cell wall
biosynthesis.

Acetyl-CoA is a precursor of the α-aminoadipic acid side
chain of penicillin. The biosynthesis of acetyl-CoA seems to be
favored after 1,3-DAP addition. Mechanisms for the production
of acetyl-CoA are represented by a probable ATP citrate lyase
ACL1 (spots Dc18 and Dc19, only detected under supplementa-
tion conditions) and a probable mitochondrial precursor of
dihydrolipoamide dehydrogenase Lpd1 (spot Dc14, 2.05-fold
overrepresented). Indeed, the homocitrate synthase enzyme
that introduces acetyl-CoA to the α-aminoadipic acid biosyn-
thetic route has been reported to be a mitochondrial enzyme
[26,27]. Production of ATP is also favored by 1,3-DAP, since two
isoforms of a probable mitochondrial F1-ATP synthase alpha-
subunit ATP1 (spots Dc11 and Dc12) are only detected under
induction conditions. The ATP synthase complex consists of
two major components, soluble F1 (containing the catalytic
core) and membrane-bound F0 [28]. It has been observed that
although the ATP1 protein is essential for mitochondrial ATP
synthase function, it is not essential for life in yeast and
deletion of ATP1 leads to a “petite” phenotype that is slow-
growing but still able to survive on fermentable carbon sources
[29].

It is also interesting to note that four isoforms of a
hypothetical aldehyde dehydrogenase are only detected after
the induction with 1,3-DAP (spots Dc17, Dc20, Dc21 and Dc22).
This enzyme shows high similarity with aldehyde dehydro-
genases from different ascomycetes (i.e. 95% similarity and
87% identity with the ALD3 from Neosartorya fischeri). It has
been reported that the ALD2 and ALD3-encoding genes are
required for β-alanine (3-aminopropionic acid) biosynthesis in
Saccharomyces cerevisiae [30]. Related to these results is the
overrepresentation (2.75 times) of a probable 4-aminobutyrate
transaminase (spot Dc13). The latter is involved in the conver-
sion of 4-aminobutanoate (GABA) + 2-oxoglutarate to succinate
semialdehyde + L-glutamate and participates in β-alanine me-
tabolism. These two enzymes are ω-aminotransferases acting
on ω-aldehydes. Biochemical studies using purified enzymes of
P. chrysogenum showed that those enzymes are essential for the
conversion of α-aminoadipic semialdehyde into lysine and vice
versa [31] (see Discussion).

An adenylylsulfate kinase AAA81521 (only detected under
inducing conditions; spot Dc40) participates in sulphur
metabolism catalyzing the synthesis of activated phosph-
oadenylylsulfate. The latter is a key step in the conversion of
sulfate into SH2 and cysteine, which is precursor of the ACV
tripeptide giving rise to penicillin.

3.1.2. Information pathways
Some proteins differentially represented after the addition of
1,3-DAP are involved in protein fate mechanisms (see
Discussion). Treatment with 1,3-DAP induces the biosynthesis
of i) three isoforms of a probable DnaK-type molecular
chaperone Ssb2 (spots Dc3, Dc4 and Dc5), ii) Gdi1, a probable
GDP dissociation inhibitor in the secretory pathway (spot
Dc10), which plays an essential function in membrane traffic
and in the recycling of proteins of the Sec4/Ypt/rab family
from their target membranes back to their vesicular pools [32]
and iii) one isoform of a probable 75 kDa subunit Ens1
endonuclease SceI (spot Dc2), which is a mitochondrial version
of the 70-kDa heat shock protein (HSP70) [33]. Although 1,3-DAP
induces the biosynthesis of those chaperones, this compound
seems to exert a stronger effect leading to a reduction in the
biosynthesis of several well-known chaperones and foldases
(see Table 2).

Transcription and translation activating factors are also
affected by 1,3-DAP. One interesting information-pathways
protein that is overrepresented after 1,3-DAP addition is a
probable suppressor of tom1, protein Mpt4. This protein, found
in spots Dc32 (only detected under 1,3-DAP supplementation)
and Dc33 (4.30-fold overrepresented), is a ribosome-associated
protein from S. cerevisiae required for optimal translation under
nutrient stress [34]. Indeed, penicillin production follows carbon
and phosphate limitation stress [35]. Under these nutrient
limitation conditions theMpt4 proteinmay keep the translation
of penicillin biosynthetic enzymes active for prolonged time, as
observed previously [8]. A probable nascent polypeptide-
associated complex alpha chain alpha-NAC (spot Dc36), which
has been reported to function as a transcriptional coactivator
[36], is 2.64-fold overrepresented under these conditions.

3.1.3. Cellular transport, transport facilitation and transport
routes
The addition of 1,3-DAP seems to increase the generation of
proton gradient across membranes, since two subunits of the
vacuolar H+-transporting ATPase were detected only after the
addition of 1,3-DAP (spots Dc3 and Dc9). Vacuolar ATPases
acidify several intracellular organelles and pump protons
across the plasma membranes of numerous cell types (see
Discussion).

On the contrary, 1,3-DAP decreases the biosynthesis of a
probable estrogen receptor-binding cyclophilin CypD (spot
Cd17). This protein has been found to play an important role
in the mitochondrial permeability transition, in which mito-
chondrial pores open, leading to cell death inmammals [37,38].

3.1.4. Response to stimuli
Two proteins overrepresented after 1,3-DAP addition are
involved in cell redox homeostasis. A probable type 2
peroxiredoxin like protein is found 3.24-fold overrepresented
(spot Dc35), whereas a probable glutathione reductase Glr1 is
only detected under 1,3-DAP supplementation (spot Dc8). The
latter has been found as one of the proteins overrepresented in
the penicillin high-producer strain AS-P-78 [19]. This enzyme
probably plays a role in maintaining the ACV tripeptide in the
reduced monomer (ACV-SH) form, which is required for
penicillin biosynthesis [39]. Another interesting finding is
present in spot Dc10. This spot is only detected after 1,3-DAP
addition and includes a probable choline sulfatase BetC, which
is involved in the conversion of choline-O-sulfate and, at a
lower rate, phosphorylcholine, into choline. Choline is the
precursor for glycine betaine, which is a potent osmoprotectant
accumulated by Sinorhizobium meliloti to cope with osmotic
stress [40]. The osmotic stress produced by the very dense
culture medium in industrial fermentations may require
compensating concentrations of glycine betaine.

Underrepresented proteins after the addition of 1,3-DAP
are also found in this response to stimuli category of proteins.
It is striking that two of these proteins belong to the
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phenylacetate degradation homogentisate pathway. Three
isoforms of a probable fumarylacetoacetase are found in spots
Cd8, Cd12 and Cd19. This enzyme catalyzes the hydrolytic
cleavage of a carbon–carbon bond in fumarylacetoacetate to
yield fumarate and acetoacetate as the final step in
phenylacetate, phenylalanine and tyrosine degradation [41].
The other enzyme from the homogentisate pathway is a
probable maleylacetoacetate isomerase, which is 2.73-fold
underrepresented (spot Cd16) in the presence of 1,3-DAP. This
enzyme is also involved in tyrosine and phenylalanine catab-
olism and catalyzes the penultimate step of the homogentisate
pathway. This pathway is used for the degradation of
phenylacetic acid, the side chain precursor of benzylpenicillin
(see Discussion). It is also remarkable that three isoforms of a
probable acetyl-CoA hydrolase Ach1 (spots Cd2, Cd3 and Cd4)
are also underrepresented after induction with 1,3-DAP. This
protein is involved in mitochondrial acetate detoxification by a
CoASH transfer fromacetyl-CoA to succinate conserving energy
by the detoxification of mitochondrial acetate rather than
performing the energy wasting hydrolysis of acetyl-CoA [42].

3.1.5. Developmental processes
1,3-DAP seems to induce the synthesis of proteins involved
in the biosynthesis of the fungal cell wall and in the
cytoskeletal maintenance (see Discussion). A probable
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Fig. 4 – Comparison of the intracellular proteomes of P. chrysogen
spermidine. 2-DE gels of the intracellular proteomes of the Wisco
presence of spermidine. The designation “Cs” is used for those s
whereas “Sc” is used for those spots overrepresented after treatm
numbered and correspond to those proteins listed in Tables 3 an
glycosylphosphatidylinositol-anchored beta(1–3)glucanosyl-
transferase Gel3 is found 3.51-fold overrepresented (spot
Dc1). Gamma-actin is only detected after 1,3-DAP addition
(spot Dc15). Actin is a protein involved in crucial cellular
processes such as motility, regulation of cell growth and
differentiation, endocytosis, exocytosis, and structural stability
[43].

3.1.6. Effect of spermidine on the intracellular proteome of
P. chrysogenum
Since the addition of 1,3-DAP and spermidine provided a
similar effect in terms of penicillin production and growth
[8,9] and as shown above the spermidine synthase levels are
increased after 1,3-DAP addition, proteomics studies were
carried out to test the biological mechanisms induced by
spermidine. Cultures of P. chrysogenum in the presence and
absence of this polyamine were performed and the intracel-
lular protein fractions were analyzed by 2-DE and tandem MS
spectrometry. The gels obtained for both conditions were
compared to each other (Fig. 4), showing 53 spots (including a
total of 62 proteins) overrepresented and 35 spots (including a
total of 40 proteins) underrepresented after spermidine supple-
mentation (Fig. 5). Proteins included in those spots were
grouped according to functional categories (Tables 3 and 4).
Some proteins differentially represented after the addition of
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Fig. 5 – Close-up view of the spots differentially represented after addition of spermidine. Enlargement of gel portions
containing the spots overrepresented in the gels of Fig. 4. The designation “Cs” is used for those spots underrepresented after
the addition of this polyamine, whereas “Sc” is used for those spots overrepresented after treatment with spermidine. The
spots differentially represented are numbered and correspond to those proteins listed in Tables 3 and 4.
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spermidinewere coincidentwith proteinswhose synthesiswas
modified after 1,3-DAP supplementation and are listed in
Table 5. The main findings are summarized below.
3.1.7. Metabolism and energy
The most relevant finding in this category is that one of the
isoforms of the IAT, which is involved in the last step of
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penicillin biosynthesis, is only detected after the addition of
spermidine (spot Sc41). This isoform was also induced after
1,3-DAP addition (see Discussion). This result correlates well
with the previously-described increase in the penicillin titers
after spermidine addition [9].

Another interesting finding is that two proteins with an
important role in the biosynthesis of β-lactam antibiotics are
onlydetectedafter inductionwith spermidine. The first enzyme
is a probable phosphogluconate dehydrogenase Gnd1 (spot
Sc20), which catalyzes a NADPH regenerating reaction in the
pentose phosphate pathway. The second protein is a probable
thiamine-phosphate pyrophosphorylase/hydroxyethylthiazole
kinase (spot Sc15) (see Discussion).

As it was observed for 1,3-DAP, a probable UTP-glucose-
1-phosphate uridylyltransferase Ugp1 (spot Sc12) is only
detected after the addition of spermidine. This enzyme, as it
was indicated above, is involved in glycogenesis and it has
been suggested to be essential for the completion of develop-
ment of the slime mold D. discoideum [23–25].

The biosynthesis of acetyl-CoA seems to be favored also after
the addition of spermidine. In this case, the main pathway for
the production of acetyl-CoA is represented by the two isoforms
of a probable ATP citrate lyase ACL1 (spots Sc28 and Sc29, only
detected under supplementation with spermidine), which were
also induced by 1,3-DAP, and a probable alpha subunit E1 of the
pyruvate dehydrogenase complex Pda1 (spot Sc23).

The presence of three isoforms of a probable soluble
cytosolic fumarate reductase, which converts fumarate to
succinate, is only detected after induction with spermidine
(spots Sc42, Sc43 and Sc45) and may indicate a shift in
metabolism, since fumarate reductase has been reported to
be important in microbial metabolism as a part of anaerobic
respiration [44].

Two different alcohol dehydrogenases are only detected
after the addition of spermidine. The first one is a probable
alcohol dehydrogenase AlkJ (spot Sc11), which converts
primary alcohols produced by the alkane utilizing system of
Pseudomonas oleovorans (the most thoroughly characterized
bacterial system for oxidation of alkanes in the C5 to C12
range) to aldehydes [45,46]. The second one is a probable ALR
alcohol dehydrogenase (NADP+) (spot Sc34), which catalyzes
the NADPH-dependent reduction of a variety of aromatic and
aliphatic aldehydes to their corresponding alcohols. It cata-
lyzes the reduction of mevaldate to mevalonic acid and of
glyceraldehyde to glycerol and plays a role in the activation of
procarcinogens, such as polycyclic aromatic hydrocarbon
trans-dihydrodiols [47,48].

Related to β-alanine biosynthesis, two isoforms of a
probable 4-aminobutyrate transaminase were 4.47-fold over-
represented (spot Sc17) or only detected (spot Sc16) after
spermidine addition (see Discussion). This protein, which is
required for oxidative stress tolerance and nitrogen utilization
[49,50], was also found overrepresented in the presence of
1,3-DAP.

As it was observed with 1,3-DAP, purinemetabolism is also
favored after the addition of spermidine to the cultures. A
probable guanylate kinase Guk1 (spot Sc48), which catalyzes
the ATP-dependent phosphorylation of GMP into GDP and is
essential for recycling GMP and indirectly, cGMP [51], is
5.74-fold overrepresented.
The finding that a probable 5-aminolevulinic acid
synthase HemA is only detected after spermidine addition
(spot Sc10) is interesting. This enzyme catalyses the
pyridoxal phosphate-dependent condensation of succinyl-CoA
and glycine to give 5-aminolevulinic acid, which is the first
intermediate in the porphyrin synthesis pathway. Correlated to
this result is the 2.56-fold overrepresentation of a probable
coproporphyrinogen oxidase III Hem13 (spot Sc31), which is
involved in the sixth step of porphyrin metabolism (see
Discussion).

It is interesting that spermidine causes a 2.21-fold decrease
in the levels of the cysteine synthase (spot Cs18), an enzyme
forming cysteine from serine. Cysteine is formed by at least
two pathways in fungi (see Discussion).

3.1.8. Information pathways
Some proteins involved in protein fate mechanisms that are
differentially represented after the addition of spermidine are
the same as those found differentially represented after the
addition of 1,3-DAP (see Discussion).

As it was observed for 1,3-DAP, spermidine addition also
induces the synthesis of a probable suppressor of tom1
protein Mpt4 (spots Sc39; 7.63-fold overrepresented) and
Sc48 (5.74-fold overrepresented). The synthesis of a probable
nascent polypeptide-associated complex alpha chain alpha-NAC
(spot Sc50, 3.1-fold overrepresented), was also increased by
1,3-DAP.

Proteins specifically induced by spermidine and not by
1,3-DAP are involved in translation processes or in the
regulation of protein function. The proteins specifically
repressed by this polyamine are the allergen Pen n-18 (a
vacuolar serine proteinase found 2.31-fold underrepresented
in spot Cs26) or a probable ubiquitin conjugating enzyme Ubc4
(spot Cs33, only detected without spermidine), which medi-
ates selective degradation of short-lived and abnormal pro-
teins [52].

3.1.9. Response to stimuli
A probable glutathione reductase Glr1 is only detected after
the addition of spermidine (spot Sc14), a result that is
coincident with that obtained after the addition of 1,3-DAP.
This protein has been found as one of the proteins overrep-
resented in the penicillin high-producer strain AS-P-78 [19].

Interestingly, two isoforms of a probable fumarylacetoacetase
are overrepresented (spots Sc19; only detected under spermidine
supplementationandSc22; 3.35-fold overrepresented),whereas it
was underrepresented after the addition of 1,3-DAP. This enzyme
belongs to the homogentisate pathway catalyzing the hydrolytic
cleavage of a carbon–carbon bond in fumarylacetoacetate
to yield fumarate and acetoacetate as the final step in
phenylacetate, phenylalanine and tyrosine degradation [41].
Related to this result is the finding of two isoforms of a
3,4-dihydroxyphenylacetate 2,3-dioxygenase HmgA (spots
Sc16 and Sc30). This enzyme, also known as homogentisate
dioxygenase, is only detected after the addition of spermidine
and catalyzes the conversion of 2,5-dihydroxyphenylacetate
into maleylacetoacetate in the homogentisate pathway. Sur-
prisingly, another isoform of this enzyme is found 2.1-fold
underrepresented by the addition of spermidine (spot Cs19).
Therefore, the homogentisate pathway seems to be highly



Table 3 – Proteins overrepresented in the P. chrysogenumWisconsin 54-1255 intracellular proteome after the addition of spermidine. Fold increase and p-value are indicated
for those proteins detected under both conditions. Proteins that are only detected after the addition of spermidine are denoted as N/A.

Spot ORF
name

Accession
no.

Title Theoretical Estimated

Mass
(kDa)

pI Mass
(kDa)

pI Peptides
identified

Un-matched
peptides

Score Percent
coverage

(%)

Fold
increase

p-value Function

Metabolism and energy
Sc2 Pc22g00570 gi|255946670 Strong similarity to triacylglycerol lipase

lipI — Geotrichum candidum
61.2 6.5 10.5 7.7 22 43 1000 39 4.50 2.30E−04 Lipid metabolism

Sc6 Pc06g01600 gi|255930411 Strong similarity to FADdependent L-sorbose
dehydrogenase SDH — Gluconobacter oxydans

65.3 6.1 68.2 7.2 28 37 691 69 2.55 4.76E−04 L-ascorbic acid
synthesis

Sc9 Pc21g01110 gi|255952859 Strong similarity to 3-methylcrotonyl-CoA
carboxylase (MCC) non-biotin-containing
beta subunit like protein An07g04270 —
Aspergillus niger

62.6 7.7 62.9 7.1 22 39 813 46 N/A N/A Leucine metabolism

Sc10 Pc22g13500 gi|255949018 Strong similarity to 5-aminolevulinic acid
synthase hemA — Aspergillus nidulans

69.2 8.6 59.1 7.0 23 42 436 53 N/A N/A Porphyrin
biosynthesis

Sc11 Pc22g10020 gi|211592028 Strong similarity to alcohol dehydrogenase
alkJ — Pseudomonas oleovorans

60.3 5.9 57.2 8.1 27 37 549 50 N/A N/A Alcohol metabolism

Sc12 Pc21g12790 gi|211590017 Strong similarity to UTP-glucose-1-phosphate
uridylyltransferase Ugp1— Saccharomyces
cerevisiae

57.7 6.4 56.6 7.5 24 37 748 58 N/A N/A Glycogenesis

Sc15 Pc13g03600 gi|255935541 Strong similarity to thiamin-phosphate
pyrophosphorylase/hydroxyethylthiazole
kinase Thi6 — Saccharomyces cerevisiae

54.2 6.0 53.2 6.4 21 34 657 58 N/A N/A Thiamine
biosynthesis

Sc16 Pc21g17880 gi|211590494 Strong similarity to 4-aminobutyrate trans-
aminase gatA — Aspergillus nidulans

55.2 8.8 51.7 7.9 22 43 431 53 N/A N/A b-alanine
biosynthesis

Sc17 Pc21g17880 gi|211590494 Strong similarity to 4-aminobutyrate trans-
aminase gatA — Aspergillus nidulans

55.2 8.8 51.7 8.0 30 28 950 76 4.47 1.11E−04 b-alanine
biosynthesis

Sc18 Pc21g17590 gi|255956007 Strong similarity to acyl-CoA dehydrogenase
like protein An17g01150 — Aspergillus niger

49.0 8.7 47.0 8.9 25 40 889 64 N/A N/A Lipid metabolism

Sc20 Pc12g10940 gi|211582533 Strong similarity to phosphogluconate
dehydrogenase Gnd1 — Saccharomyces
cerevisiae

56.1 5.9 46.8 6.1 26 39 1010 58 N/A N/A Pentose phosphate
pathway

Sc21 Pc22g16600 gi|255949614 Strong similarity to molybdopterin-
converting factor activator like protein
An03g03000 — Aspergillus niger

63.1 5.8 46.7 7.6 25 40 911 52 N/A N/A Cofactor
biosynthesis

Sc23 Pc22g11710 gi|211592134 Strong similarity to alpha subunit E1 of the
pyruvate dehydrogenase complex Pda1 —
Saccharomyces cerevisiae

45.4 8.5 45.4 5.9 14 51 226 37 N/A N/A Acetyl-CoA
biosynthesis

Sc25 Pc13g12930 gi|255937361 Strong similarity to peroxisomal acetyl-CoA
C-acyltransferase POT1 — Yarrowia lipolytica

44.7 6.9 44.9 7.7 23 41 725 65 N/A N/A Lipid metabolism

Sc26 Pc22g06820 gi|255947884 Strong similarity to peroxisomal acetyl-CoA
C-acyltransferase POT1 — Yarrowia lipolytica

43.5 8.1 44.6 8.3 20 44 821 52 N/A N/A Lipid metabolism

Sc27 Pc22g10010 gi|211592027 Strong similarity to N-acetylglucosamine-
6-phosphate deacetylase CaNAG2 — Candida
albicans

46.1 5.8 43.6 7.4 13 52 99 61 N/A N/A Aminosugar
metabolism
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Sc28 Pc21g20480 gi|255956565 Strong similarity to ATP citrate lyase ACL1 —
Sordaria macrospora

71.9 7.6 42.5 8.1 22 41 881 36 N/A N/A Acetyl-CoA
biosynthesis

Sc29 Pc21g20480 gi|255956565 Strong similarity to ATP citrate lyase ACL1 —
Sordaria macrospora

71.9 7.6 42.0 7.6 8 26 143 15 N/A N/A Acetyl-CoA
biosynthesis

Sc31 Pc12g05380 gi|211582002 Strong similarity to coproporphyrinogen
oxidase III Hem13— Saccharomyces cerevisiae

50.0 7.2 39.5 6.4 10 45 218 25 2.56 2.96E−05 Porphyrin
biosynthesis

Sc33 Pc13g05940 gi|255936003 Strong similarity to trifunctional protein of
the beta-oxidation fox-2 — Neurospora crassa

97.3 8.6 39.8 8.3 10 41 155 14 N/A N/A Lipid metabolism

Sc34 Pc21g01220 gi|211588904 Strong similarity to alcohol dehydrogenase
(NADP+) ALR — Sus scrofa

35.4 6.0 35.3 6.7 8 57 194 38 N/A N/A Alcohol metabolism

Sc40 Pc12g00830 gi|211581603 Strong similarity to sorbitol utilization
protein sou2 — Candida albicans

28.7 5.3 27.4 5.2 20 39 820 83 3.15 1.04E−03 Carbohydrate
metabolism

Sc41 Pc13g08270 gi|211583872 Adenylylsulfate kinase AAA81521 —
Penicillium chrysogenum

23.6 6.0 26.8 6.5 12 53 365 56 N/A N/A Purine, seleno
amino acids and
sulfur metabolism

Pc21g21370 gi|211590823 Acyl-coenzyme A:isopenicillin N
acyltransferase (acyltransferase) AAT/
PenDE — Penicillium chrysogenum

40.2 6.2 26.8 6.5 9 56 78 33 N/A N/A Penicillin
biosynthesis

Sc42 Pc12g03090 gi|211581814 Strong similarity to soluble cytoplasmic
fumarate reductase YEL047c —
Saccharomyces cerevisiae

66.8 6.2 27.1 8.2 14 22 519 20 N/A N/A Anaerobic
respiration

Sc43 Pc12g03090 gi|211581814 Strong similarity to soluble cytoplasmic
fumarate reductase YEL047c —
Saccharomyces cerevisiae

66.8 6.2 27.0 8.0 11 19 385 18 N/A N/A Anaerobic
respiration

Sc44 Pc12g05310 gi|255931643 Strong similarity to adenylate kinase Adk1—
Saccharomyces cerevisiae

28.6 7.0 26.8 8.3 14 42 538 54 N/A N/A Purine metabolism

Sc45 Pc12g03090 gi|211581814 Strong similarity to soluble cytoplasmic
fumarate reductase YEL047c —
Saccharomyces cerevisiae

66.8 6.2 26.8 8.2 13 37 350 18 N/A N/A Anaerobic
respiration

Sc46 Pc21g03400 gi|211589115 Strong similarity to
triose-phosphate-isomerase tpiA from pat-
ent WO8704464-A — Aspergillus niger

27.2 5.3 24.4 5.0 11 46 154 50 N/A N/A Carbohydrate
metabolism

Sc48 Pc16g01840 gi|211585181 Strong similarity to guanylate kinase Guk1—
Saccharomyces cerevisiae

22.0 6.2 22.2 7.5 6 59 191 42 5.74 2.55E−05 Purine metabolism

Sc51 Pc18g02580 gi|211586833 Strong similarity to acid phosphatase
AFPhoA — Aspergillus ficuum

50.2 5.0 98.3 4.2 6 20 260 13 N/A N/A Phosphate
metabolism

Information pathways
Sc4 Pc22g19990 gi|211592918 Strong similarity to endonuclease SceI

75 kDa subunit Ens1 — Saccharomyces
cerevisiae

72.6 5.6 73.3 4.8 26 36 725 47 N/A N/A Protein fate

Sc5 Pc22g10220 gi|211592047 Strong similarity to dnaK-type molecular
chaperone Ssb2 — Saccharomyces cerevisiae

67.0 5.3 72.4 5.0 27 36 1090 57 N/A N/A Protein fate

Sc7 Pc22g10220 gi|211592047 Strong similarity to dnaK-type molecular
chaperone Ssb2 — Saccharomyces cerevisiae

67.0 5.3 64.1 4.7 18 13 991 44 4.51 5.71E−03 Protein fate

Sc13 Pc21g02360 gi|211589011 Strong similarity to GU4 nucleic-binding
protein 1 Arc1 — Saccharomyces cerevisiae

47.8 6.4 55.9 7.4 25 39 952 77 N/A N/A Protein with binding
function or cofactor
requirement

(continued on next page)
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Table 3 (continued)

Spot ORF
name

Accession
no.

Title Theoretical Estimated

Mass
(kDa)

pI Mass
(kDa)

pI Peptides
identified

Un-matched
peptides

Score Percent
coverage

(%)

Fold
increase

p-value Function

Information pathways
Sc19 Pc21g19210 gi|211590623 Strong similarity to 442K curved

DNA-binding protein SPAC23H4.09 —
Schizosaccharomyces pombe

44.2 8.3 46.8 8.5 13 40 375 46 N/A N/A Protein with binding
function or cofactor
requirement

Sc30 Pc12g05300 gi|211581996 Strong similarity to 26S proteasome
regulatory chain 12 rpn12 — Homo sapiens

39.2 5.5 40.7 5.8 16 27 568 56 N/A N/A Regulation of
metabolism and
protein function

Sc32 Pc21g11890 gi|255954935 Strong similarity to RNA binding protein 47
RBP47 — Nicotiana plumbaginifolia

44.0 6.0 39.3 8.4 11 35 220 30 N/A N/A Protein with binding
function or cofactor
requirement

Sc34 Pc13g10770 gi|211584117 Strong similarity to cAMP-dependent pro-
tein kinase regulatory subunit pkaR —
Aspergillus niger

44.5 5.0 35.3 6.7 11 54 161 30 N/A N/A Regulation of
metabolism and
protein function

Sc35 Pc13g08810 gi|211583926 Strong similarity to elongation factor 1beta
EF-1 — Oryctolagus cuniculus

25.0 4.4 34.2 3.8 8 45 843 59 N/A N/A Protein synthesis

Sc36 Pc12g12040 gi|211582639 Strong similarity to translation elongation
factor eEF-2 — Cricetulus griseus

94.4 6.3 32.2 6.3 21 44 842 25 2.80 1.10E−04 Protein synthesis

Sc39 Pc18g00860 gi|255942327 Weak similarity to suppressor of tom1
protein Mpt4 — Saccharomyces cerevisiae

34.5 9.7 27.1 9.3 8 25 153 21 7.63 7.00E−04 Protein synthesis

Sc48 Pc18g00860 gi|255942327 Weak similarity to suppressor of tom1
protein Mpt4 — Saccharomyces cerevisiae

34.5 9.7 22.2 7.5 10 55 389 28 5.74 2.55E−05 Protein synthesis

Sc49 Pc21g03140 gi|211589089 Strong similarity to cell cycle regulator p21
protein wos2p — Schizosaccharomyces pombe

22.0 4.5 17.9 4.0 8 51 163 39 N/A N/A Cell cycle and DNA
processing

Sc50 Pc20g13270 gi|211588542 Strong similarity to nascent
polypeptide-associated complex alpha
chain alpha-NAC — Mus musculus

22.0 4.7 13.3 4.2 3 51 93 20 3.11 4.53E−05 Transcription

Perception and response to stimuli
Sc1 Pc18g02900 gi|211586864 Lysophospholipase phospholipase B plb1 —

Penicillium chrysogenum
68.7 4.4 12.2 3.8 7 27 610 14 3.07 1.41E−03 Cell rescue, defence

and virulence
Sc8 Pc12g03130 gi|211581818 Strong similarity to acetyl-CoA hydrolase

Ach1 — Saccharomyces cerevisiae
58.3 6.2 65.0 7.2 19 22 530 38 N/A N/A Cell rescue, defence

and virulence
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Sc14 Pc16g13280 gi|211586250 Strong similarity to glutathione reductase
Glr1 — Saccharomyces cerevisiae

51.5 6.2 54.6 7.5 22 40 939 63 N/A N/A Cell rescue, defence
and virulence

Sc16 Pc12g09040 gi|255932351 Strong similarity to
3,4-dihydroxyphenylacetate 2,3-dioxygenase
hmgA — Aspergillus nidulans

50.4 5.9 51.7 7.9 9 56 203 28 N/A N/A Homogentisate
pathway

Sc19 Pc12g09030 gi|211582350 Strong similarity to fumarylacetoacetase —
Homo sapiens

46.6 6.0 46.8 8.5 9 47 121 37 N/A N/A Homogentisate
pathway

Sc22 Pc12g09030 gi|211582350 Strong similarity to fumarylacetoacetase —
Homo sapiens

46.6 6.0 44.5 6.7 14 17 812 50 3.35 1.88E−04 Homogentisate
pathway

Sc27 Pc13g12030 gi|211584240 Strong similarity to flavohemoglobin Fhp —
Alcaligenes eutrophus

47.8 7.8 43.6 7.4 18 45 686 53 N/A N/A Cell rescue, defence
and virulence

Sc30 Pc12g09040 gi|255932351 Strong similarity to
3,4-dihydroxyphenylacetate
2,3-dioxygenase hmgA — Aspergillus
nidulans

50.4 5.9 40.7 5.8 7 44 168 22 N/A N/A Homogentisate
pathway

Developmental processes
Sc3 Pc22g09380 gi|211591967 Strong similarity to

glycosylphosphatidylinositol-anchored
beta(1–3)glucanosyltransferase gel3 —
Aspergillus fumigatus

57.6 4.9 79.9 4.3 10 30 427 21 3.45 2.14E−05 Biogenesis of
cellular components

Other proteins
Sc24 Pc14g02010 gi|211584816 Strong similarity to hypothetical protein

contig_1_98_scaffold_6.tfa_1090cg —
Aspergillus nidulans

44.2 6.2 45.7 7.3 15 50 466 60 N/A N/A Unknown

Sc37 Pc12g08070 gi|211582258 Weak similarity to hypothetical protein
Ta1372 — Thermoplasma acidophilum

27.3 5.0 28.7 6.8 13 51 771 61 N/A N/A Unknown

Sc38 Pc21g02210 gi|211588997 Strong similarity to hypothetical protein
contig31_part_ii.tfa_2190wg — Aspergillus
fumigatus

34.7 5.6 28.4 6.2 8 52 375 39 N/A N/A Unknown

Sc47 Pc22g03110 gi|211591371 Strong similarity to hypothetical protein
An01g08830 — Aspergillus niger

24.3 7.9 21.5 5.5 9 44 282 43 N/A N/A Unknown

Sc50 gi|144952798 16 kDa allergen — Penicillium chrysogenum 16.4 5.2 13.3 4.2 4 48 395 21 3.11 4.53E−05 Unknown
Sc52 Pc21g12310 gi|255955019 Hypothetical protein Penicillium chrysogenum 30.4 5.6 29.0 5.8 20 43 831 69 3.02 2.54E−04 Unknown
Sc53 Pc23g00350 gi|255951667 Hypothetical protein BAC82546— Penicillium

chrysogenum
22.5 6.1 19.8 6.9 10 28 549 45 N/A N/A Unknown

Pc24g02750 gi|34392437 Hypothetical protein [Penicillium
chrysogenum]

23.2 5.6 19.8 6.9 8 32 369 34 N/A N/A Unknown
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Table 4 – Proteins underrepresented in the P. chrysogenum Wisconsin 54-1255 intracellular proteome after the addition of spermidine. Fold decrease and p-value are
indicated for those proteins detected under both conditions. Proteins that are not detected after the addition of spermidine are denoted as N/A.

Spot ORF
name

Accession
no.

Title Theoretical Estimated

Mass
(kDa)

pI Mass
(kDa)

pI Peptides
identified

Un-matched
peptides

Score Percent
coverage

(%)

Fold
decrease

p-value Function

Metabolism and energy
Cs1 Pc22g02000 gi|211591261 Strong similarity tomitochondrial aconitate

hydratase Aco1 — Saccharomyces cerevisiae
85.9 6.0 61.4 5.2 26 34 912 35 3.65 6.64E−05 Krebs cycle

Cs10 Pc16g12780 gi|255941616 Strong similarity to core protein I of
ubiquinol-cytochrome-c reductase
beta-MPP — Neurospora crassa

53.1 5.7 25.8 5.5 10 44 443 25 2.42 4.06E−04 Oxidative
phosphorylation

Cs13 Pc21g13670 gi|255955263 Strong similarity to enzyme with sugar
transferase activity like protein
An01g10930 — Aspergillus niger

107.3 4.9 72.4 3.7 15 50 473 15 2.47 9.37E−03 Carbohydrate
metabolism

Cs14 Pc22g03660 gi|211591424 Strong similarity to isocitrate lyase acuD —
Aspergillus nidulans

60.1 6.5 61.4 7.8 24 40 727 62 2.23 1.41E−04 Glyoxylate and
dicarboxilate
metabolism

Cs15 Pc16g07470 gi|211585695 Strong similarity to glycine decarboxylase
subunit T Gcv1 — Saccharomyces cerevisiae

51.6 8.9 46.7 7.6 23 42 885 71 2.21 1.17E−04 Glycine to 5,10
methylene
tetrahydrofolate
catabolism

Cs16 Pc20g13510 gi|211588565 Strong similarity to methylcitrate
synthase mcsA — Aspergillus nidulans

51.0 8.4 44.5 7.9 23 39 492 55 3.25 1.18E−05 Propionate to pyruvate
oxidation through
methylcitrate cycle

Cs17 Pc22g06820 gi|255947884 Strong similarity to peroxisomal acetyl-CoA
C-acyltransferase POT1— Yarrowia lipolytica

43.5 8.1 43.6 8.2 13 52 519 45 2.12 1.21E−03 Lipid metabolism

Pc16g05560 gi|211585518 Strong similarity to mitochondrial sulfide
dehydrogenase (coenzyme Q2)
SPBC2G5.06c — Schizosaccharomyces pombe

48.3 8.8 43.6 8.2 22 43 389 53 2.12 1.21E−03 Oxidative
phosphorylation

Cs18 Pc21g14890 gi|211590213 Cysteine synthase BAC82550 — Penicillium
chrysogenum

40.1 8.6 39.1 8.1 22 16 1100 73 2.21 5.76E−05 Cysteine
biosynthesis

Cs20 Pc21g17460 gi|211590454 Strong similarity to adenosine kinase like
protein An17g01330 — Aspergillus niger

38.4 5.4 38.6 5.0 16 49 661 53 2.05 2.82E−04 Purine metabolism

Cs23 Pc22g04850 gi|211591539 Strong similarity to D-arabinose dehydro-
genase Ara1 — Saccharomyces cerevisiae

36.6 5.5 35.0 5.6 16 49 716 48 2.07 5.00E−03 Carbohydrate
metabolism

Cs28 Pc22g02000 gi|211591261 Strong similarity tomitochondrial aconitate
hydratase Aco1 — Saccharomyces cerevisiae

85.9 6.0 25.1 7.9 13 44 254 18 2.07 8.15E−04 Krebs cycle

Cs29 Pc18g01220 gi|211586700 Strong similarity to fructose-bisphosphate
aldolase Fba1 — Saccharomyces cerevisiae

39.5 5.4 28.8 5.3 9 40 203 28 2.09 1.21E−04 Glycolysis and
gluconeogenesis

Information pathways
Cs5 Pc22g19990 gi|211592918 Strong similarity to endonucleaseSceI 75 kDa

subunit Ens1— Saccharomyces cerevisiae
72.6 5.6 31.4 4.2 14 51 425 21 6.34 4.39E−05 Protein fate

Cs6 Pc22g11240 gi|211592088 Strong similarity to heat shock protein 70
hsp70 — Ajellomyces capsulatus (allergen
Pen c 19)

69.7 5.0 29.3 4.2 14 43 480 29 5.88 4.34E−03 Protein fate
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ORF name Accession
no.

Title Theoretical Estimated

Mass
(kDa)

pI Mass
(kDa)

pI Peptides
identified

Un-matched
peptides

Score Percent
coverage

(%)

Fold
decrease

p-value Function

Cs7 Pc22g11240 gi|211592088 Strong similarity to heat shock protein 70
hsp70 — Ajellomyces capsulatus (allergen
Pen c 19)

69.7 5.0 28.4 4.2 17 48 557 35 4.57 1.86E−04 Protein fate

Cs8 Pc21g11890 gi|255954935 Strong similarity to RNA binding protein
47 RBP47 — Nicotiana plumbaginifolia

44.0 6.0 20.2 8.3 11 53 415 27 4.83 7.44E−07 Protein with binding
function or cofactor
requirement

Cs11 Pc22g02800 gi|211591341 Calreticulin [Penicillium chrysogenum].
strong similarity to calcium-binding pro-
tein precursor cnx1p —
Schizosaccharomyces pombe

62.0 4.8 65.6 4.0 10 47 349 20 2.68 1.33E−03 Protein fate

Pc21g11280 gi|211589871 Strong similarity to protein disulfide
isomerase A pdiA — Aspergillus niger

56.6 4.7 65.6 4.0 11 46 272 27 2.68 1.33E−03 Protein fate

Cs12 Pc21g11280 gi|211589871 Strong similarity to protein disulfide
isomerase A pdiA — Aspergillus niger

56.6 4.7 61.8 4.0 20 45 507 48 2.29 8.56E−03 Protein fate

Cs21 Pc22g11240 gi|211592088 Strong similarity to heat shock protein 70
hsp70 — Ajellomyces capsulatus (allergen
Pen c 19)

69.7 5.0 32.9 4.1 13 24 384 31 9.68 1.58E−04 Protein fate

Cs22 Pc22g11240 gi|211592088 Strong similarity to heat shock protein 70
hsp70 — Ajellomyces capsulatus (allergen
Pen c 19)

69.7 5.0 32.1 4.0 18 47 565 40 2.41 5.54E−03 Protein fate

Cs26 Pc21g16970 gi|7963902 Vacuolar serine proteinase AAG44693 —
Penicillium chrysogenum. Allergen Pen n 18

52.5 6.1 29.4 7.7 8 36 221 23 2.31 1.44E−05 Protein fate

Cs33 Pc18g01180 gi|211586697 Strong similarity to ubiquitin conjugating
enzyme Ubc4 — Saccharomyces cerevisiae

17.4 5.3 13.7 5.1 5 47 90 46 N/A N/A Protein fate

Cs34 Pc16g13060 gi|211586228 Strong similarity to cyclophilin cypB —
Aspergillus nidulans

18.1 6.9 13.7 7.7 10 55 352 51 2.29 9.72E−05 Protein fate

Perception and response to stimuli
Cs2 Pc12g03130 gi|211581818 Strong similarity to acetyl-CoA hydrolase

Ach1 — Saccharomyces cerevisiae
58.3 6.2 61.8 7.4 26 39 805 72 5.06 9.04E−05 Cell rescue, defense

and virulence
Cs3 Pc12g03130 gi|211581818 Strong similarity to acetyl-CoA hydrolase

Ach1 — Saccharomyces cerevisiae
58.3 6.2 60.4 7.3 30 32 822 80 3.23 4.23E−06 Cell rescue, defense

and virulence
Cs4 Pc12g03130 gi|211581818 Strong similarity to acetyl-CoA hydrolase

Ach1 — Saccharomyces cerevisiae
58.3 6.2 61.8 7.1 30 33 816 80 4.23 1.34E−03 Cell rescue, defense

and virulence
Cs19 Pc12g09040 gi|255932351 Strong similarity to

3,4-dihydroxyphenylacetate 2,3-dioxygenase
hmgA— Aspergillus nidulans

50.4 5.9 39.6 5.9 18 47 671 58 2.10 3.52E−04 Homogentisate
pathway

Cs24 Pc20g15580 gi|211588765 Strong similarity to NADPH-dependent
aldehyde reductase — Sporobolomyces
salmonicolor

37.3 6.1 36.5 7.1 19 46 1020 72 2.18 3.25E−05 Cell rescue, defense
and virulence

Cs31 Pc22g04680 gi|211591523 Strong similarity to superoxide dismutase
like protein An04g04870 — Aspergillus niger

24.7 8.7 20.2 7.7 4 36 148 27 2.15 8.01E−07 Cell rescue, defense
and virulence

Cs32 Pc21g16940 gi|255955883 Strong similarity to Cu,Zn superoxide
dismutase sodC — Aspergillus fumigatus

16.0 5.9 12.1 7.1 10 55 454 87 2.48 9.42E−04 Cell rescue, defense
and virulence

Developmental processes
Cs33 Pc22g00190 gi|255946596 Strong similarity to hypothetical cell wall

protein binB — Aspergillus nidulans
19.1 5.6 13.7 5.1 3 48 152 12 N/A N/A Biogenesis of cellular

components

(continued on next page)
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Table 4 (continued)

Spot ORF
name

Accession
no.

Title Theoretical Estimated

Mass
(kDa)

pI Mass
(kDa)

pI Peptides
identified

Un-matched
peptides

Score Percent
coverage

(%)

Fold
decrease

p-value Function

Other proteins
Cs9 Pc12g00650 gi|211581586 Similarity to hypothetical protein CC3092—

Caulobacter crescentus
15.0 6.1 11.0 7.4 7 22 617 67 4.21 8.48E−05 Unknown

Cs12 Pc22g17870 gi|211592713 Strong similarity to hypothetical ECM33
homolog SPCC1223.12c —
Schizosaccharomyces pombe

41.2 4.6 61.8 4.0 13 52 297 39 2.29 8.56E−03 Unknown

Cs25 Pc22g17250 gi|255949742 Strong similarity to hypothetical protein
mg02084.1 — Magnaporthe grisea

35.9 6.5 33.3 7.1 11 45 489 45 2.08 2.16E−04 Unknown

Cs27 Pc22g17950 gi|211592721 Strong similarity to hypothetical protein
contig40.tfa_680wg — Aspergillus fumigatus

36.0 9.5 28.5 9.1 8 29 299 30 2.34 5.44E−03 Unknown

Cs30 Pc23g00350 gi|255951667 Hypothetical protein BAC82546 —
Penicillium chrysogenum

22.5 6.1 19.4 7.4 13 52 571 49 2.14 7.64E−04 Unknown

Pc24g02750 gi|34392437 Hypothetical protein [Penicillium
chrysogenum]

23.2 5.6 19.4 7.4 11 54 540 37 2.14 7.64E−04 Unknown

Cs35 Pc23g00350 gi|255951667 Hypothetical protein BAC82546 —
Penicillium chrysogenum

22.5 6.1 9.8 8.0 9 56 375 32 3.25 8.38E−04 Unknown
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Table 5 – Common proteins differentially represented after the addition of either 1,3-DAP or spermidine. Proteins have been
ordered according to the ORF number.

ORF
name

Accession
no.

Title

Pc06g01600 gi|255930411 Strong similarity to FAD dependent L-sorbose dehydrogenase SDH — Gluconobacter oxydans
Pc12g00650 gi|211581586 Similarity to hypothetical protein CC3092 — Caulobacter crescentus
Pc12g00830 gi|211581603 Strong similarity to sorbitol utilization protein sou2 — Candida albicans
Pc12g03130 gi|211581818 Strong similarity to acetyl-CoA hydrolase Ach1 — Saccharomyces cerevisiae
Pc12g08070 gi|211582258 Weak similarity to hypothetical protein Ta1372 — Thermoplasma acidophilum
Pc12g09030 gi|211582350 Strong similarity to fumarylacetoacetase — Homo sapiens
Pc12g09040 gi|255932351 Strong similarity to 3,4-dihydroxyphenylacetate 2,3-dioxygenase hmgA — Aspergillus nidulans
Pc13g08270 gi|211583872 Adenylylsulfate kinase AAA81521 — Penicillium chrysogenum
Pc13g08810 gi|211583926 Strong similarity to elongation factor 1beta EF-1 — Oryctolagus cuniculus
Pc16g07470 gi|211585695 Strong similarity to glycine decarboxylase subunit T Gcv1 — Saccharomyces cerevisiae
Pc16g13060 gi|211586228 Strong similarity to cyclophilin cypB — Aspergillus nidulans
Pc16g13280 gi|211586250 Strong similarity to glutathione reductase Glr1 — Saccharomyces cerevisiae
Pc18g00860 gi|255942327 Weak similarity to suppressor of tom1 protein Mpt4 — Saccharomyces cerevisiae
Pc20g13270 gi|211588542 Strong similarity to nascent polypeptide-associated complex alpha chain alpha-NAC — Mus musculus
Pc20g13510 gi|211588565 Strong similarity to methylcitrate synthase mcsA — Aspergillus nidulans
Pc21g01110 gi|255952859 Strong similarity to 3-methylcrotonyl-CoA carboxylase (MCC) non-biotin-containing beta subunit like protein

An07g04270 — Aspergillus niger
Pc21g02210 gi|211588997 Strong similarity to hypothetical protein contig31_part_ii.tfa_2190wg — Aspergillus fumigatus
Pc21g02360 gi|211589011 Strong similarity to GU4 nucleic-binding protein 1 Arc1 — Saccharomyces cerevisiae
Pc21g03140 gi|211589089 Strong similarity to cell cycle regulator p21 protein wos2p — Schizosaccharomyces pombe
Pc21g11280 gi|211589871 Strong similarity to protein disulfide isomerase A pdiA — Aspergillus niger
Pc21g11890 gi|255954935 Strong similarity to RNA binding protein 47 RBP47 — Nicotiana plumbaginifolia
Pc21g12310 gi|255955019 Hypothetical protein Penicillium chrysogenum
Pc21g12790 gi|211590017 Strong similarity to UTP-glucose-1-phosphate uridylyltransferase Ugp1 — Saccharomyces cerevisiae
Pc21g17880 gi|211590494 Strong similarity to 4-aminobutyrate transaminase gatA — Aspergillus nidulans
Pc21g20480 gi|255956565 Strong similarity to ATP citrate lyase ACL1 — Sordaria macrospora
Pc21g21370 gi|211590823 Acyl-coenzyme A:isopenicillin N acyltransferase (acyltransferase) AAT/PenDE — Penicillium chrysogenum
Pc22g02800 gi|211591341 Calreticulin [Penicillium chrysogenum]. strong similarity to calcium-binding protein precursor cnx1p —

Schizosaccharomyces pombe
Pc22g03660 gi|211591424 Strong similarity to isocitrate lyase acuD — Aspergillus nidulans
Pc22g06820 gi|255947884 Strong similarity to peroxisomal acetyl-CoA C-acyltransferase POT1 — Yarrowia lipolytica
Pc22g09380 gi|211591967 Strong similarity to glycosylphosphatidylinositol-anchored beta(1–3)glucanosyltransferase gel3 — Aspergillus

fumigatus
Pc22g10220 gi|211592047 Strong similarity to dnaK-type molecular chaperone Ssb2 — Saccharomyces cerevisiae
Pc22g11240 gi|211592088 Strong similarity to heat shock protein 70 hsp70 — Ajellomyces capsulatus (allergen Pen c 19)
Pc22g19990 gi|211592918 Strong similarity to endonuclease SceI 75 kDa subunit Ens1 — Saccharomyces cerevisiae
Pc23g00350 gi|255951667 Hypothetical protein BAC82546 — Penicillium chrysogenum
Pc24g02750 gi|34392437 Hypothetical protein [Penicillium chrysogenum]

gi|144952798 16 kDa allergen — Penicillium chrysogenum
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modified by spermidine by changing the normal form of this
protein to another isoform. As indicated before, this pathway is
used for the degradation of phenylacetic acid, the side chain
precursor of benzylpenicillin (see Discussion).

Other proteins underrepresented after the induction with
spermidine are three isoforms of a probable acetyl-CoA
hydrolase Ach1 (spots Cs2, Cs3 and Cs4). This result was also
found with 1,3-DAP and as indicated before, this protein
is involved in mitochondrial acetate detoxification by a
CoASH transfer from acetyl-CoA to succinate, conserving
energy by the detoxification of mitochondrial acetate rather
than performing the energy wasting hydrolysis of acetyl-CoA
[42].

3.1.10. Developmental processes
As it was observed with 1,3-DAP, spermidine seems to induce
the synthesis of proteins involved in the biosynthesis of
theungal cell wall. A probable glycosylphosphatidylinositol-
anchored beta(1–3)glucanosyltransferase Gel3, was found
3.45-fold overrepresented after spermidine supplementation
(spot Sc3) (see Discussion). On the contrary, a hypothetical
cell wall protein BinB is underrepresented after the addition
of spermidine. This protein shows 74% similarity and 62%
identity with the PhiA protein from A. nidulans, which has
been reported to be essential for phialide development in
this fungus [53].

3.1.11. Morphology and sporulation are affected by 1,3-DAP
and spermidine
An interesting phenomenon that was observed after the
addition of either 1,3-DAP or spermidine was the formation of
large vesicles inside hyphae (Fig. 6A). Unlike control cultures,
vesicles in 1,3-DAP or spermidine-supplemented cells were
already observed at early time points (24 h) and were especially
abundant after 48 h of growth. At 72 h, vesicles were also
observed in control cultures. The presence of large vesicles
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Fig. 6 – Modifications in morphology and sporulation induced by 1,3-DAP and spermidine. A) Confocal optical microscopy
pictures of the P. chrysogenum mycelium grown in submerged cultures for 48 h without (control) or with 1,3-DAP. Spermidine
gave rise to similar morphological modifications to 1,3-DAP (not shown). B) Sporulation level of P. chrysogenum Wisconsin
54-1255 after six days in the presence of either 1,3-DAP or spermidine. C) Scanning electronmicroscopy pictures of Petri dishes
sown with 1 × 108 spores of P. chrysogenum Wisconsin 54-1255 after six days of growth without (control) or with 1,3-DAP.
Spermidine gave rise to similar morphological modifications to 1,3-DAP (not shown).
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inside hyphae may be related to an increase in the secretion
processes of several compounds, including penicillin (see
Discussion).

Another process also influenced by 1,3-DAP and spermidine
was sporulation. The number of spores that were collected after
six days of growth at 25 °C from Petri dishes showed a
significant increase (19%, p < 0.05) when 5 mM 1,3-DAP or
spermidine were added to the solid medium (Fig. 6B and C).
This phenomenon may be related to our previous finding
showing a positive effect of 1,3-DAP on the expression of the
laeA gene [8], which controls secondary metabolism and
sporulation [10]. Indeed the 1,3-DAP-mediated induction of
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sporulation was not observed in the P. chrysogenum laeA-gene
defective mutant (data not shown).
4. Discussion

It is well known that numerous metabolic processes are
controlled by polyamines, such as the stabilization of macro-
molecules under stress conditions, the stabilization of the
cellular membrane or the stabilization of nucleic acids; the
latter affects gene expression, recombination and DNA repair
mechanisms [54–59]. In this work, we have deciphered some
modifications induced by the penicillin inducers 1,3-DAP and
spermidine in P. chrysogenum [9] using a proteomics approach,
paying special attention to those mechanisms related to the
biosynthesis of penicillin. This proteomics approach has been
based on 2-DE, which covers around the 10% of the potential
proteins coded in the P. chrysogenum genome as we reported in
a previous work [19].

Since 1,3-DAP induces the synthesis of the spermidine
synthase, it is likely that the biosynthesis of spermidine is
also increased following 1,3-DAP addition. In fact, it has been
reported that N-(n-butyl)-1,3-DAP increases the spermidine
levels and inhibits the synthesis of spermine [60]. 1,3-DAP is a
by-product generated after the oxidation of spermidine by
means of the polyamino-oxidase [61] and according to our
results, it exerts a positive regulatory role on the spermidine
synthase. This may suggest that many of the modifications
observed after the addition of 1,3-DAP could be really
attributed to an increase in the spermidine levels. In fact,
several proteins differentially represented after the induction
with spermidine were coincident with proteins whose synthe-
sis was modified after 1,3-DAP addition (Table 5), thus
supporting this suggestion. Other proteins, however, showed a
specific pattern of expression after induction with each of the
two inducers that may be attributed to specific response
mechanisms of either 1,3-DAP or spermidine.

Focusing on the common effects of these two polyamines,
there are commonmechanisms thatmay explain their beneficial
effect on penicillin biosynthesis. The first mechanism is directly
affectingoneof thepenicillin biosynthetic enzymes, the IAT. This
enzyme is synthesized as a 40-kDaprecursor (proacyltransferase,
proIAT) which undergoes an autocatalytic self-processing be-
tween residues Gly102-Cys103 in P. chrysogenum. The processed
TAITAI

Control 1,3-DA

New IAT isofo

Fig. 7 – Close-up view of the new IAT isoform induced by 1,3-DA
the β-subunit of IAT.
protein forms a heterodimer with subunits α (11 kDa, corre-
sponding to theN-terminal fragment) andβ (29 kDa, correspond-
ing to the C-terminal region) [62–65]. A deep analysis of the 2-DE
gels revealed that one new isoform of the β-subunit of IAT (only
this subunit is detected in 2-DE gels [19]) appears after the
addition of either 1,3-DAP or spermidine (Fig. 7), whereas the
main isoform remains largely unchanged (similarly represented).
An explanation to this fact is that polyamines induce the
generationof apost-translationalmodification thatmay improve
the activity of this enzyme, thus increasing the penicillin
production.

Another mechanism involved in penicillin biosynthesis
that is favored by polyamines is the biosynthesis of β-alanine.
The amino acid β-alanine is an intermediate in pantothenic
acid (vitamin B5) biosynthesis, which is converted to
4´-phosphopantetheine and subsequently, to coenzyme A.
The 4´-phosphopantetheine is an essential prosthetic group
for several enzymes, including the ACV synthetase, which is
the first enzyme of the penicillin biosynthetic pathway [66–68].
In bacteria, pantothenic acid is synthesized by the condensa-
tion of pantoate, an intermediate in valine biosynthesis, with
β-alanine, produced by the decarboxylation of L-aspartate
[69,70]. In yeast, the formation of pantoate involves the same
enzymatic steps as in bacteria, whereas β-alanine biosynthesis
differs from that and is dependent upon polyamine biosynthe-
sis and upon the amine oxidase encoded by the fms1 gene [71].
Amine oxidases can degrade polyamineswith the production of
the aldehyde compound 3-aminopropanal [72,73], implying
that further oxidation of 3-aminopropanal by an aldehyde
dehydrogenase would also be required for β-alanine biosynthe-
sis in yeast [30]. This result correlates well with the increase
in the spermidine synthase (giving rise to high levels of
spermidine) and with the increase in the biosynthesis of
acetyl-CoA by ATP citrate lyase ACL1 and dihydrolipoamide
dehydrogenase Lpd1, since β-alanine is an intermediate re-
quired for the biosynthesis of coenzyme A. These findings
suggest that the biosynthesis of β-alanine is increased after the
addition of these polyamines and are in agreement with
previous reports suggesting that spermine, spermidine and
1,3-DAPare precursors ofβ-alanine inmaize shoots aswell as in
bacteria [74,75].

Enzymes of the homogentisate pathway, which leads to the
degradation of phenylacetic acid, are also clearly influenced by
polyamines and could also explain the increase in penicillin
IAT

P Spermidine

rm New IAT isoform

P and spermidine. Enlargement of the gel portion containing
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titers. Phenylacetic acid is industrially used as the side-chain
precursor for the production of benzylpenicillin in submerged
fermentations. The positive influence of feeding penicillin
fermentations with side chain precursors has been well-
documented since the beginning of industrial penicillin pro-
duction. Because of the existence of several paralogs of IAT that
introduce different side chains, phenylacetic acid must be
supplemented to promote the biosynthesis of benzylpenicillin
rather than other natural penicillins [76]. The effectiveness of
this side chain precursor is dependent on its resistance to
oxidationby P. chrysogenum [77]. The first stepof thephenylacetic
acid catabolic pathway is a 2-hydroxylation by a microsomal
cytochrome P450 monooxygenase, and it is well documented
that modifications of this enzyme led to a reduced degradation
of phenylacetic acid and to penicillin overproduction [78].
Therefore, there is a clear negative correlation between the
abundance of the first enzyme of this pathway and penicillin
biosynthesis. Polyamines, specially 1,3-DAP, reduced the syn-
thesis of late enzymes of the homogentisate pathway; therefore
it is likely that the increased penicillin titers observed after
polyamines addition are also related to the downregulation of
these late enzymes.

After the treatment with polyamines, some chaperones and
foldases are induced and some repressed. The reason for this
behaviour is likely due to the complexity of the interactions that
occur in the endoplasmic reticulum between different chap-
erons and foldases and the multifunctionality of these chap-
erons. Thus, some of the processes in which these proteins are
involved might be of benefit for the overproduction of some
penicillin biosynthetic proteins, whereas other processeswould
negatively affect the final production, as it has been suggested
for BiP or calnexin [79,80].

Although initially not related to the biosynthesis of
penicillin, another common feature observed for 1,3-DAP
and spermidine is that they induce the synthesis of a probable
glycosylphosphatidylinositol-anchored beta(1–3)glucanosyl-
transferase, Gel3, which plays active roles in fungal cell wall
biosynthesis and morphogenesis. The major structural com-
ponent of the fungal wall is β-1,3-glucan, which is subjected to
a number of downstream processing steps leading to exten-
sive branching and crosslinking to other cell wall components
[81,82]. Among the key enzymes involved in downstream
processing are the β-1,3-glucanosyltransferases, a family of
glycosylphosphatidylinositol-anchored glycoproteins. There-
fore, there seems to be a positive correlation between the
important hyphal morphological modifications induced by
polyamines and the overrepresentation of this enzyme after
induction.

In addition to these common mechanisms, each of these
two polyamines particularly affects the biosynthesis of proteins
Fig. 8 – Graphic representation of the main metabolic pathways
biosynthetic pathway. Those proteins upregulated by 1,3-DAP ar
downregulated by 1,3-DAP are indicated in red color. Thosemeta
that have a positive effect on penicillin biosynthesis are represen
favored by 1,3-DAP are highlighted. 4´pp: 4´-phosphopantethein
glycosylphosphatidylinositol-anchored beta(1–3)glucanosyltrans
L-α-aminoadipic acid; L-cys: L-cysteine; Lpd1: mitochondrial pre
PA-CoA: phenylacetyl-CoA; PAO: polyamine oxidase.
involved in pathways indirectly related to the biosynthesis of
penicillin. Examples are provided specially by spermidine,
which induces the biosynthesis of a probable phosph-
ogluconate dehydrogenase Gnd1 and a probable thiamine-
phosphate pyrophosphorylase/hydroxyethylthiazole kinase.
The first enzyme catalyzes an NADPH regenerating reaction in
the pentose phosphate pathway. An increase in the NADPH
levels has been strongly correlated to β-lactam production
[83–85] and it is accepted that penicillin production in the high-
producer strains constitutes a major burden on the supply of
NADPH [86] (biosynthesis of 1 mol of penicillin requires
8–10 mol of NADPH). The second protein is involved in the de
novo synthesis of thiamine [87,88] that works as a cofactor of
aminotransferases. Thiamine pyrophosphate (TPP) is involved
in branched-chain amino acids (valine, leucine and isoleucine)
biosynthesis regulating acetolactate synthase, the rate limiting
enzyme in this pathway. Therefore, increasing TPP levelswould
favor valine accumulation, one of the precursors of β-lactam
antibiotics.

One striking result obtained with spermidine is the finding
that this polyamine decreases the content of the cysteine
synthase, which catalyzes one of the routes of cysteine
formation, namely the conversion of serine to cysteine. The
latter is one of the amino acid precursors of the tripeptide ACV
and its availability greatly influences penicillin production
fluxes [89]. Cysteine can also be synthesized from methionine
by transsulfuration by the cystathionine beta synthase.
Therefore, it seems that the spermidine-mediated decrease
in the levels of cysteine synthase is not affecting the
biosynthesis of penicillin (which is increased in spermidine-
supplemented cultures), probably because the alternative
pathway for cysteine biosynthesis provides enough amino
acid precursor for the biosynthesis of ACV. The predominance
of the cystathionine beta synthase in the biosynthesis of
penicillin is supported by the fact that this enzyme is
overrepresented in penicillin high-producing strains [19].

One example of proteins specifically induced by 1,3-DAP
that may be involved in pathways indirectly related to the
biosynthesis of penicillin is the vacuolar H(+)-transporting
ATPase. This heteromultimeric enzyme couples the energy of
ATP hydrolysis to proton transport across intracellular and
plasma membranes of eukaryotic cells using the H+ gradient
to energize the transport of solutes, to maintain a constant
intracellular pH, and to provide a signal for intravesicular
processes [17,90]. Several carriers, such as those involved in
nutrient uptake, utilize the electrochemical gradient of pro-
tons (or proton motive force) that exists across the plasma
membrane to energize transport. Therefore, the transport of
several nutrients and other solutes that are of relevance in
penicillin biosynthesis may be favored by 1,3-DAP.
affected by 1,3-DAP and connection to the benzylpenicillin
e written in green color, whereas those proteins
bolic steps (catalyzed by the differentially expressed proteins)
ted as green arrows. Those molecules whose biosynthesis is
e; AcL1: ATP citrate lyase; AcT: acetyl transferase; Gel3:
ferase; IAT: isopenicillin N acyltransferase; L-aa:
cursor of dihydrolipoamide dehydrogenase; L-val: L-valine;



156 J O U R N A L O F P R O T E O M I C S 8 5 ( 2 0 1 3 ) 1 2 9 – 1 5 9
Another finding that may be related to this protein is the
positive effect that 1,3-DAP exerts on the formation of vesicles.
Cargo vesicles formed in the ER have been reported to play an
important role in the biosynthesis of aflatoxins [16,17].
Interestingly, one of the enzymes found in these vesicles is
spermidine synthase [91].

Another metabolic pathway that seems to be specifically
favored by spermidine is the biosynthesis of porphyrins.
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Fig. 9 – Schematic representation of some processes modified by
biosynthetic genes pcbAB, pcbC and penDE and the global regulato
an intermediate of 4´-phosphopantetheine (essential prosthetic g
IAT β-subunit. 4: Reduction of late enzymes of the phenylacetic a
the benzylpenicillin side chain precursor. 5: Increase in the expr
of vesicles. 7: Hypothetically, the increase in the number of vesicl
a mechanism of benzylpenicillin secretion similar to exocytosis.
fumarylacetoacetase; IAT: Isopenicillin N acyltransferase; M: Mit
P: Peroxisome; PAA: Phenylacetic acid; PG: Benzylpenicillin; SS:
elaborated according to the results obtained in this and in previo
Enzymes catalyzing different steps of the pathway, such as
probable 5-aminolevulinic acid synthase HemA and a probable
coproporphyrinogen oxidase III Hem13 were induced by
spermidine. Porphyrins are a group of organic compounds
well-known as the pigment in red blood cells and porphyrin-
related pigments may be responsible, at least in part, for the
intense color shown by the solid medium after growing
P. chrysogenum treated with spermidine [8]. Since 1,3-DAP also
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esmay facilitate fusion events to peroxisomes and constitute
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Spermidine synthase; V: Vesicle. This scheme has been
us works [8,9].
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gave rise to a more intense color but did not increase
significantly the biosynthesis of porphyrins, the induction of
the biosynthesis of other pigments by these polyamines cannot
be ruled out.

In conclusion, we have observed that the addition of
1,3-DAP and spermidine leads to the modification of the
synthesis of several enzymes involved in numerousmetabolic
processes. In summary, as a result of modifications in the
expression of enzymes involved directly or indirectly in the
biosynthesis of penicillin and precursor compounds (Fig. 8),
1,3-DAP and spermidine are responsible for an increase in
the biosynthesis of the β-lactam antibiotic penicillin. These
inducers, synthesized endogenously by P. chrysogenum act as
communication signals that trigger differentiation and self-
defense against competitor bacteria by increasing the biosyn-
thesis of penicillin. Fig. 9 summarizes the main cell processes
that are modified by 1,3-DAP leading to an increase in the
biosynthesis and secretion of penicillin.
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