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a  b  s  t  r  a  c  t

In our  previous  study  we  showed  that  central  pain  syndrome  (CPS)  induced  by electrolytic  injury caused
in the  unilateral  spinothalamic  tract  (STT)  is a  concomitant  of  glial  alteration  at the  site  of  injury.  Here,  we
investigated  the  activity  of glial  cells  in thalamic  ventral  posterolateral  nuclei  (VPL)  and  their contribution
to  CPS.  We  also  examined  whether  post-injury  administration  of a  pharmacological  dose  of  estradiol  can
attenuate CPS  and  associated  molecular  changes.  Based  on  the  results,in  the  ipsilateral  VPL  the  microglial
phenotype  switched  o  hyperactive  mode  and  Iba1 expression  was  increased  significantly  on  days  21  and
28 post-injury.  The  same  feature  was  observed  in contralateral  VPL  on day  28  (P  <  .05).  These  changes
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were  strongly  correlated  with  the onset  of  CPS  (r =  0.670).  STT  injury  did not  induce  significant  astroglial
response  in  both  ipsilateral  and  contralateral  VPL.  Estradiol  attenuated  bilateral  mechanical  hypersensi-
tivity  14  days  after  STT  lesion  (P < .05).  Estradiol  also suppressed  microglial  activation  in  the  VPL.  Taken
together,  these  findings  indicate  that  selective  STT  lesion  induces  bilateral  microglia  activation  in  VPL
which  might  contribute  to mechanical  hypersensitivity.  Furthermore,  a pharmacological  dose  of  estradiol
reduces  central  pain  possibly  via  suppression  of  glial  activity  in  VPL  region.

©  2013  Elsevier  Ireland  Ltd and  the  Japan  Neuroscience  Society.  All rights  reserved.
. Introduction

Central pain syndrome (CPS) is defined as “pain initiated or
aused by a primary lesion or dysfunction in the CNS”. CPS results
rom a variety of conditions and spinal cord injuries (SCI), multi-
le sclerosis (MS), and cerebrovascular lesions (stroke) are most
ommon of all (Masri et al., 2009).

In response to neuronal injury, the nervous system under-

oes extensive pathological changes which result in pain signal
eneration along this pathway. Emerging evidence indicate that
emote signaling after neuronal injury contributes to the active

Abbreviations: CPS, central pain syndrome; VPL, ventral posterolateral; Est,
stradiol; Contra, contralateral; Ipsi, ipsilateral; Les, lesion; STT, spinothalamic tract;
BP, myelin basic protein.
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modulation of nociceptive network activity in real time and at
multiple locations along the sensory neuraxis through a variety
of cell types with unique intracellular and cell–cell signaling
mechanisms (Yezierski, 2000; Bryce et al., 2012).

Thalamus is an important brain structure which receives pain
signals through spinothalamic tract (STT), a major pathway of pain
(Davis et al., 1998; Thompson and Bushnell, 2012).

The role of thalamus in chronic pain has been reported in both
clinical and experimental studies. Weng et al. (2003) showed that,
primate CPS model increased the incidence of spike-bursts in cells
of deafferented thalamus (Weng et al., 2003). A significant increase
in spontaneous burst activity of neurons as well as up regulation
of sodium channels (Na(v)1.3 type) in VPL region has been also
demonstrated in a rodent model of CPS (Hains et al., 2006; Zhao
et al., 2006). Increased thalamic activity in imaging studies and
biochemical changes have also been reported in patients with pain
after spinal cord injury (Kupers et al., 2000; Anderson et al., 2006;
Gustin et al., 2011).

On the other hand, extensive studies have shown that glial

cells have pivotal role in neuronal sensitization and pain behav-
ior enhanced by different nerve injury models (Coyle, 1998; Chadi
et al., 2001; Coull et al., 2005). Thalamic glial alterations occur in
central pain models such as spinal cord injury pain or post stroke

ociety. All rights reserved.
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ain (Zhao et al., 2007; Wasserman and Koeberle, 2009) as well
s in peripheral neuropathic and inflammatory pain (Huber et al.,
006; Toth et al., 2010).

CPS is resistant to conventional therapies, for a variety of factors
ncluding anatomical, neurochemical, excitotoxic, inflammatory,
on channel expression, and neuroimmune responses which are
elieved to be involved in causing such pain (Hains et al., 2001,
003; Finnerup and Jensen, 2004; Hulsebosch, 2005). Indeed, cur-
ently available drugs for neuropathic pain provide transient relief
n only a fraction of patients while causing severe CNS side effects. It
eems that these drugs do not target all underlying causes of central
ain syndrome (Sandhir et al., 2011).

Recently, Estrogen (17�-estradiol) has received particular
ttention as a potential therapy because it targets many of the path-
ays contributing to pain. Estrogen protects the nervous system

gainst the noxious consequences of nerve injury. Both neurons
nd glia have been suggested as important components of the pro-
ective mechanisms of estrogen (Gyenes et al., 2010; Samantaray
t al., 2011).

In our previous study, we demonstrated the involvement of
pinal microglia in pain development stage whereas astrocytes
ere involved in the late phase or maintained chronic pain fol-

owing unilateral electrolytic lesion on STT (Naseri et al., 2012a).
stradiol improved the functional recovery and decreased the
xtent of demyelination at the site of lesion and restored the
BP  (myelin basic protein) reduction which was concomitant of
icroglial reactivity (Afhami et al., 2012). Our findings led us to

hink that the molecular events and glial reactivity at the spine
akes remote glial alterations at the supra spinal level leading

o allodynic pain. Considering functional improvement by estra-
iol, it was reasonable to examine the administration of 17-Beta
stradiol after neuronal injury and study the possibility of the
teroid role in alleviating CPS and the suppression of thalamic glial
ctivity.

. Materials and methods

.1. Animals

Adult male Sprague-Dawley rats (n = 84; weight 250–300 g)
ere housed in individual cages with food and water ad lib. All
rocedures were approved by ethical committee of Shahid Beheshti
niversity of Medical Sciences.

.2. Spinal lesion

Rats were anaesthetized using Ketamine/Xylazine
60/20 mg/kg, I.P.). CPS was induced according to the method
escribed by Wang and Thompson (2008) with a little modifi-
ation. Briefly, a dorsal laminectomy was performed at spinal
egments T8–T9. After exposure of the spinal cord, the dura was
ncised by fine tip iris scissor. Then, a tungsten electrode (5 �m tip,

 M�)  was targeted to the right spinothalamic tract (STT), based
n stereotaxic coordinates (laterality to midline: 0.5–0.7 mm and
epth: 1.6–1.9 mm).  Lesion was made by a brief current pulse
300 �A, 90 s) passed through the electrode. Electrical current was
aised gradually up to 300 �A in 10 s to reduce animal reflex and
ore consistent outcome. After surgery, all animals received 1 mL

f saline (S.C.) to balance electrolytes as well as Penicillin G (I.M.)

o prevent infection. Besides, during the surgery and recovery from
nesthesia, the rats were covered with warm sterilized towels. The
ats were maintained in single cage in a temperature-controlled
oom at 25 ◦C.
search 75 (2013) 316–323 317

2.3. Experimental groups

Rats were divided into three main groups. Sham-group
received just a laminectomy, without electrolytic lesion. Estradiol-
group received electrolytic lesion and a single dose of 4 mg/kg
17 �-estradiol (Sigma–Aldrich, St. Louis, MO). Lesion-group,
rats were subjected to the electrical lesion and equal vol-
ume  of sesame oil as a vehicle of estradiol. All compounds
were administered by intra peritoneal injection at 30 min
post-injury.

2.4. Mechanical allodynia

Mechanical allodynia was assessed as originally described by
Ren (1999).  Mechanical hind paw thresholds were measured bilat-
erally using calibrated von Frey filaments (Stoelting, IL, U.S.A).
Filaments were applied in ascending order to the dorsal surface
of hind paw (Ren demonstrated that dorsal approach is more reli-
ably and consistently detects threshold changes). Paw withdrawal
threshold was  defined as the force at which the animal withdrew
the paw to three of the five stimuli delivered.

2.5. Western blot analysis

Both right and left thalamus nuclei were homogenized sep-
arately and Whole-cell lysates were prepared in accordance to
the methods described previously (Lee et al., 2012). 60 �g pro-
tein was  subjected to a 12% polyacrylamide gel electrophoresis
(Bio-Rad), and transferred electrophoretically to polyvinylidenedi-
fluoride (PVDF) membranes. After blocking, the membranes were
incubated with anti-Iba1 antibody (1:1000, WAKO Pure Chemical
Industries, Osaka, Japan), anti-GFAP (1:1000 Cell Signaling Tech-
nology) and anti-� actin (1:10000, Cell Signaling Technology), then
incubated with HRP-conjugated secondary antibody (1:10000 Cell
Signaling Technology). The blots were detected using ECL western
blotting detection system (Amersham, Piscataway, NJ) and exposed
to X-ray film (Kodak, Rochester, NY). Bands were quantified using
the software NIH Image J.

2.6. Immunohistochemistry

The reactivity of astrocytes and microglia in sham, lesion, and
estradiol groups were measured by analyzing the expression of
GFAP (Glial Fibrilary Acidic Protein) and Iba1 (Ionized calcium bind-
ing adaptor molecule 1) respectively by immunohisthochemistry at
different time points. Rats were deeply anesthetized with ketamine
(65 mg/kg I.P.) and transcardially perfused with 0.1 M phosphate
buffer saline (PBS), followed by 4% paraformaldehyde/0.1 M phos-
phate buffer. Whole brain were removed and fixed in the same
fixative overnight. Tissues were embedded in paraffin, and 4-�m-
thick serial sections were cut with a sliding microtome. Sections
on slides were deparaffinized in xylene and rehydrated through
descending grades of ethanol, treated with EDTA buffer (pH 8.5)
at 90–100 ◦C for antigen retrieval, and soaked in 1% hydrogen per-
oxide (30%)/methanol for blocking endogenous peroxidase activity.
The unspecific background reactions were blocked with 10% bovine
serum albumin/DAKO-Buffer. Slides were then incubated with
primary antibody (rabbit anti-GFAP, 1:2000, Cell Signaling Technol-
ogy; and rabbit anti-Iba1, 1:3000, WAKO Pure Chemical Industries,
Osaka, Japan) at 4 ◦C overnight in humid chamber. After sev-
eral washing steps in TBS (pH 7.5), sections were incubated with
biotin-conjugated secondary antibody (donkey-anti rabbit, 1:2000,

Jackson Immunoresearch) at 37 ◦C for 1 h, and subsequently with a
biotin-avidin-enzyme complex (1:100,Vectastain ABC kit, Vector
Laboratories, Burlingame, USA).Antibody binding was visualized
by diaminobenzidine (DAB). Then, sections were counterstained
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Fig. 1. Effect of estradiol on pain threshold of hind paws, contralateral (A) and
ipsilateral (B) to STT electrolytic lesion. Withdrawal thresholds were significantly
18 E. Saghaei et al. / Neuroscie

n Mayer acidic hemalum for 10 min, rinsed for 5 min  in run-
ing tap water, dehydrated in graded ethanol as well as xylene,
nd finally mounted with mounting media (Enthelan, Merck) and
over slipped. Images were captured using Olympus microscope
nd attached camera and then analyzed according to the method
escribed by Halushka et al. (2010).  Briefly, The VPL of thalamus at
ach side of brain section was selected as region of interest (ROI)
nd distribution of DAB stain intensity was calculated using Image-J
oftware.

.7. Statistical analysis

Statistical analysis was  performed using two-way ANOVA
nd/or repeated measure ANOVA comparisons tests followed by
onferroni’s post hoc analysis. Pearson’s correlation and logistic
egression were measured to evaluate the relationship between
HC staining and mechanical threshold. An alpha level of signifi-
ance was set at 0.05 for all statistical tests and data were expressed
s mean ± SEM.

. Results

.1. Mechanical allodynia

In our previous study we showed that CPS was established bilat-
rally on day 14 and proceeded to day 28 after STT lesion. The
resent investigation showed that in spinal cord injured rats, the
dministration of estradiol led to the elevation of mechanical pain
hreshold bilaterally (Fig. 1A and B). Data analysis revealed signifi-
ant benefit for estradiol therapy on pain threshold specially those
ays in which pain was established (P < 0.05).

.2. Western blot analysis

The expression of Iba1 in homogenates of ipsi- and contra lateral
halamus was investigated by Western blot at several time points
n injured groups with and without treatment (n = 4/group/time
oint) (Fig. 2A and B). A basal level of Iba1 was detected in thalamus
rom sham-operated animals (Fig. 2D and E). Western blotting of
ontralateral thalamus revealed lower level of Iba1 in comparison
ith that of ipsilateral one throughout the experiment especially at
ay 28 (Fig. 2C, P < .05). In contralateral thalamus there were no sig-
ificant changes in Iba1 protein expression at several time points
xcept day 28 in which Iba1 increased significantly in comparison
ith sham group (Fig. 2D, P < .001). A steady increase of Iba1 level

n ipsilateral thalamus was observed from day 14, but significant
ifferences were obtained at days 21 and 28 post injury in compar-

son with sham group as well as earlier days post injury (Fig. 2E,
 < .001). Estradiol therapy reduced Iba1 protein expression in both
halamus nuclei and maintained its level as much as sham group
ll the time (Fig. 2D and E). To detect GFAP protein expression,
hole extracts from spinal cord of each rat were also analyzed by
estern blot analysis. A similar level of GFAP expression in thala-
us  samples was detected in sham, lesion, and estradiol treated

roups.

.3. Immunohistochemistry

After immunohistological staining in brain sections (obtained
rom sham, injured, and injured estradiol treated groups) which
ad specifically VPL nucleus of thalamus complex, the number as
ell as intensity of Iba1 positive cells were investigated. The loca-
ion of VPL in a representative section overlaid by standard rat
rain atlas has been shown in Fig. 3A. Fig. 3B and H shows res-
ing phenotype of microglia in contralateral and ipsilateral VPLs
n sham-operated animals. After unilateral electrolytic lesion on
decreased bilaterally in lesion group and reversed by single dose of estradiol. Analy-
sis  was done by two-way ANOVA followed by Bonferroni posttest: *P < .05, **P < .01,
***P  < .001 lesion vs.  estradiol.

STT, microglia exhibited marked morphological changes including
larger cell body and thicker processes (hypertrophic mode) which
became more pronounced by 28 days. Microglial alterations were
observed since day 21 in contralateral VPL (Fig. 3C and D) and day
14 in ipsilateral one (Fig. 3I–K). The microglia cell counts were rel-
atively constant throughout the experiment in all groups; whereas
intensity value altered and two way ANOVA analysis has shown
that significant Iba1 expression was  observed starting in contralat-
eral VPL at day 28 and in ipsilateral VPL at days 21 and 28 post
injury in comparison with sham group (Fig. 3G and O respectively,
P < .05). Estradiol therapy in injured animals restored microglia at
resting mode of which was displayed in sham animals (Fig. 3E,
F and L–N); related intensity had no significant difference com-
pared to sham group one bilaterally throughout the experiment
(Fig. 3G and O). Immunostaining was done for asteroglia cells as
well; astrocytic response either as intensity value or as cell counts

had no change in both ipsi- and contra lateral VPL after injury.
Additionally, the onset of microglia activation in ipsilateral VPL
was strongly correlated with the severity of contralateral allo-
dynia after unilateral spinal injury (Fig. 4A; r2 = 0.670, P < .001),
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Fig. 2. The effect of unilateral electrolytic lesion followed by estradiol therapy on microglial marker in thalamus nuclei. Representative of western blotting analysis of Iba1
protein in contralateral (A) and ipsilateral (B) thalamus nuclei in both lesion and estradiol treated groups (n = 4 in each group). (C) Bilateral comparison of thalamic Iba1 level
after  unilateral electrolytic lesion, plot indicates that Iba1 protein expression in contralateral thalamus is greater from day 14 post injury, significant difference was seen
at  day 28 in comparison with that of ipsilateral thalamus (*P < .05). (D) Iba1 expression in thalamus nuclei contralateral to lesion site, significant difference was  at day 28
between lesion and sham (***P < .001) as well as estradiol groups (***P < .001). (E) Observed Iba1 expression in thalamus nuclei ipsilateral to injury site. Iba1 level increased
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rogressively, significant differences were at days 21 and 28 in comparison with
st:  estradiol, Les: lesion, Thal: thalamus, ipsi: ipsilateral, Contra: contralateral.

hereas there was no strong relationship between contralat-
ral microglial reactivity and ipsilateral pain threshold (Fig. 4B;
2 = 0.184, P < .055).

. Discussion

This study was designed to investigate the impact of unilateral
pinal lesion on thalamic glial activation as well as its correlation
ith the onset of injury-induced central pain syndrome.

Altered pain sensation and thalamic neural excitability have
een demonstrated in rodent models of spinal injury and periph-
ral neuropathic pain previously. Although several thalamic
olecular changes such as hyperactivity of T type calcium channel

aV3.1, upregulation of sodium channel NaV3.1, increased num-
er of nicotinic acetylcholine receptors, and reduced mu-opioid
eceptor-mediated-G protein activity have been suggested to
einvolved in altered processing of somatosensory information

nd the establishment of chronic pain (Hains and Waxman, 2006;
ang and Thompson, 2008; Hoot et al., 2011; Ueda et al., 2011),

ut a considerable amount of evidence has demonstrated that
emote glial activation signaling from the site of injured neurons
 group (***P < .001) as well as with estradiol treated group (**P < .01, ***P < .001).

is accompanied with pain. For instance, Hains and Waxman (2006)
showed that after T9 contused spinal injury, microglia in lumbar
dorsal horn became active and played a pivotal role in neuronal
hyper-responsiveness and establishment of below level neuro-
pathic pain via activation of p38 MAPK and ERK1/2. So far, the main
cause of glial activation at locations distant to the site of injury has
not been well established. Remote activation of microglia as well as
proinflmmatory cytokines such as TNF-�, IL-1� and IL-6 in lumbar
dorsal horn are likely to be the sensitive biomarkers of neuropathic
pain (Detloff et al., 2008). In a peripheral neuropathic pain model
(CCI), thermal hyperalgesia was  correlated with increased expres-
sion of OX-42 which predominantly colocalized with P-p38 in the
VPL (Leblanc et al., 2011). Here, we demonstrate time dependent
microglial activation (as hypertrophic mode) in VPL, ipsilateral to
injury site, which is concomitant with the severity of mechanical
allodynia. Microglia activation was  more limited in contralateral
VPL. Time dependent changes in microglia and astrocyte activity at

the site of lesion after STT injury (Naseri et al., 2012a,b) lead us to
think that maladaptive plasticity at the site of spinal injury medi-
ated by glial cell activation may  be involved in supraspinal changes.
Indeed, spinal microglia and astrocyte reactivity in the initial and
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Fig. 3. Immunolabeling and quantification of microglia using Iba1a in VPL bilaterally after unilateral STT lesion. (A) Schema of ventral posteriolatral (VPL) in brain sections.
(B  and H) Resting microglia was observed in bilateral VPLs in sham groups. Resting modes of microglia with small somata and narrow processes were displayed by higher
magnification (insets of B and H). (C, D and I–K) Activated microglia, characterized by retracted processes and large cell bodies (high magnification insets of C, D, I–K) have
been  found at days 21 (C) and 28 (D) in contralateral VPL as well as at days 14 (I) 21 (J) and 28 (K) in ipsilateral VPL. (E, F and L–N) The positive effect of estradiol on microglial
a ent. 
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ctivity was  displayed; microglia cells were in resting mode throughout the experim
psilateral (O) VPLs. DAB intensity was measured in region of interest within VPL. [
st:  estradiol, contra: contralateral, ipsi: ipsilateral, VPL: ventral posterolateral. Sca

hronic phase respectively after SST lesion, possibly account for
bnormal activity of STT pathway and indirectly alter glial activity
n the VPL in the second half of the study. As we know, activated glial
ells produce abnormally secreted products (e.g. proinflammatory
ytokines) contributed to neuroanatomical and neurochemical
hanges leading to maintained hyperecxitability throughout
eural axis (STT) and then central sensitization (Hulsebosch, 2008;
ustin and Moalem-Taylor, 2010). It should be noted that Iba1
eactivity does not reflect the exact level of pro-inflammatory
nd/or anti-inflammatory cytokines and chemokines produced by
ctivated microglia such as IL-1 beta, IL-6, IL-10, TNF-alpha and
tc. On the other hand, several microglial factors have protective
oles which are dependent on the time of factor release possibly

n the severity of CNS injury. Anti-inflammatory factors facilitate
he clearance of apoptotic cells and tissue debris and increase the
xpression of self-associated proteins to dampen continued pro-
nflammatory actions. IL-10 is well described anti-inflammatory
(G and O) Bar diagrams quantifying Iba1 immunoreactivity in contralateral (G) and
cance in G and O: repeated ANOVA ***P < .001 vs. sham as well as Est]. Les: lesion,

: B–F and H–N = 200 �m;  inset scale bar = 20 �m.

cytokine that has been shown to prevent and reverse pathological
pain (Milligan and Watkins, 2009). Therefore, the precise role of
microglia would be clarified if we determine the level of different
cytokines or mediators produced by activated microglia in VPL.
Electrolytic lesion in the unilateral STT did not induce astroglial
response in both ipsilateral and contralateral VPL. Several studies
have shown that the contribution of spinal astrocytes in neuro-
pathic pain is somewhat delayed compared to microglia (Graeber
and Kreutzberg, 1988; Tetzlaff et al., 1988; Hald, 2009; Naseri et al.,
2012a). Perhaps astrocyte reactivity would be visible after 4 weeks.
To address it, we need to follow the glial changes in longer time.

Zhao et al. (2007) suggested that chemokine CCl21 production in
STT neurons potently activates microglia within VPL after thoracic

spinal cord injury and inhibition of either CCl21 or microglia can
attenuate below level allodynia (Zhao et al., 2007).

The other interesting finding in our study was  microglial acti-
vation in contralateral VPL. Wang and Thompson (2008) showed
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Fig. 4. Correlation analysis between pain behavi

hat unilateral spinal injury produces bilaterally CPS and increased
xcitability of thalamic VPL neurons (Wang and Thompson, 2008).
he main mechanisms which contribute to changes of contralateral
ide of injury have not been well documented. However, there are
ome speculations such as existence of bilateral projections from
ona incerta (a nucleus that normally sends GABAergic projection
o the thalamus nuclei and CPS suppresses its activity) to thala-

ic  nuclei in both hemispheres, and bilateral interactions between
onaincerta and its counterpart in the other hemisphere (Masri
t al., 2009; Quiton et al., 2010). This is similar to “mirror-image
ain”, in which glial activation, the release of inflammatory medi-
tors and cytokines in dorsal root ganglion as well as in the spinal
ord have algesic effects on contralateral neurons (Milligan et al.,
003; Yang et al., 2005). Focusing on astrocytes, it has been sug-
ested that activated astrocytes spread excitation from one side to
ther side of spinal cord through gap junctions and finally upreg-
late cytokines (Hatashita et al., 2008). In our previous study, we
emonstrated contralateral astrogliosis in spinal cord at the first
eek post-injury (Naseri et al., 2012a). We  suggest that the exten-

ion of inflammation to the other side being mediated by astrocytes
ay  lead to neural hyperecxitability, microglial activation in VPL,

nd the decrease of pain threshold in contralateral side.
Central pain has often been more difficult to treat than periph-

ral neuropathic pain, and based on randomized controlled trials,
here is no good evidence for this claim. Available drugs targeted
euronal transmission and hyperexcitability have limited success
ith high frequency of side effects. It’s time to focus on a new line

f treatments which do not directly target neurotransmission but
ay  target non neuronal cells including glia while offering lower

dverse effects (Gwak et al., 2012).
Previously, we observed that estradiol attenuated the increase

n microglia at the site of injury in the induction phase of pain as
ell as related astrogliosis in chronic phase of pain (Naseri et al.,

012b). Interestingly, in the present study post-lesion estradiol
herapy decreased microglia activation in VPL nucleus and restored
ilateral nociceptive mechanical threshold.

Although these findings do not clarify the exact mechanisms
nderlying estradiol-mediated suppression of microglial activation
r pain reduction, but there are several reports on beneficial effects
f estradiol on neuronal damage that provide some explanation.
17�-estradiol affects all cell types in the spinal cord via sev-
ral signaling mechanisms to reduce secondary damage after SCI.
his agent acts as an anti-oxidant, anti-inflammatory, and anti-
poptotic steroid hormone leading to the reduction of calpain
 microglial activation in VPL in injured animals.

expression and activity and to the increase of Bcl2 gene expression,
resulting in reduced axon degeneration and neuronal apoptosis
in SCI (Sribnick et al., 2006; Yune et al., 2008). Supraphysiologic
dose of estrogen (4 mg/kg) attenuated infiltration of macrophages
and microglia, myelin loss, and translocation of the inflammatory
transcription factor (NF-�B) from the cytosol to the nucleus and
restored locomotor function in rats following chronic SCI in vivo
(Sribnick et al., 2005). Treatment of male SCI mice with 17�-
estradiol reduced neutrophil infiltration, inflammatory cytokines
or chemokines including TNF-�, IL-1�, IL-6, expression of iNOS,
and cyclooxygenase-2 (Cuzzocrea et al., 2008). In our lab, we  have
demonstrated that single dose of estradiol is able to prevent neu-
ronal STT demyelination, restore MBP  expression, and decrease
apoptotic cell death at the site of injury during first week after SCI
(Afhami et al., 2012). These findings suggest that estradiol promote
axonal regeneration at the site of injury and improves functional
recovery after SCI.

Regarding pain control, estrogens trigger neurochemical
changes that modulate pain responses. Estrogen modulates
GABAergic neurons by activating estrogen receptor beta bear-
ing inhibitory neurons (Blurton-Jones and Tuszynski, 2006), and
decreases pain sensitivity via opioid receptors in the spinal cord and
periaqueductal gray (Ceccarelli et al., 2004). Furthermore, estra-
diol participates in control of peripheral pain signal transduction
by modulating P2X3 receptor (Ma et al., 2011).

Taken together, estradiol is able to attenuate abnormal neu-
ral hyperexcitabiliy in sensory spinothalamic tract resulted from
mechanical damage and inhibit glial activity in VPL region. Sub-
sequently this agent might attenuate cytokine and chemokine
secretion underlying neural damage implicating remote microglial
and neuronal activation in VPL. However other possible effects
of estradiol such as modulation of antinociceptive corticospinal
descending pathways and/or the likely its direct effect on neu-
ronal and glial function in the thalamus complex which was not
investigated in this study should not be excluded. Indeed, to deter-
mine the precise mechanism of estradiol on microgila activity, the
subtypes of estrogen receptors, (ERalpha and ERbeta) on microglia
should be characterized. Further studies on the inhibitory effects of
estradiol on cytokine production in cultured rat microglia followed
by determining the effects of estrogen antagonists to reverse the

estradiol-mediated inhibitory effects on microglial activation will
more clarify more the role of estrogen in this regard. Moreover, the
administration of the drug at later time points or local adminis-
tration in VPL in order to examine the effects of estradiol on both
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lia activity and mechanical hypersensitivity will be a worthwhile
xperiment to follow.

. Conclusions

Central pain syndrome resulted from specific damage to affer-
nt pathway, STT, was followed by glial alterations in bilateral VPL
uclei. Estradiol as a multiplicative therapeutic agent could atten-
ate pain sensation and related glial changes properly. However,
ore investigations are needed to reveal the exact role of thalamic

lial cells in this condition and to determine the exact mecha-
isms of estradiol on nociception and glial activity following STT
amage.
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