
Applied Radiation and Isotopes 72 (2013) 182–194

CORE Metadata, citation and similar papers at core.ac.uk

Provided by shahrekord university of medical scinces
Contents lists available at SciVerse ScienceDirect
Applied Radiation and Isotopes
0969-80

http://d

n Corr

E-m
journal homepage: www.elsevier.com/locate/apradiso
Out-of-field beam characteristics of a 6 MV photon beam: Results
of a Monte Carlo study

M. Atarod a, P. Shokrani a,n, A. Azarnoosh b

a Medical Physics Department, Isfahan University of Medical Sciences, Isfahan, Iran
b Physics Department, Islamic Azad University, Dezful Branch, Dezful, Iran
H I G H L I G H T S
c A Monte Carlo model of a 6 MV photon beam was created and verified.
c The spatial and energy distributions were determined in and out of the modeled beam.
c Variation of the evaluated beam characteristics with field size and depth was investigated.
c The contribution of internal scatter to peripheral radiation at different depths was determined.
c The out of field energy distributions were used to analyze out of field dosimetry factors.
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Detailed characteristics of particles in the periphery of a 6 MV photon beam resulting from the

exposure of a water phantom were analyzed. The characteristics at the periphery were determined

with respect to particles’ origin and charge, using Monte Carlo simulations. Results showed that in the

peripheral regions, the energy fluence and the mean energy distribution of particles are independent of

depth, and the majority of charged particles originate in the irradiated volume. The results are used to

examine out-of-field dosimetry factors.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In external beam radiotherapy, knowledge of the radiation dose in
out-of-field regions, the so called peripheral dose (PD), is necessary in
order to estimate the risk of secondary cancer, late tissue injuries and
fetal abnormalities associated with radiation treatment. The PD is
produced by photons originating from head leakage, scattering at
accelerator components and scattering from irradiated region of the
patient or phantom. The latter is identified as the patient or the
phantom scatter component of PD. Reduction of this component is
not possible by external shielding. Therefore, determination of this
component of the PD may permit the reduction of the thickness of
out-of-field shielding (Stoval et al., 1995). In order to determine the
contribution of phantom scatter to PD, Monte Carlo simulations can
be used to obtain the phase space information of photons and
ll rights reserved.

ani).
contaminant charged particles at different depths in a water phan-
tom, inside and outside of the field’s edge.

A number of Monte Carlo studies were performed in order to
study the characteristics of clinical beams, such as planar fluence,
angular distribution, the energy spectrum and the fractional
contributions of treatment head components to PD (Mohan and
Chui, 1985; Chaney and Cullip, 1994; Lovelock et al., 1995; Deng
et al., 2000; Jiang et al., 2001; Ding, 2002; Kim et al., 2006; Chofor
et al., 2010, 2012). In these studies, the importance of separating
the extra-focal radiation (scattered photons from the primary
collimator and the flattening filter) from the primary photons
(photons directly from the target) for PD analysis of clinical
photon beams was emphasized. However, previous analysis was
performed mainly at the phantom surface or at a certain depth.

A number of experimental studies showed that, irrespective of
energy, the PD is independent of depth (Stoval et al., 1995). In their
Monte Carlo studies, Kry et al. (2006, 2007) reported that the out-of-
field relative dose does not depend on depth, except for the buildup
region where it increases substantially. On the contrary, Mohan and
Chui (1985) showed by measurement that for a 15 MV photon, the
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peripheral percent depth dose (PDD) is similar to the PDD along the
beam central axis, except for a 10% discrepancy outside of the
buildup region. In summary, the characteristics of clinical beams
such as planar fluence, angular distribution and mean energy spatial
distribution were analyzed only at the phantom surface. Also, there is
a lack of general agreement regarding the depth dependency of PD.
Therefore, the goal of this study was to provide beam characteristics
of a 6 MV beam in a water phantom, with emphasis on the
contribution of scattered photons and charged particles to out-of-
field radiation, in order to optimize PD management. We further
analyzed the behavior of PD versus depth using beam characteristics
determined at the surface and different depths. For the stated goal,
the Monte Carlo model of the treatment head of a Siemens Oncor
Impression linear accelerator was developed and commissioned.
2. Material and methods

The EGSnrc user code, BEAMnrc, (Rogers et al., 1995) was used to
simulate the treatment head. To provide the characterization of the
initial electron beam, some fine tuning of different parameters for the
electron beam source and treatment head components was done in
order to match the Monte Carlo calculated dose distributions with the
measured ones. Dose calculations were performed by the EGSnrc user
code, DOSXYZnrc (Walters et al., 2006). The BEAM data processor
(BEAMDP), was used to analyze the phase-space files (Ma and Rogers,
2006). BEAMDP is used as a general-purpose BEAM utility program to
derive energy, planar fluence, mean energy, angular distributions
from existing phase-space data files generated by BEAMnrc.

2.1. Linac simulation

The detailed geometry and composition of the treatment head
components were obtained from the manufacturer. Simulations
were performed using a 6 MV photon beam. The incident electron
beam was assumed to be monoenergetic and monodirectional, and
its radial intensity distribution was considered to be Gaussian
(Aljarrah et al., 2006). Therefore, an elliptical beam with a Gaussian
distribution was used. The first estimation of mean energy and of
the full-width-at-half-maximum (FWHM) of the intensity distribu-
tion of the electron beam was based on nominal data from the
manufacturer i.e., a mono-energetic 6 MeV and Gaussian intensity
distribution with a 2 mm FWHM. Field sizes were defined at the
isocenter, located at 1.0 m from the source (upper face of the target).

The component modules used in the simulations were: SLABS
for target, FLATFILT for flattening filter, CHAMBER for ionizing
chamber, MIRROR for mirror, JAWS for secondary collimators (Y1
and Y2) and MLC for MLC. Simulations were performed for two
field sizes, 10�10 cm2 and 40�40 cm2, for which 5�108 and
108 histories/particles were used, respectively. For model com-
missioning, the phase space data of the particles exiting the
treatment head were collected at a scoring plane located at
431 mm from the source (upper face of the target).

To speed up the simulations, directional bremsstrahlung
splitting (DBS) was used as variance reduction techniques. Simu-
lation parameters were selected as follows: bremsstrahlung
splitting number was 1000, lower charged particle cutoff energy,
ECUT, was 0.7 MeV and the lower photon cutoff energy, PCUT,
was 0.01 MeV. The energy loss per transport step of the electron,
ESTEPE, was controlled by PRESTA (Parameter Reduced Electron-
Step Transport Algorithm) (Bielajew and Rogers, 1987).

2.2. Dose calculations

Using the scored phase space data, the dose distribution in
water phantom was calculated by DOSXYZnrc. The calculated
data include central axis depth dose distributions for a field size
of 10�10 cm2 and lateral dose distributions for the linac’s largest
field size, 40�40 cm2,at depth of 10 cm (Aljarrah et al., 2006).
A 0.8�0.8�0.3 m3 water phantom was used to incorporate
sufficient backscatter material from the bottom and walls of the
phantom. Depending on the required spatial resolution, the size
of the phantom’s voxels (xyz) for the depth–dose calculations
along the central axis varied between 20�20�2 mm3 (in the
build-up region) and 20�20�10 mm3 and for the profile calcu-
lations between 1�20�5 mm3 (in the penumbra region) and
20�20�5 mm3 (in out-of-field).

The physical parameters of the original electron beam that may
influence the dose profile and central-axis PDD curve are beam
energy, beam spot size and distance from the source (Lin et al., 2001;
Sheikh-Bagheri and Rogers, 2001). The off-axis factors were found to
be very sensitive to the mean energy of the electron beam, the
FWHM of its intensity distribution, its angle of incidence, the
dimensions of the upper opening of the primary collimator, the
material of the flattening filter and its density (Sheikh-Bagheri and
Rogers, 2001). No energy spread for electron beam was considered
because this parameter showed no considerable influence on beam
profile or depth dose curves (Sheikh-Bagheri and Rogers, 2002;
Tzedakis et al., 2004). The mean energy and the FWHM of the
incident electron beam intensity distributions were derived by
matching calculated percentage depth–dose curves and off-axis
factors with measured data.

2.3. Dose measurements

Dose distribution measurements were done with an automatic
water phantom (Medphysto mc2, mp3, PTW, Germany) and two
0.12 cm3 PTW ionization chambers (ND,W, Co60, the calibration
factor in terms of absorbed dose to water obtained from IAEA/
WHO SSDL network¼5.31 cGy/nC) as reference and dose cham-
bers. Measurements were performed at a source-to-surface dis-
tance (SSD) of 1.0 m. A correction for the displacement of the
measurement point of the chamber towards the phantom surface
was applied. Measurements were performed with 1 mm resolu-
tion for both PDD curves and beam profiles. The overall measure-
ment uncertainty, including 1.5% chamber calibration
uncertainty, was 2.5%. The sources of experimental uncertainty
were inaccuracy in chamber positioning of up to 1 mm and short-
term fluctuations of the chamber, electrometer, air pressure and
temperature during each measurement (Khan, 2003; Interna-
tional Atomic Energy Agency (IAEA), 2000). The uncertainties
were within the resolution of the symbols used in the plots.

Absorbed dose determination was performed according to the
recommendations of IAEA’s TRS-398 protocol (International Atomic
Energy Agency (IAEA), 2000). Calculation of absorbed dose requires
knowledge of the average energy of the photon spectrum at the point
of measurement. The PD was measured in the peripheral regions of
the fields, where the average energy of the photon spectrum cannot
be measured accurately. Fortunately the parameters in the dose
calculation protocol vary by less than 1% for a 6 MV photon spectrum
and also the response of an ion chamber is quite flat over this energy
range (International Atomic Energy Agency (IAEA), 2000; Podgorsak
et al., 1999).
3. Results and discussion

3.1. Monte Carlo model commissioning

The mean energy of the electron beam for 6 MV photons was
determined to be 6.7 MeV with an uncertainty of 0.1 MeV, as
derived from the 0.1 MeV resolution of electron beam energy in
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the BEAMnrc code. This value was obtained by comparing the
calculated and measured PDD for the 10�10 cm2 field size. This
comparison is shown in Fig. 1. The local differences between
measurements and calculations are less than 2% except for the
surface dose. Since the statistical uncertainty was less than 2% at
depth of maximum dose (dmax), it was possible to normalize the
absorbed dose values to dmax for the PDD distribution.

Beam profiles, calculated and measured at depth of 10 cm for a
field of 40�40 cm2 are shown in Fig. 2. To compare the profiles, the
Fig. 1. Comparison of calculated and measured percent depth dos

Fig. 2. Comparison of calculated and measured dose profiles, 6 M
percentage difference for each point was defined as the percentage
ratio between calculated and measured values. For each region, the
percentage difference was evaluated against those recommended
by Venselaar et al. (2001) as criteria for the acceptance of calcula-
tion results in a water phantom. The results of the comparison of
the calculated and measured beam profile together with statistical
uncertainty of calculations are given in Table 1. The observed
differences between the measurements and the calculations, other
than uncertainty in the stopping power values and statistical
e curves for 6 MV photon beam for field size of 10�10 cm2.

V photon beam at 10 cm depth and 40�40 cm2 field size.
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uncertainty in Monte Carlo results, may be due to fluctuations of
the linac’s output, depth dependency of dosimetry factors, uncer-
tainties of the measurements and approximation in manufacturer
provided information about linac components.
Table 1

Region in profile Acceptance criteria Statistical

uncertainty (%)

Local difference

(%) - (mm)

Flat (umbra) 2% 0.6–1.3 1.04%

penumbra 10%–2 mm 3.7–4 7.5%–2 mm

Out of field 30% 4–9 17%

Fig. 3. Fluence of photons and charged particles as a function of distance from the centra

(b) 40�40 cm2, 6 MV photon beam at SSD¼1.0 m.
3.2. Phase spaces analysis with BEAMDP

In order to further analyze the depth independency of PD, the
behavior of beam characteristics with depth was investigated by
BEAMDP. Phase space data was scored for 10�10 cm2 and
40�40 cm2 field sizes in a phantom located at SSD¼1.0 m, at
the surface, and in depths of 5 and 10 cm. The phantom was
simulated using three CONESTAK component modules in
BEAMnrc. CONESTAK is a coaxial truncated cone surrounded by
a cylindrical wall. The BEAMnrc LATCH variable was used to
separate the contribution of different particles to beam charac-
teristics at different depths and off-axis distances. This variable,
associated with each particle in a simulation, is a 32-bit variable
used to track the particle’s history. Using this variable one records
l axis at phantom surface and 5 and 10 cm depths for two field (a) 10�10 cm2 and
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each particle’s complete history of where a particle has been or
where a particle has interacted in the beam simulation. In this
work, the contribution of particles interacted and or originated in
the phantom was separated from the total scored data at each
depth. The origin of a photon is considered to be the region where
it is created as a bremsstrahlung photon or scattered after a
Compton or coherent scattering event. For a charged particle, the
origin is considered to be the last non-air region it has been to
before it reaches the scoring plane (Ma and Rogers, 2006).

The parameters specified for BEAMDP were as follows: 30 keV
interval energy, 180angular bins, and zero and 90 degrees mini-
mum and maximum angles, the angle between the direction of
particles incident on the scoring plane and the z-axis, respectively.
To derive the angular distributions, the scoring planes were as
Fig. 4. The energy fluence of photons and charged particles as a function of distance f

10�10 cm2 and (b) 40�40 cm2, 6 MV photon beam at SSD¼1.0 m.
large as the corresponding field sizes and for other parameters;
analysis was performed up to 0.15 m from each field’s edge. The
BEAMDP analysis results, including fluence profiles, energy fluence
profiles, mean energy and angular distribution for photons and
contaminating charged particles at different depths and different
distances from the field edge, are shown in Figs. 3–6.The statistical
uncertainty is often less than 0.1% and therefore not shown on
the plots.

For a 10�10 cm2 field, the photon fluence inside the field at
the phantom surface (d¼0) and at two depths in the phantom
remains constant until a relatively sharp decrease at the field
edge occurs (Fig. 3(a)). As the depth increases, this parameter
decreases due to photon attenuation with depth. In contrast, an
increase in photon fluence with depth is seen outside the field,
rom the central axis at phantom surface and 5 and 10 cm depths for two field (a)



Fig. 5. The mean energies of photons and charged particles as a function of off axis distance at the phantom surface and 5 and 10 cm depths for two field (a) 10�10 cm2

and (b) 40�40 cm2, 6 MV photon beam at SSD¼1.0 m.
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due to beam divergence and as later shown due to the increase in
phantom scatter fluence with depth (Fig. 7). Inside the field
however, the charged particle fluence first increases with depth
and then decreases due to photon attenuation. A sharp decrease
at the field edge is also observed for the charged particle fluence
at 5 and 10 cm depths. However, their fluence at the surface
shows a more gradual fall off. The same distribution for photon
and charged particle fluence versus depth and distance from
central axis is seen for 40�40 cm2 field size (Fig. 3(b)).

The energy fluence profiles of photons and charged particles for
both field sizes 10�10 cm2 and 40�40 cm2 (Fig. 4), show a depth
dependence similar to the fluence profiles. However, for 40�40 cm2,
the energy fluence profiles for photons show the effect of beam
hardening created by the flattening filter at the center of the field.

The spatial distribution of the mean energy of photons at the
surface is rather flat inside the field and decreases slightly
towards the field edge where sharp drop occurs as shown in
Fig. 5(a) for the 10�10 cm2 field size. Whereas, the mean energy
profiles inside the phantom showed an increase toward the field’s
boundary. Along the beam axis, the mean energy was reduced
from 1.63 MeV at the surface to an identical energy of 1.44 MeV at
both 5 and 10 cm depth. The wider distribution of mean energy at
10 cm depth around the beam boundary is related to beam
divergence with depth. The same depth independency is present



Fig. 6. The angular distribution of photons and charged particles as a function of distance from the central axis at phantom surface and 5 and 10 cm depths for two field (a)

10�10 cm2 and (b) 40�40 cm2, 6 MV photon beam at SSD¼1.0 m.
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for the mean energy of charged particles, where the mean energy
along the beam axis changed from 1.53 MeV at the surface to a
constant value of 1.23 at both depths. However, at the surface, the
profile showed a slight increase outside and near the border.

A similar depth dependency and sharp drop outside the field
were notable in the mean energy profiles of photons and charged
particles for 40�40 cm2 field. For this field size, the mean energy
profiles for photons showed a maximum on the central axis at all
depths and a change in gradient as depth increased, i.e., 28% at
d¼0, 20% at d¼5 and 10% at d¼10. Along the beam axis, the
mean energy of photons decreased from 1.33 MeV on the surface
to 0.99 MeV at 5 cm depth and 0.89 MeV at 10 cm. The mean
energy of the charged particles also decreased from 1.44 MeV at
the surface to 1.22 MeV at 5 cm and to 1.19 MeV at 10 cm. For
both field sizes, the mean energy of photons and charged particles
inside and outside the field was less than one third of the nominal
beam energy. Also the mean energy distribution of photons and
charged particles in out-of-field regions were nearly independent
of depth. Therefore, for the range of peripheral mean energy
variations seen in this study, the ionization chamber energy
correction factor remains constant (International Atomic Energy
Agency, 2000). The ionization chamber energy correction factor is
used to correct the dose to water calibration factor from a
reference beam to the actual user’s quality. Thus, for absolute
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peripheral dose measurements, a single energy correction factor
can be used, independent of depth and distance from the field’s
edge. For the same reason, variation of air to water stopping power
ratio with electron energy for the range of peripheral mean energy
variations seen, is quiet minimal. Therefore, depth ionization dis-
tributions measured with an ionization chamber in out-of-field may
be used directly to give depth dose distributions.

Fig. 6(a), (b) present the angular distributions of photons and
charged particles at 0, 5 and 10 cm depths for the 10�10 cm2 and
40�40 cm2 field sizes. For both field sizes, photons showed narrow
angular distributions both at the surface and with depth, although
there was a wider distribution for the larger field. However, charged
particles showed a wider angular distribution. This distribution
changed with field size and stayed almost constant with depth.
Fig. 7. Fluence of photons and charged particles those interacted and originated in pha

10 cm depths for two field (a) 10�10 cm2 and (b) 40�40 cm2, 6 MV photon beam at
In order to further analyze the contribution of phantom scatter to
out-of-field radiation, the LATCH variable was used and the asso-
ciated results are illustrated in Figs. 7–10. The statistical uncertainty
is often less than 0.1% and therefore not shown on the plots.

The fluence profiles were analyzed to estimate the abundance
of different particles versus depth and distance from central axis.
As shown in Fig. 7, for photons interacting with phantom
(phantom photons), the fluence increases with depth and suffers
a slower drop at the field border, in contrast to the fluence of
incident photons (shown in Fig. 3). Within the field boundaries
and in each depth, the number of phantom photons was about 2%
of the total incident photons. Whereas, nearly all of phantom
charged particles were originated in the phantom. In the phantom
however, the majority of charged particles in out-of-field regions
ntom as a function of distance from the central axis at phantom surface and 5 and

SSD¼1.0 m.



Fig. 8. The energy fluence profiles of photons and charged particles those interacted and originated in phantom as a function of distance from the central axis at phantom

surface and 5 and 10 cm depths for two field (a) 10�10 cm2 and (b) 40�40 cm2, 6 MV photon beam at SSD¼1.0 m.
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were originated in the irradiated volume in contrast to those
produced due to interaction of head leakage and head scatter
photons with phantom. This finding confirms that using an
external shield in out-of-field regions will not reduce the dose
due to particles scattered from the irradiated volume. Considering
this fact, one may design an effective external shield for out-of-
field organs with minimum thickness.

In Fig. 8, for both particle types and each field size, the same
pattern of dependency with depth observed in Fig. 7 is seen for
the spatial distribution of energy fluence. In Fig. 9, the mean
energy distribution of phantom photons and phantom charged
particles is shown. As shown in Fig. 9(a), the mean energy
distribution of phantom photons did not change with depth and
remained constant inside and outside the 10�10 cm2 field. For
this field, a larger mean energy value for phantom charged
particles relative to phantom photons is shown. However, for
the 40�40 cm2, the mean energy decreased outside the field’s
border. For phantom charged particles, the mean energy at the
surface remained constant in and out-of-field and increased at
depth relative to the surface for both field sizes. A sharp reduction
in the mean energy was observed for both depths and field sizes.

In Fig. 10, phantom photons and charged particles showed
similar angular distributions irrespective of depth and field
size. However, for the 40�40 cm2 field size the abundance of
phantom photons scattered in wide angles was greater than
charged particles. Therefore, probability of phantom photons
contamination in out-of-field regions is greater than that for
charged particles.



Fig. 9. The mean energy distribution of photons and charged particles those interacted and originated in phantom as a function of distance from the central axis

at phantom surface and 5 and 10 cm depths for two fields (a) 10�10 cm2 and (b) 40�40 cm2, 6 MV photon beam at SSD¼1.0 m.
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3.3. Out-of-field dose calculations

In order to investigate the behavior of out-of-field dose with
depth, the depth dose curves were calculated at four different
distances; 2, 5, 7 and 10 cm from the edge of a 10�10 cm2 field
(Fig. 11). Calculations were done in water phantom, irradiated
with 6 MV photon beam at SSD¼1.0 m. These results show that
PD, as a percentage of maximum dose along central axis,
decreased from about 40% at the field border to 6% in other
distances from the edges of the field, respectively. Also it can be
seen that PD was independent of depth at all distances.
In this study, it was shown that incident photon energy fluence
remains constant with depth in out-of-field regions. Therefore, in
this region the attenuation and scattering of photons at different
depths was negligible and charged particle equilibrium (CPE)
exists. Under CPE, dose is equal to collision kerma (Kcol). The
ratio of Kcol at two depths is proportional to the ratio of product
of the energy fluence and the mass attenuation coefficient at the
corresponding depths. It was also shown that the incident photon
mean energy remained constant with depth in out-of-field
regions. Therefore, for these photons, the ratio of average attenua-
tion coefficients at two depths is unity and the ratio of Kcol at two



Fig. 10. The angular distribution of photons and charged particles those interacted and originated in phantom as a function of distance from the central axis at phantom

surface and 5 and 10 cm depths for two fields (a) 10�10 cm2 and (b) 40�40 cm2, 6 MV photon beam at SSD¼1.0 m.
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depths is proportional to the ratio of the energy fluence at the
corresponding depths outside the field boundary. Therefore, outside
the field boundary, Kcol remains constant with depth and it can be
concluded that PD is independent of depth. In vicinity of the field
border, however, a larger variation of PD with depth was seen.
4. Conclusion

Monte Carlo simulations were conducted to investigate the
characteristics of particles originated in the irradiated volume and
their contribution to out-of-field radiation. A Siemens Oncor
Impression treatment head was modelled for a 6 MV photon
beam using BEAMnrc user code. The calculated percent depth
dose and dose profile plots show good agreement with measure-
ments. Using the developed model, energy and spatial distribu-
tions for the incident particles and the scattered particles created
in phantom were calculated. All data are presented for field sizes
of 10�10 cm2 and 40�40 cm2, at the surface and at the two
depths in the phantom.

At the surface, inside and outside the field, fluence of charged
particles created in the phantom was negligible compared to the
incident charged particle fluence. In the phantom however, the
majority of charged particle in out-of-field regions were origi-
nated in the irradiated volume in contrast to those produced due
to interaction of head leakage and head scatter photons with



Fig. 11. Relative dose values calculated from the water surface to 30 cm depth at the edge of the field and 2, 5, 7 and 10 cm from the edge of a 10�10 cm2 field.
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phantom. This finding confirms that using an external shield in
out-of-field regions will not reduce the dose due to particles
scattered from the irradiated volume.

In out-of-field regions, the mean energy profiles for photons
and charged particles remained nearly constant with depth and
lateral distance. These results can be used for determination of
conversion factors used in dosimetry when converting detector
reading to dose. For example, when measuring relative periph-
eral depth dose distributions using an ionization chamber, the
ratio of ionization at each depth to ionization at depth of
maximum will be equal to depth dose ratios. Therefore, conver-
sion of depth ionization distribution to depth dose distribution
is not needed. Also, for the range of peripheral mean energy
variations shown in this study, the energy correction factor for
correction of dose to water calibration factor from the reference
quality to the user’s energy is constant. Therefore, for absolute
peripheral dose measurements, a single energy correction factor can
be used, independent of depth and distance from the field’s edge.

Finally, it was shown that incident photon energy fluence
remained constant with depth in out-of-field regions. Using this
finding, the charged particle equilibrium concept and relationship
of collision kerma and dose, the fact that peripheral dose is
independent of depth was justified.
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