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Near-Optimal deterministic filtering on the Rotation
Group

Mohammad Zamani, Jochen Trumpf, Member, IEEE,
and Robert Mahony, Senior Member, IEEE

Abstract—This paper considers the problem of
obtaining minimum-energy state estimates for a
system defined on the rotation group, SO(3). The
signals of the system are modeled as purely deter-
ministic signals. We derive a non-linear observer
(“filter”) posed directly on SO(3) that respects the
geometry of the group and achieves a performance
that is close to optimal in the sense of minimizing
an integral cost that is measuring the state energy.
The performance of the proposed filter is demon-
strated in simulations involving large initialization,
process and measurement errors where the results
are compared against a quaternion implementation
of an Extended Kalman Filter (EKF). Our results
indicate that the proposed filter achieves better
robustness against a range of noise levels and
initialization errors.

Index Terms—Deterministic filtering, special or-
thogonal group, attitude estimation, minimum-
energy state estimation.

I. Introduction

OPTIMAL state filtering for noisy state
space systems is a core problem in sys-

tem theory. Optimal filters based on probabilis-
tic modeling frameworks for linear state space
systems were developed in the early 1960s (e.g.
Kalman [1]). For nonlinear systems, the lack of
finite dimensional parameterizations of general
stochastic processes has made it in general impos-
sible to find finite dimensional optimal stochastic
filters [2]. The most common approach to design
practical filters for nonlinear systems is to work
with a linearization of the original system, e.g. the
Extended Kalman Filter (EKF) [3]. Other meth-
ods such as particle filters [4] or the Unscented
Kalman Filter (UKF) [5] approximate the infinite
dimensional distributions by working with a finite

The authors are with the School of Engineering, Aus-
tralian National University, Canberra, ACT, Australia.
Mohammad.Zamani@anu.edu.au, Jochen.Trumpf@anu.edu.au
and Robert.Mahony@anu.edu.au.

sample set. Such sub-optimal methods have en-
joyed significant practical success despite the lack
of guaranteed global optimality or quantifiable
performance bounds except in special cases [6],
[7]. Additionally, there are variants of the EKF
for special system classes, e.g. for invariant sys-
tems [8]. These methods yield symmetry preserv-
ing filters and a systematic scheme for tuning
them. In the late 1960s, Mortensen [9] proposed
the concept of minimum energy filtering based
on a deterministic signal setting. For linear sys-
tems, the minimum energy optimal filter for the
standard quadratic cost function can be realised
as an on-line dynamic system that is simply the
Kalman filter [10]–[13]. For non-linear systems
the deterministic signal framework offers the pos-
sibility of measuring the distance to optimality
of filters and the hope of developing filters with
performance bounds and stability guarantees.

We consider a particular example of a non-
linear filtering problem in this paper, that of de-
veloping attitude filters on the group of rotation
matrices, the special orthogonal group SO(3). A
recent survey [14], claimed that the EKF and
its variants are still the filters employed in a
majority of attitude estimation applications, how-
ever, recent work on non-linear observer design
for systems with symmetry [15]–[19] has lead to
a family of constant gain observers that achieve
comparable results to EKF type filters in ap-
plications and provide (almost) global stability
guarantees. Choukroun et al [20] recently used
an embedded representation of the Special Or-
thogonal Group SO(3) (via the quaternions in
R4) to obtain an ’optimal’ filter for the attitude
estimation problem, although the filter estimate
needs to be re-projected onto the rotation group
to obtain feasible estimates. Aguiar et al [21] used
the minimum energy filter framework explicitly to
show ’optimality’ for a system posed on the Spe-
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cial Euclidian Group SE(3) using a representation
embedded in a vector space, but once again it is
required to project the filter state to guarantee
feasibility, a process that compromises optimality.
Coote et al. [22] considered a simple system on the
unit circle S1 (or SO(2)) and used a minimum
energy filtering approach to obtain a filter that
maintains the state constraint and is near-optimal
in the sense that its cost is within a small explicit
bound of the optimal cost.

In this paper, we apply the principles of optimal
deterministic filtering to an attitude denoising
problem (where it is assumed that full measure-
ments of the state are available). Our approach is
based on exploiting the geometry of the rotation
group and then applying the principles of opti-
mal deterministic filtering. Using an analogous
approach to that undertaken by Coote et al. [22]
we derive a deterministic filter directly on SO(3)
that respects the geometry of the system. The
proposed solution is near optimal in the sense
that the cost or energy associated with the filter
system achieves a cost that is within a certain
gap from the optimal cost, and where we pro-
vide an explicit bound for the magnitude of the
performance gap and argue that it is small in
typical conditions. The filter is straightforward
to tune, and we believe that it is less sensitive
to errors in initial noise covariance estimates than
the EKF and its variants. We provide a simulation
study that compares the proposed filter against a
quaternion implementation of the EKF for large
initial state error.

The remainder of the paper is organized as fol-
lows. Section II provides a short summary of the
notation used throughout the paper. Section III
provides the problem formulation. Section IV
contains a description of the proposed filter and
provides the near-optimality proof. Section V con-
tains the simulation results. A short conclusion
and an appendix providing some of the proofs
complete the paper.

II. Notation

The rotation group is denoted by SO(3). The
associated Lie algebra so(3) is the set of skew-
symmetric matrices

so(3) = {A ∈ R3×3|A = −AT}.

The Frobenius norm of a matrix X ∈ R3×3 is
given by

‖X‖ :=
√

trace(XTX).

We define a cost φΓ : SO(3) −→ R+, by

φΓ(R) := trace
[
(R− I)T Γ(R− I)

]
,

where Γ ∈ R3×3 is symmetric positive definite.
Note that φΓ(R) coincides with the squared ma-
trix Frobenius norm of Γ 1

2 (R − I) and hence
is non-negative. The projection operator P :
R3×3 −→ so(3) is defined by

P(M) := 1
2(M −MT ).

I ∈ R3×3 is the Identity matrix.

III. Problem Formulation
Consider a system on SO(3){

Ṙ = R(A+ gδ), R(0) = R0
Y = Rε

(1)

where R, Y and ε are SO(3) valued state, output
and measurement error signals, respectively. The
signals A and δ denote the measured angular
velocity and the process error, respectively, and
take values in so(3). The scalar g acts as a scaling
for the error signal δ. All signals are considered
as deterministic functions of time and we assume
sufficient regularity of all signals to ensure exis-
tence of unique maximal solutions of the system.

In the minimum energy deterministic filtering
approach, we consider hypotheses for the un-
known system signals, the initial state R0, the
process error δ, and measurement error ε, that
are compatible with the system model and the
actual observations A|[0, T ] and Y |[0, T ] (1). Note
that this is equivalent to specifying a hypothesis
Rh(t) for the state trajectory R(t) that satisfies
(1) on [0, T ] since such a trajectory is uniquely
determined by the unknown signals. The cost of
a given hypothesis is measured using the following
‘energy’ functional (cf. [20]–[22])

JT = 1
4φK−1

0
(R0) +

∫ T

0

(1
2‖δ‖

2 + 1
4φI(ε)

)
dτ

= 1
2

∫ T

0

(
trace[δT δ] + trace[I − ε]

)
dτ

+ 1
4 trace

[
(R0 − I)TK−1

0 (R0 − I)
]
,

(2)
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where K0 ∈ R3×3 is symmetric positive definite.
If the signals associated with a given hypothesis
minimize the cost (or energy) function over all
possible choices of unknown signals, then the
hypothesis is termed optimal. The value R∗(T )
of the associated state trajectory is considered as
the optimal (minimum-energy) state estimate at
time T [9].

Note that at different times, e.g T1 < T2, this
process may yield different optimal state trajec-
tories R∗

T . This is due to the fact that at different
times T the trajectory R∗

T is associated with
different optimization problems where the same
cost (2) is minimized conditioned on different
sets of observations [9, p. 389]. At time T1 the
observations A|[0, T1] and Y |[0, T1] are used whereas
at time T2 the additional measurements A|[T1, T2]
and Y |[T1, T2] further constrain the entire optimal
trajectory.

In general the trajectory of an optimal filter
will not coincide with any of the optimal hypothe-
ses R∗

T . Indeed, the optimal filter trajectory is the
sequence of the final values R∗

T (T ) for each T . The
goal is now to find a finite dimensional dynamic
system depending only on measurement signals
that has the sequence of final values R∗

t (t) as its
trajectory R̂(t).

IV. Main results
In this section we will discuss our solution to

the problem sketched in the previous section.
First we define the proposed filter and then we
show that this filter is a near-optimal solution to
our filtering problem.

Consider the filter
˙̂
R = R̂

(
A− P

(
KY T R̂

))
, (3a)

K̇ = 1
2Q−

1
2K(Y T R̂+R̂TY )K+KA−AK, (3b)

where R̂(0) := I, K(0) := K0, and Q ∈ R3×3

is symmetric positive definite. The signals A
and Y are defined by system (1). The filter in
Equation (3) consists of two interconnected parts.
Equation (3a) evolves on SO(3) and is made
from a copy of system (1) plus an innovation
term. The innovation term is a weighted distance
between the (past) estimated signal and the noisy
measured state signal projected on the Lie algebra
so(3). Note that Y T R̂ is a distance between Y

and R̂ on the group SO(3). That is, starting
from Y and following this distance we will reach
R̂ = Y (Y T R̂). The distance can be interpreted in
terms of a rotation angle between R̂ and Y [18].
The weighting matrix K ∈ R3×3 is dynamically
generated by (3b) and depends on estimates and
measurements from the past. Equation (3b) is
a time-varying Riccati differential equation. We
briefly recall the following facts about the solu-
tions of Riccati equations.
Proposition 1: [23, p. 175] Consider the time-

varying matrix Riccati differential equation

K̇ = Q(t) +KS(t)K +KF (t) + F (t)TK, (4)

with the initial condition K(0) = K0, where Q(t),
S(t) and F (t) are continuous functions of time.
(i) If K0 > 0, S is symmetric and Q is symmetric
positive definite the solution K(t) stays symmet-
ric positive definite for t > 0 (as long as it exists).
(ii) If Q is symmetric positive semi-definite, S
is symmetric negative semi-definite and K0 is
symmetric positive semi-definite then (4) has a
solution K(t) for all times t ≥ 0. This solution is
unique, symmetric and positive semi-definite. If
K0 is positive definite then this solution is positive
definite.

We now state our main result.
Theorem 1: Consider the system (1) and the

cost (2). Given some measurements Y (t) and their
associated inputs A(t) for t ∈ [0, T ], assume that
unique solutions R̂(t) and K(t) to (3a) and (3b)
exist on [0, T ]. Assuming further that

W (T ) :=
∫ T

0

(1
4 trace

[1
4g

2K−2
(
(R̂TR)2 − I

)
+K−1QK−1

(
I − R̂TR

)
−R̂TY K

(
R̂TRK−1 −K−1R̂TR

)])
dτ

≥ 0.
(5)

Then the filter (3) yields a near-optimal estimate
R̂(T ) of the state R(T ) in the sense that there
exists a hypothesis Rh with Rh(T ) = R̂(T ) and
JT ≤ J∗

T + W (T ), where JT is the functional
cost for Rh, J∗

T denotes the optimal value for the
cost (2) and W (T ) is a bound on the optimality
gap.
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Proof: Under the conditions listed in the
theorem,
JT =

1
4 trace

[
(R(T )− R̂(T ))K−1(T )(R(T )− R̂(T ))T

]
+
∫ T

0

(
1
2

∥∥∥∥δ − 1
4g(K−1R̂TR−RT R̂K−1)

∥∥∥∥2

+1
4φI(Y T R̂)

)
dτ +W (T ).

(6)
Details of this derivation are provided in Ap-
pendix A. According to Proposition 1, K(T ) is a
positive definite matrix and, given the assumption
onW (T ), it is easily verified that all terms on the
right hand side of (6) are non-negative. Thus, the
cost function JT fulfills the inequality

JT ≥
∫ T

0

(1
4φI(Y T R̂)

)
dτ. (7)

The right hand side of Equation (7) is inde-
pendent of any specific choice of the variables
R0, δ|[0,T ] and ε|[0,T ] and depends only on the
measured data Y (.) and the filter signals. Thus,
the right hand side of Equation (7) is also a lower
bound for the minimum J∗

T of the cost, i.e.

J∗
T ≥

1
4

∫ T

0
φI(Y T R̂)dτ.

Consider a hypothesis Rh : [0, T ] −→ SO(3) for
the true trajectory of the system generated by

Ṙh = Rh

(
A+ 1

4g
(
K−1R̂TRh −RT

h R̂K
−1
))
(8)

with fixed final condition Rh(T ) := R̂(T ) where
R̂ and K−1 are solutions of the proposed filter
(3). It is straightforward to show (by integrating
in reverse time) that (8) has a unique initial state
Rh(0) that produces the final condition Rh(T ) =
R̂(T ). Define the signal εh : [0, T ] −→ SO(3) by

εh := RT
hY, (9)

and the signal δh : [0, T ] −→ so(3) by

δh := 1
4
(
K−1R̂TRh −RT

h R̂K
−1
)
. (10)

Equations (8) and (9) show that Rh(0), δh|[0,T ]
and εh|[0,T ] together with A|[0, T ] and Y |[0, T ] sat-
isfy the system equations (1).

Recalling (6) the functional cost JT of Rh is

JT = 1
4

∫ T

0
φI(Y T R̂)dτ +W (T )

≤ J∗
T +W (T ).

This completes the proof.
Remark 1: The proposed filter fully specializes

to the filter on S1 by Coote et al [22] once we set
Q = gI. Particularly, the bound on the optimality
gap W (T ) also specializes to the one obtained
in [22] and in that case is fourth order in the
tracking error. In fact, the first two lines of W (T )
in (5) complete the square for R̂TR which is
second order in the rotation angle tracking error
and hence this part of W (T ) is fourth order in
the tracking error and in particular small and
positive. The third line in (5) is a curvature
correction term that in the case of S1 turns out
to be zero. Simulation studies indicate that this
term is dominated by the first two terms.
Remark 2: The previous theorem assumes that

unique solutions exist for Equation (3) on [0, T ].
It is not clear a-priori that (3b) will always admit
a solution on this interval. This could potentially
become problematic for (3a) since K appears in
this equation as well. We know that according to
Proposition 1, for Equation (3b) to have a unique
solution the term (Y T R̂+R̂TY ) should be positive
semi definite. This is the case if and only if the
angle of rotation between Y and R̂ is less than 90
degrees. It is not trivial to verify this condition in
advance as the evolution of R̂ also depends on K,
however, simulations indicate that this condition
holds robustly in practice even for fairly extreme
noise conditions.
Remark 3: A key contribution of Theorem 1

lies in providing a bound W (T ) given by (5)
for evaluating the performance of the filter. This
bound is numerically quantifiable and is approx-
imately fourth order in the tracking error. Thus,
once the initial transient of the filter is complete,
and for moderate modelling error, it is to be
expected that the filter will perform qualitatively
as well as an optimal filter.
Remark 4: In certain applications, the system

considered has no process noise. In such situations
the results of this paper can be easily modified to
yield simpler filtering formulas.
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Fig. 1. The rotation angle tracking performance of the
proposed filter and the EKF in a typical situation where the
EKF performs badly. Note that the figure is zoomed to a
neighborhood around an angle of π radians.

V. simulations
In this section we present simulation results

that demonstrate the performance of the pro-
posed filter. We consider an extreme case for
which the initial state error is close to 180 degrees
of rotation angle. The EKF is implemented using
a quaternion implementation [24]. The numerical
solution of the proposed filter is obtained using a
RK-MK method, namely the Heun’s method [25]
modified for a nonlinear feedback system like
ours. It is well known that the EKF is prone
to singularities when the initial rotation error
angle is close to π (cf. [20]) . Figure 1 shows a
typical example where the actual state trajectory
is initialized and evolves near to π while the
two filters are initialized at zero. In this case
the majority of the noisy measurements are close
to π and due to the inherent singularities in
the measurement process , following from the
coordinate representation of the EKF, the EKF
estimate shows significantly worse performance
than the proposed SO(3) filter estimate.

VI. Conclusion
In this paper, we proposed a near-optimal

deterministic filter that evolves on the rotation
group SO(3). The proposed filter shows robust-
ness even to errors of large magnitude and has a
quantifiable optimality gap that is asymptotically
fourth order in the tracking error, indicating ex-
cellent performance and justifying the term “near-

optimal” that we have used to describe the filter.
We provide simulations that demonstrate the per-
formance of the proposed filter in a situation with
extreme initialization errors.

Appendix A
proof of Equation (6)

Proof: Consider the function

L = 1
4 trace

[
(R− R̂)K−1(R− R̂)T

]
. (11)

The time derivative of Equation (11) substituting
from Equations (1) and (3) is

L̇ = trace
[1
4
((
A+ P(KY T R̂)

)
R̂TR

− R̂TR(A+ gδ) + (A+ gδ)RT R̂

−RT R̂
(
A− P(KY T R̂)

))
K−1

−1
2(R̂TR− I)K̇−1

]
.

(12)
Completing the square for terms containing δ,
substituting for P(KY T R̂), the derivative K̇−1 =
−K−1K̇K−1, the gain dynamics K̇ from the Ric-
cati Equation (3b), and finally grouping the re-
maining terms and extracting φI(ε) and φI(Y T R̂),
one obtains
L̇ = 1

2‖δ‖
2 + 1

4φI(ε)− 1
4φI(Y T R̂)

− 1
2

∥∥∥∥δ − 1
4g(K−1R̂TR−RT R̂K−1)

∥∥∥∥2

+ trace
[ 1
16K

−2g2 − 1
16
(
gK−1R̂TR

)2

+ 1
4K

−1QK−1R̂TR− 1
4QK

−2

+1
4R̂

TY K
(
R̂TRK−1 −K−1R̂TR

)]
.

(13)

Integrating L to obtain L(T ) − L(0) =
∫ T

0
L̇dτ ,

and replacing R̂(0) = I results in
1
4 trace

[
(R(T )− R̂(T ))K−1(T )(R(T )− R̂(T ))T

]
= JT −

∫ T

0

(
1
2

∥∥∥∥δ − 1
4g(K−1R̂TR−RT R̂K−1)

∥∥∥∥2

+1
4φI(Y T R̂)

)
dτ −W (T ).

(14)
Moving JT to the left hand side yields Equa-
tion (6).
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