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Abstract 

Experiments depict that the physico-mechanical response of miniature devices is microstruc-

ture-dependent. However, the classic continuum theory cannot correctly predict the microstruc-

ture-dependency. In this paper, the strain gradient theory is employed to examine the dynamic 

behavior and instability characteristics of miniature varactor with trapezoidal geometry. The gov-

erning equation of the varactor is obtained incorporating the effects of Coulomb force, van der 

Waals (vdW) attraction, squeeze film damping and structural damping. The influences of micro-

structure on the dynamic instability of equilibrium points are studied by plotting the phase portrait 

and bifurcation diagrams. It is found that increase in the microstructure parameter enhances the 

torsional stability. In the presence of the applied voltage, the phase portrait shows the saddle-node 

bifurcation while for free-standing varactor a subcritical pitchfork bifurcation is observed. 

 

Keywords: nano-electromechanical varactor; microstructure; strain gradient theory; dynamic 

instability; van der Waals force. 

 

1. Introduction 

Ultra-small electrostatic torsional actuators due to the high sensitivity, high quality factor, low ac-

tuation voltage and small possibility of stiction have wide applications in the micro/nano-electro-

mechanical systems (MEMS/NEMS) such as tunable torsional capacitors, digital light processing 

chips and torsional radio frequency switches used in micro-satellite communications and radar 

systems [1-5]. Among these systems, torsional NEMS varactors are being considered as potential 

ultra-small devices with promising applications in fabrication of smart structures such as confocal 

microscopy, wireless communications, optical telecommunication, bar code reading, laser printing 

and endoscopic bio-imaging, integrated circuits, switching devices, nano-robots, etc.  Therefore, 

many researchers have focused on the numerical, theoretical and experimental analysis of such sys-

tems through different assumptions and methods [6-14]. The torsional nano-varactor is composed of 

movable conductive electrode (mainplate) which is suspended over a fixed conductive electrode 

(substrate) using torsional nano-beams. In the equilibrium position, the electrostatic and restoring 

forces/torques are identical. However, if the potential difference exceeds its critical value, the nano-

varactor becomes structurally instable and the flexible plate adheres to the fixed substrate i.e. pull-in 

instability occurs. Actually, pull-in is an unstable state at which the elastic torque can no more bal-

ance the electrical torque [15, 16]. The pull-in instability phenomenon is a crucial issue in the design 

and fabrication of NEMS/MEMS. Recently, many investigations have extensively focused on the 

prediction of pull-in state of electrostatic torsional NEMS/MEMS [17-22]. Sedighi and Shirazi [18] 

investigated the nonlinear behavior of double-sided-actuated torsional nano-switches with different 

actuation voltages. Guo et al. [19] studied the pull-in instabilities of a rotational MEMS/NEMS in the 

presence of capillary effects. The chaotic behavior in torsional MEMS mirrors near the instability 

condition was developed by Shabani et al. [20]. 
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If the dimensions of structures reduce to the sub-micron scale, the electromechanical response of 

such devices might be microstructure-dependent. The microstructure-dependency is an intrinsic 

property of some materials when the characteristic size of the nanostructures is comparable with the 

material length scale [23]. From this point of view, new parameters which can predict the microstruc-

ture effects should be included in the theoretical governing equations. Unfortunately, the classical 

continuum mechanics is not able to explain the microstructure-dependent behaviors of miniature 

structures. Instead, new non-classical models such as modified couple stress theory [24] and strain 

gradient theory (SGT) [25] - which incorporates the microstructure effects in the governing equation 

- can be employed. Lam et al. [25], developed a modified SGT with three material length scale pa-

rameters. In this work the authors employ SGT for modeling the microstructure-dependent dynamic 

and instability of the nano-varactor.  

To the best knowledge of authors, the effect of microstructure on the dynamic characteristics of 

torsional NEMS varactors has not been addressed till present. The main goal of the present article 

is to investigate the influence of microstructure phenomenon on the dynamic response and insta-

bility threshold of trapezoidal NEMS varactor operating in vdW regime. The presence of vdW 

force significantly affects the behavior of ultra-small structures. Although the vdW force can be 

ignored in designing micro-scale actuators, it plays crucial role at submicron [26-31]. The equation 

of motion is extracted based on the strain gradient elasticity and with the consideration of structur-

al damping. To examine the stability of the equilibrium points of the nano-system, bifurcation 

diagrams and phase portraits are plotted and discussed. 

 

2. Mathematical formulation  

Figure 1 shows the schematic configuration and side views of a torsional NEMS varactor. The 

mainplate is suspended over the ground electrode via two elastic nano-scale beams with length L. 

The initial gap between mainplate and fixed substrate is g and the rotation of mainplate is denoted 

by θ. 

 
Fig. 1 Schematics of a torsional nano-varactor 

 

2.1 Basic idea of SGT  

Based on the SGT, the strain energy density,U , can be explained as [25]: 
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s
ij jkl l ,kie u   

In above equations, ui, i, 
( 1 )
ijk

 , 
s
ij , ij and eijk are components of displacement vector, dilatation 

gradient vector, stretch gradient tensor, rotation gradient tensor, Kronocker delta and permutation 

symbol, respectively. Also ij, pi, 
( 1 )
ijk
 , 

s
ijm , are respectively the components of Cauchy’s stress 

and high order stress tensors that are determined as the following [25]:  

(6) 2
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(7) 2 2
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(8) 2
( 1 ) ( 1 )2

1ijk ijk
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(9) 2s 2 s
ij 2 ijm l   

In the above equations, υ and μ are Poisson’s ratio and shear modulus, respectively. Also l0, l1 and 

l2are additional material length scale parameters to incorporate the microstructure dependency.  

 

2.2 Governing equation  

Using Newton’s second law, the rotational motion of the mainplate is expressed by the following 

second order differential equation:  

 

v st SFD elas elect vdWc C ) M M 0I ( 2M        (10) 

 

where vI  is the moments of inertia for the mirror, cst is the structural damping coefficient and CSFD 

is the squeeze film damping. In above relation, Melas, Melect and MvdW are respectively elastic, electri-

cal and vdW moments.  The moment terms are calculated in the following subsections: 

 

2.2.1. Elastic Moment 

To determine the elastic moment, the displacement vector u of torsional beam and based on the 

Saint-Venant's formulation is assumed as:   

1 2 3- zye zxe ( x , y )e    u  (11) 

Where (x,y) is the warping function and  is angle of twist per unit length along the torsion beam. 

Furthermore, x and y are the coordinates of each point of cross section. Based on [32, 33], the elastic 

moment acts on a rectangular cross-section is written as 

   

2 2 2
elas 2

A

2 2 2
2 C

A A

M x y x y dA 3 Al
y x

x y dA x y dA 3 Al J J
L y x L
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   
 
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

 

 (12) 
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where J is the polar moment of inertia for the torsional beam and Jc represent the microstructure-

dependency of the elastic moment which is a function of material length scale parameters  and for 

rectangular cross section can be expressed as: 

 

2
2

A

c 3 Al x y dA
y x

J
 


  

  
  

  (13) 

The warping function (ψ) can be numerically obtained (see the Appendix). 

2.2.2 Electrostatic moment 

The electrostatic force operating on an infinitesimal element of nano-varactor is written as [34]: 

  

2

elec 2

εV b d
dF = b X dX

a2 g-X sin 

   
   
  

 
(14) 

where V is the applied voltage. Based on the defined parameters in Fig. 1, the electrostatic force 

acts on this element of mainplate can be obtained as: 

  

2

elec elec 2

εV b d
dM =X cos( )dF b X X cos( )dX

a2 g-Xsi n
 



   
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  
 

(15) 

 Finally by integrating equation (15), the electrical moment is given by: 

  
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1

2
a

elec 2a

εV b d
M = b X X cos( )dX
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



   
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  

  
(16) 

After some mathematical calculations, the electrical moment induced on the mainplate is simpli-

fied as: 

2
2
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2 1 1

2 2
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2 1
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 (17) 

for the case of small angle one can assume that    sin , cos 1    , consequently we have: 

2
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2.2.3 van der Waals moment 

The vdW force operating on an infinitesimal element of nano-varactor can be written as [35]: 

  
vdW 3

A b d
dF = b X dX

a6 g-X sin 

   
   
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(19) 

where A   is Hamaker constant. Thereby, the relations for the differential vdW moment applied 

on the infinitesimal element of mainplate is given by: 

  
vdW 3

A b d
dM = b X X cos( )dX

a6 g-Xsi n


 

   
   
  

 (20) 

After some mathematical calculations, the vdW moment induced on the finite conductive 

mainplate is simplified as: 
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a
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(21) 

and for the case of small angle one can conclude that: 

2 3
vdW 2 3
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2.2.4 Squeeze film damping: 

In this section a nonlinear formulation for the air damping for circular-type nano-varactor are 

presented. According to the Reynolds equation, the squeeze film damping force applied on the 

infinitesimal element of mainplate can be written as [36]: 

  
SFD d

3

dF c b d
= b X dX

v ag-X sin 
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the moment of damping forces on each element can be explained as: 
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By integrating the above-mentioned relation we have: 
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and finally the damping parameter are calculated as: 
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(26) 

for the case of small angle the non-linear damping coefficient can be simplified as: 

c b ( b-d ) g g( b-d ) g a2 3 2dC = a ( 2 g 3a ) 2 ( g a ) lnSFD 2 3 b ab g2g( g a )
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2.3 Dimensionless governing equation 

By substituting equations (11), (17), (22) and (27) in Eq. (10) the equation of motion for trapezoi-

dal nano-varactor including structural damping, microstructure effects and vdW force can be derived 

as: 
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(28) 

Thereby, after some mathematical computations, the governing equation for the considered system 

can be summarized as: 

 
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+
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 (29) 

 

The nondimensional variables appearing in the governing equation (29) are defined as: 

1 2
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22
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3 3
v
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  

     

   

 (30) 

 

2.4. Dynamic stability analysis  

To examine the dynamic stability of nano-varactor, the governing equation described in (30) is con-

sidered. To this end, the differential equation should be defined using the state space variables as:  

(31) 
1

2

q Θ

q Θ

   
   
  

 

where 1q  and 2q  are the state space variables. In addition, by considering this kind of formulations, 

the bifurcation diagrams and phase portraits of the system can be plotted and the stability of fixed 

points are also investigated.  Therefore, the governing equation (30) reduces to the following first-

order differential equation: 

 
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2 2 1 2
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   
 (32) 

where 

 1 1 2 2F q ,q q

 

(33) 
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(34) 

It should be noted that the positions of equilibrium points are determined by setting the right-hand 

side of equation (33) and (34) equal to zero. On the other hand, to examine the local stability in the 

vicinity of each fixed point, the Jacobian matrix is defined as follows: 

   

   
   

1 1 2 1 1 2

1 2
2 1 2 2 1 2

2 1 2 2 1 2
1 2

1 2

F q ,q F q ,q
0 1

q q
Jacobian F q ,q F q ,q

F q ,q F q ,q
q q

q q

  
  

          
     

   

 

(35) 

By computing the eigenvalues ( ) of the Jacobian matrix, the stability of the equilibrium points of 

the system can be checked [37, 38].  The solution of the characteristic equation for Jacobian matrix is 

simplified to: 

2 22 2 2
1 ,2

2 2 1

dF dF dF1
( ) 4( )

2 dq dq dq


 
   

  
 (36) 

In the absence of any damping effects, if the above relation has two pure imaginary roots, the fixed 

point is a center point. On the other hand, if the solution includes two real eigenvalues with one posi-

tive and one negative root, it means that the fixed point is an unstable saddle point. Furthermore, in 

the presence of damping force, if the eigenvalues are non-real and of the form i  , with 0  , 

then it is an unstable spiral point for 0  and a stable spiral point for 0  . 

 

3. Results 

3.1. Validation 

To check the soundness of present model the pull-in voltage of nano-scanner in the static case are 

determined and a comparison has been carried out with the reported results by Beni et al. [39]. To 

this end, the variation of pull-in angle versus the microstructure parameter (l/t) for some assigned 

values of applied voltage   is presented in Fig. 2. According to this figure, one can see that excel-

lent agreement with the reported results in the literature are obtained. 
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Fig. 2. Impact of microstructure parameter (l/t) on nondimentional pull-in voltage when 

(l0=l1=l2=l) 

 

In addition, the presented microstructure-dependent model is compared with experimental results in 

the literature [1]. Figure (3) compares the pull-in voltage predicted by the presented microstructure-
dependent model with those obtained experimentally by Zhan et al. [1]. As seen while the classical 

model (l=0) can’t predict the pull-in voltage accurately by considering l=300 nm the results of pre-

sented size dependent model are in very good agreement with those of experimental. 

 

 

Figure 3. Comparison between the pull-in voltage of experimental measurement and those calcu-

lated by presented models (l0=l1=l2=l) 

 

3.2 Stability analysis 

Figures 4 to 6 indicate the motion trajectories of the varactor with different actuation voltages. Ac-

cording to Fig. 4, in the absence of damping effects, there exist one stable center point and one un-

stable saddle node. In addition, there is a homoclinic orbit in the vicinity of saddle node. Homoclinic 

orbit originates from a saddle node via the unstable branch and returns to this node via the stable one. 

The homoclinic orbit separates the periodic region around the center point from the unstable region 

beyond the saddle node.  



  

 

 

 
Fig. 4 Phase portrait in the absence of damping ( PI0.2 , , 0.06 , 0.84        ) 

 

The impact of damping parameter on the dynamic behavior of the varactor is shown in Fig. 5. The 

obtained results reveal that the stable center equilibrium point becomes a stable focus point if the 

damping parameter is taken into consideration. The varactor makes convergent oscillations near the 

focus point in the presence of the damping, and causes periodic oscillations if the damping is ig-

nored. By increasing the applied voltage, the homoclinic orbit becomes smaller until the actuation 

voltage reaches the pull-in value. At this state, the trajectories diverge and the structure becomes 

unstable for any initial condition. As shown in figure 6, the homoclinic orbit disappears and the cen-

ter and saddle points coalesce and replace by one saddle node. 

 
Fig. 5 Phase portrait in the presence of damping ( PI0.2 , , 0.06 , 0.84        ) 
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Fig. 6 Phase portrait for pull-in instability ( PI0.2 , , 0.06 , 0.84        ) 

 

3.3 Pull-in phenomenon 

Figure 7 depicts the bifurcation diagrams where the applied voltage   is plotted versus the equilibri-

um angles. In this figure, the equilibrium curves are plotted for some values of vdW force parameter. 

For micro-scale gaps ( 0  ), if the actuation voltage is less than the pull-in value, there is one fixed 

point. For PI  , the second fixed point appears in the phase plane. In this figure, the stable and 

unstable fixed-points are depicted by black and red colors, respectively. It should be noted that, the 

stable branch of equilibrium curves represents the center points and the unstable one denotes the 

existence of saddle nodes in the phase plane. Thereby, one can observe that in the absence of vdW 

attraction, for smaller values of applied voltage, the system undergoes periodic motions around the 

stable center point. On the other hand, by increasing , the second fixed point (saddle node) appears 

in the phase plane; beyond the unstable saddle node, the movable plate diverges to the ground. In 

addition, if the applied voltage approaches to the critical value, the equilibrium points merge and 

there exist no fixed points beyond this value (pull-in value).  The corresponding tilt angle is called 

the “pull-in angle”. Fig. 7, reveals that the maximum of the equilibrium curves decreases by increas-

ing the vdW parameter. This means that vdW force decreases the pull-in angle ( PI ) and pull-in 

voltage ( PI ) of the system.  



  

 

 

 
Fig.7. The position of equilibrium points versus the applied voltage for various vdW force

 
The impact of the applied voltage

 
on the stability of the varactor is illustrated in Fig. 8. The non-

dimensional frequency of vibrating varactor decreases by increasing . On the other hand, the 

pull-in phenomenon happens when the applied voltage reaches the critical values. Beyond the 

critical value, the torsional nano-varactor loses its stability and diverges to the rigid substrate. 
 

 

Fig. 8. Time history of the varactor: influence of the actuation voltage 

 

3.4 Microstructure effect 

Fig. 9 illustrates the position of equilibrium points versus the applied voltage for various values of 

the microstructure parameter CJ / J . As illustrated in Fig. 9 for PI  there exist two fixed 

points, however for PI  the system has no fixed point. This phenomenon shows saddle-node 

bifurcation in which unstable and stable branches coalesce at the same point in the state-control 

space. Furthermore, when the influence of microstructure is taken into account, the pull-in voltage 
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and pull-in angle of the nano-varactor will increase; in other words, the instability threshold of the 

system shifts upwards as the nano-structure shows the microstructure-dependent behavior 

To examine the impact of vdW force on the stability of freestanding varactor ( 0  ), the equilib-

rium curves of the system plotted versus parameter   for different values of CJ / J . Figure 10 

shows the position of the fixed points for free-standing nano-structure. By increasing the vdW 

attraction, two fixed-points become closer to each other and meet together at saddle node bifurcation. 

It means the saddle point bifurcation occurs at the critical tilt angle. 

 
Fig. 9. The position of equilibrium points versus the applied voltage: the impact of microstructure

 
 

 
Fig. 10. The position of equilibrium points for freestanding actuator: the impact of microstructure 

 
 

The time history of vibrating varactor for various values of microstructure parameter CJ / J  at the 

corresponding dynamic pull-in points are illustrated in Fig. 11. When the actuation voltage parameter 

is considered as the control parameter. According to this figure, the pull-in time of the nano-varactor 

is decreased by increasing the microstructure parameter and the pull-in phenomenon occurs at higher 



  

 

 

values of applied bias voltage. It is also concluded that as the value of microstructure parameter in-

creases, the instability happens at higher  value. 

 
Fig. 11. Time histories for different values of microstructure parameter CJ / J  at corresponding 

dynamic pull-in point considering the applied voltage as a control parameter 
 

4 Conclusions 

The microstructure-dependent dynamic behavior and instability analysis of a torsional varactor sub-

ject to electrostatic and vdW forces were studied. By employing the SGT, the governing equation of 

the varactor was derived. It was observed that the pull-in voltage increases by enhancing the micro-

structure parameter. On the other hand, increasing the microstructure effect increases the pull-in 

angle of the system. As the value of microstructure parameter increases, the pull-in time is decreased 

and instability happens at higher values of torsion angle. The system dynamics exhibits saddle-node 

bifurcation in which unstable and stable branches coalesce at the corresponding pull-in voltage. The 

stable center point becomes a stable focus point as the damping parameter is taken into consideration.  

 
 

 

Appendix  

Using Saint-Venant's approach and substituting equation (11) in (2)-(5) the component of strain 

tensor can be determined as 
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(A1) 

 

By substituting equations (A1) in (6)-(9), the stress components are obtained as 
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(A2) 

 

The equilibrium equation is in the axial direction is written as [32]: 
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By substituting relations (A1) and (A2) into equations (A3) and after some elaboration, the gov-

erning equation of the system can be obtained as: 
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The boundary conditions of the torsion beam are [32]: 
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(A5) 

where n and t are normal and tangential direction of lateral surface of the beam. By solving the 

equations via series solution, ψ are determined (see ref. [32]).  
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