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A B S T R A C T

Objective: Due to the fact that SLC26A4 has been suggested as the second cause of hearing loss (HL) in Iran

as well as many other countries, obtaining more comprehensive information about SLC26A4 mutations

can facilitate more efficient genetic services to the patients with hereditary hearing loss. This

investigation aims to detect genetic cause of two Iranian families with hearing loss.

Methods: In the present study, genetic linkage analysis via 4 short tandem repeat markers linked to

SLC26A4 was performed for two consanguineous families originating from Hormozgan and Chaharmahal

va Bakhtiari provinces of Iran, co-segregating autosomal recessive hearing loss and showed no GJB2

mutations in our preliminary investigation. For identification of mutations, DNA sequencing of SLC26A4

including all the 21 exons, exon–intron boundaries and the promoter was carried out.

Results: The results showed linkage to this gene in both families. After sequencing, two novel SLC26A4

mutations (c.65-66insT in exon 2 and c.2106delG in exon 19) were revealed in the two studied families.

Conclusion: Results of this study stress the necessity of considering the analysis of SLC26A4 in molecular

diagnosis of deafness especially when phenotypes such as goiter or enlarged vestibular aqueduct are

present.

� 2012 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

SLC26A4 (MIM 605646) maps on 7q22-31.1 (DFNB4 locus) [1]
and is probably the second most common gene accounting for
hereditary hearing loss (HL), after GJB2. The product of SLC26A4 is
pendrin, a 86 KDa protein with 780 amino acids, and a
transmembrane anion transporter of Cl�, HCO3�, OH� and I�

expressed in cochlea, thyroid and kidney [2–6]. The protein is also
expressed in respiratory and mammary epithelial cells, endome-
trium, testis and brain, but is unlikely to play any major role in
these organs [7–9].

Mutations of SLC26A4 are associated with recessive non-
syndromic HL (DFNB4) (MIM 600791) and Pendred syndrome
(PS) (MIM 274600). PS is an autosomal recessive disorder and
accounts for about 10% of hereditary HL in the world [10]. The
clinical symptoms of the disorder can vary within and between
families [11–13] and include prelingual HL, malformations of inner
ear (ranging from enlarged vestibular aqueduct (EVA) to mondini
* Corresponding author. Tel.: +98 381 3335654; fax: +98 381 3330709.
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dysplasia (MD)). Notably, many patients may remain euthyroid.
The type and position of SLC26A4 mutations can influence thyroid
phenotype [14–16].

So far, over 170 mutations have been identified in SLC26A4

(http://www.healthcare.uiowa.edu/labs/pen-dredandbor/slcMu-
tations.htm). The profile and frequency of these mutations vary
among different populations. Different investigations have indi-
cated that SLC26A4 mutations play a more important role in
causing HL in Asian and Middle Eastern patients than other
populations such as Cacausians. In Korea and China, these
mutations account for 6.5 and 13.73% of HL, respectively
[17,18]. Up to 97.9% of Chinese HL individuals with EVA or both
EVA and MD carry at least one pathogenic variant in the SLC26A4

gene [19]. About 7.2% of prelingual or congenital recessive HL in
Pakistanis and 78% of non-syndromic HL with EVA in Japan are
caused by SLC26A4 mutations [20,21].

To date, only a few studies have been performed on the role of
these defects in the Iranian patients [22–25]. However, there is no
sufficient information yet about spectrum and frequency of
SLC26A4 mutations in Iran.

In one investigation, performed by Kahrizi et al., in 8 out of 80
(10%) Iranian deaf families ten mutations (four novels) were found

https://core.ac.uk/display/143841729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Fig. 2. Thyroid ultrasonography result of patient IV. 5 (from family IR2) with

nodular goiter. The arrow shows nodule.
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[22]. In another study, carried out by Tabatabaiefar et al., 4 out of
37 (10.8%) HL families were linked to DFNB4 locus [24]. Sadeghi
et al. found linkage to DFNB4 locus in 3 out of 40 (7.5%) families
with autosomal recessive non-syndromic congenital HL [25].
These results showed that SLC26A4 is likely to be responsible for a
considerable ratio of deafness in Iran. This is an important finding
in the light of the fact that HL is an extremely heterogeneous trait
[26]. In the present research, two Iranian families co-segregating
autosomal recessive HL were studied by genetic linkage analysis.
Subsequently, molecular genetic studies of the gene SLC26A4 were
performed.

2. Materials and methods

2.1. Sampling, clinical and physical examination

This study was approved by the Institutional Review Boards of
Shahrekord University of Medical Sciences. Two consanguineous
families from Hormozgan (family IR1) and Chaharmahal va
Bakhtiari (family IR2) provinces of Iran, with two and six deaf
patients, respectively, were included in this investigation. These
families had no GJB2 mutations in a previous preliminary study
[27].

Marriage in families IR1 and IR2 had occurred between second
cousins (subjects IV. 1 and IV. 2) and first cousins (subjects III. 1 and
III. 2), respectively. Informed consent was taken from subjects or
their parents. Based on the interviews with the adult members of
the two families, informational questionnaires had been filled out
and pedigrees drawn in the former study [27]. All the members of
both families were sampled for further molecular studies.

2.1.1. Audiological evaluation

Hearing was evaluated using pure-tone audiometric test (PTA)
for air and bone conduction at different frequencies (250–8000 Hz)
in all patients.

The degree of HL was considered based on PTA average at 500,
1000, 2000 and 4000 Hz: mild (21–40 dB), moderate (41–70 dB),
severe (71–95 dB) and profound (>95 dB). The severity of HL was
identified by the degree of HL of the better ear.

2.1.2. Radiological examination of temporal bone

For evaluation of temporal bone status, high resolution
computed tomography (CT) was carried out for all patients of
the two families using a Somatom Sensation Emotion 16-Slice
ConFiguration (Siemens Medical Solutions, Erlangen, Germany)
(Fig. 1). EVA was detected, when the diameter at the midway
between the common crus and the external aperture was 1.5 mm
or more [28].
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Fig. 1. Temporal bone CT scan result of patient IV. 1 (from family IR2). The arrows

show enlarged vestibular aqueduct.
2.1.3. Thyroid studies

In order to investigate thyroid function in all patients of the two
families, thyroid-stimulated hormone (TSH), thyroxin (T4) and
triiodothyronine (T3) levels were measured by a chemilumines-
cent immunoassay (Berthold Technology-CSA, Germany).

As to measure the thyroid size, all patients were subject to
thyroid ultrasonography using the Sonoline G50TM ultrasound
system (Siemens Medical Solutions, Erlangen, Germany) (Fig. 2).
Thyroid ultrasonography and hormone investigation results were
defined based on sex and age of patients.

2.2. Genetic analyses

2.2.1. DNA extraction

DNA was extracted from peripheral blood of all patients and
other available members of the two families as well as 115
ethnically matched normal control subjects using a standard
phenol chloroform method [29]. DNA quantification and quality
analyses were performed by spectrophotometry (UNICO 2100,
USA) and agarose gel electrophoresis using routine procedures.

2.2.2. SLink analysis and selection of DFNB4 STR markers

Four short tandem repeat (STR) markers (D7S2456, D7S2459,
D7S496, and D7S2420) linked to SLC26A4 and their primers were
selected based on their physical distance at NCBI UniSTS and NCBI
map viewer (http://www.ncbi.nlm.nih.gov/mapview).

SLink value for each family was calculated using FastSLink
(version 2.51) option of EasyLinkage plus (version 5.05) software
[30].

2.2.3. Genotyping STR markers and linkage analysis

The following amplification conditions were considered for STR
markers, with some modifications for different amplicons:
reactions were carried out in a 25 ml volume containing 1 ml of
MgCl2 (50 mM), 2.5 ml of Taq PCR buffer (10�), 0.4 ml of each of the
primers (10 pM), 0.5 ml of dNTP mix (10 mM), 0.1 ml Taq DNA
polymerase (5 U/ml), 2 ml DNA (50 ng), 18.1 ml ddH2O.

The touch- down PCR program for STR amplification was as
follows: one cycle of 95 8C for 5 min (initial denaturation), six
cycles of 95 8C for 50 s (denaturation), 58 8C for 50 s in the first
cycle with 1 8C reduction per cycle (annealing), and 72 8C for 50 s
(extension), 32 cycles of 95 8C for 50 s (denaturation), 53 8C for 50 s
(annealing), 72 8C for 50 s (extension) and one cycle for the final
extension at 72 8C for 8 min. The amplification products were run
on 14% PAGE at 28 mA for 2–8 h for each marker. Silver staining
was used for visualizing the bands [31].

http://www.ncbi.nlm.nih.gov/mapview
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Analysis of two-point and multi-point LOD scores were done by
SuperLink (version 1.6), and SimWalk (version 2.91) options of
EasyLinkage (version 5.05), respectively [30,32]. Haplotypes for
STR markers were reconstructed using SimWalk and were
visualized by Haplopainter software (version 029.5) [33] (Fig. 4).
For calculations of LOD scores, autosomal recessive pattern of
inheritance, complete penetrance and no phenocopy, equal
recombination for male and female allele frequency of markers
and disease allele frequency of 0.001 were assumed.

2.2.4. DNA sequencing of SLC26A4

Primers for all the 21 exons, exon–intron boundaries, and the
promoter of SLC26A4 were designed by Oligo (version 6.7.1.0
National Biosciences Inc.) (Table 1).

Amplifications of all the 21 exons and the promoter of SLC26A4

were carried out according to the following program, with some
modifications for each amplicon: one cycle of 95 8C for 5 min
(initial denaturation), 36 cycles of 95 8C for 1 min (denaturation),
61 8C for 1 min (annealing), 72 8C for 1 min (extension), one cycle
of 72 8C for 8 min for final extension. Each reaction was provided in
a 50 ml volume containing 4 ml of MgCl2 (50 Mm), 5 ml of Taq PCR
buffer (10�), 0.6 ml of each primer (10 pM), 1 ml of dNTP mix
Table 1
Sequence of primers for 21 exons, promoter (P) and a 46 bp fragment of exon 2 (2 K)

of SLC26A4 gene.

Primer sequence (50 !30) Exon PCR product length (bp)

F CTGGCCATTGTTCCTCTT

R TTGAGCAAGTCTCTCCCC

1 618

F ACTCGCTTCAAGTTTGGG

R GCGAGTTTCCCAGGTAAG

2 664

F GCACTTCAGGGTTATTATTTTC

R AAGAGAACTCTAAGGAAGGGG

3 461

F GAAAAACAGAATGGTTGTATGG

R GAAAAAGCAGGCAAAACAC

4 496

F GATGGGGTTTTACTATGTTGC

R CTCTCATCCTCAATTGAATCAC

5 689

F ATTTTTGTGCTATAGGCAGG

R ATGAGGTCTCACGTCTCAAA

6 459

F ATCACCCAGTTTTTCCTTTC

R GGGATGGATTTAACAATGC

7 595

F ATAGACGCTGGTTGAGATTTT

R AGAAAAAAGAGCATATACGGG

8 558

F CAGCCAGTAAGATAACACCAA

R AAAGCAAAGTGATGCAGTGT

9 538

F TTATCGAGAGCAATGAGACC

R TCAGTTGTTATTGACCACAGC

10 606

F TAGATGCCATTTTTGTTCAGTT

R ACACAGCTGCATAAACATCC

11 468

F CATCTCTGCTGCGATTGT

R CCAAAGGTGTATGAATGAGC

12 556

F AATCCAGAAGATGGAGGC

R AAATCTTAGCTCTGCCACG

13 593

F CCAGCTGTTCATTTCAGAGT

R AAAGTTTTCATGACACTCCC

14 378

F ACTGTGACTTGACTCCTTGC

R TTTAATTCTCATTGCCCTACAC

15 321

F TTGTCTTTTACTGTCTTGGAGC

R TTGCACTTATTTTGTTCCTTTC

16 626

F CACAATCATCCAGAAAACAAA

R CAGATTAAGCAACTTGCCC

17 689

F CTGGATGTTGCCATCTCTT

R CTGTCTTTGGCCTTTTCTG

18 496

F TAGGGTGTGCCCTGTAGTC

R TACACAAATCCCAGATCACAA

19 676

F CAGAGGGGGTGACTTGTTA

R TAGGTATCAAATCAGGAGCAGT

20 628

F GGGCAACAGTGAGTGAGAT

R GTGATGTAGATCAGCAGCGT

21 494

F TGGGGAGGAGTTCTGAGT

R ATCCTCACTCATCCCGTT

p 715

F ACAGCTGCAGCTACATGG

R GCGAGCTCGCTGTAGACC

2k 46
(10 mM), 0.2 ml Taq DNA pol (5 U/ml), 4 ml DNA (50 ng), 34.6 of
ddH20. DNA sequencing of the PCR-amplified product was carried
out bi-directionally on an ABI 3730XL automated sequencer
(Applied Biosystems) (Macrogen,South Korea) using the same
primers.

2.2.5. Mutation confirmation

Pathogenicity investigation was based on the presence of
homozygous variant in affected individuals and its absence in the
non-affected siblings (co-segregation) of the family and absence of
novel variants in the normal control persons. For investigation of
c.64-65insT pathogenicity, Primers for amplification of a 46 bp
fragment of exon 2, involving the location of c.65-66insT variant
were designed using Oligo (version 6.7.1.0 National Biosciences
Inc.) (Table 1). Exon 2 was amplified in 115 ethnically matched
normal controls and all available subjects following the standard
protocol mentioned above. PCR products were run on 14% PAGE at
28 mA for 3 h and silver staining was carried out to visualize the
bands. Normal fragments were 1 bp smaller than fragments with
the variant.

Pathogenicity of c.2106delG in exon 19 was investigated by
PCR-RFLP method. The restriction enzyme Alu1 was selected for
RFLP analysis of exon19, using Nebcutter (version 2.0 http://
tools.neb.com/NEBcutter2). After amplification of exon 19 in 115
ethnically matched normal control and all available members of
IR1 family, amplified fragments were digested and loaded on 8%
PAGE at 30 mA for 2 h, followed by visualization using silver
staining. After digestion normal allele had 215, 188, 177, 58, 23 and
15 bp but mutant allele had 402, 177, 58, 23 and 15 bp fragments.
Therefore normal and mutant alleles were different for 402, 215
and 188 bp fragments.

3. Results

3.1. Audiological data

In family IR1, patient V. 1 had bilateral severe and V. 3 had
bilateral moderate to severe HL. All patients of family IR2 had
bilateral severe to profound deafness (Table 2).

3.2. Radiological information of temporal bone

EVA was determined in all affected members from two families
(Table 2).

3.3. Thyroid status

All patients had normal TSH, T4, T3 hormone levels except IV.
13, who had hypothyroidism. Ultrasonography detected nodular
goiter in patient V. 1, but not in patient V. 3, from family IR1 and in
all of the patients from family IR2 (Table 2).

3.4. Linkage analysis results

SLink value theoretically predicts the LOD score for a family.
SLink, two-point and multi-point LOD scores were 1.98, 1.49 and
2.24 for family IR1 and 3.88, 3.72 and 4.12 for family IR2,
suggesting possible linkage to DFNB4. The haplotypes of the two
families have been shown in Fig. 3.

3.5. SLC26A4 sequence analysis

DNA sequencing revealed two novel variants (c.65-66insT and
c.2106delG) in the SLC26A4 gene (Fig. 4). The variant c.65-66insT,
in exon 2, was detected in family IR2. All patients were
homozygous and individuals III. 1–III. 4 and IV. 4, IV. 10 and V.

http://tools.neb.com/NEBcutter2
http://tools.neb.com/NEBcutter2
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Fig. 3. Pedigrees and haplotypes of IR1 (A) and IR2 (B) families. Subjects I. 1, I. 2, II. 1–II. 4 from IR1 and I. 1–I. 6, II. 1–II. 8 from IR2, were not available for genotyping in this

study. The order of markers is according to the Marshfield map. Both families show linkage to the DFNB4 locus.

Table 2
Characters of all patients of IR1 and IR2 families.

Family Subject no. Age (year) Sex Audiogram CT scan Thyroid hormone Goiter Variant Homozygote

or Heterozygote

IR1 V. 1 30 aM Severe cEVA Normal Nodular goiter c.2106

delG

Homozygote

V. 3 23 M Moderate to severe EVA Normal No goiter c.2106

delG

Homozygote

IR2 IV. 1 32 bF Severe to profound EVA Normal Nodular goiter c.65-66insT Homozygote

IV. 5 27 M Severe to profound EVA Normal Nodular goiter c.65-66insT Homozygote

IV. 6 24 M Severe to profound EVA Normal Nodular goiter c.65-66insT Homozygote

IV. 7 21 F Severe to profound EVA Normal Nodular goiter c.65-66insT Homozygote

IV. 8 40 F Severe to profound EVA Normal Nodular goiter c.65-66insT Homozygote

IV. 13 35 F Severe to profound EVA Hypoth-yroid Nodular goiter c.65-66insT Homozygote

a M = male.
b F = female.
c EVA = enlarged vestibular aqueduct.

N. Yazdanpanahi et al. / International Journal of Pediatric Otorhinolaryngology 76 (2012) 845–850848



[(Fig._4)TD$FIG]

Fig. 4. Electropherograms of mutant (a) and normal (b) alleles of c.65-66insT and mutant (c) and normal (d) alleles of c.2106delG.

[(Fig._5)TD$FIG]

Fig. 5. Location of two novel mutations (c.65-66 insT and c.2106delG) in pendrin

protein. The variants c.65-66insT in exon 2 and c.2106delG in exon 19 of SLC26A4

lead to amino acid change close to the N terminal and C terminal of protein,

respectively.
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2 were heterozygous for the variant. All other subjects did not carry
the variant. The second variant, c.2106delG in exon 19, was found
in family IRI. Patients V. 1 and V. 3 were homozygous and subjects
III. 1, III. 2, III. 4, IV. 1 and IV. 2 were heterozygous for this variant.

3.6. Mutation confirmation analysis

The c.65-66insT and c.2106delG variants were not detected in
115 ethnically matched control persons, without HL and co-
segregated with the disease in the family. The c.65-66insT variant
leads to occurrence of a frameshift from codon 23 and a premature
stop at codon 86 (p.Ser 23ValfsX64). The c.2106delG variant results
in a frameshift from codon 702 and premature stop at codon 720
(p.Lys702AsnfsX19). Therefore, these variants produce defective
shorter proteins. These results suggest that c.65-66insT and
c.2106delG are most likely to be pathogen.

4. Discussion

In the present research, we studied two families segregating
severe-to-profound HL. A previous GJB2 mutation analysis had not
detected any mutations. Based on the presence of goiter, linkage
analysis for DFNB4 locus was prioritized and linkage to the locus
was found. Subsequent DNA sequencing of the corresponding
gene, SLC26A4, led to the identification of two novel mutations. All
patients of IR2 family were homozygous for c.65-66insT and had
goiter. Although, both patients of family IR1 had homozygous
c.2106delG variant, only patientV1 showed goiter. The degree of
HL was also different, to some extent, between V. 1 and V. 3
patients of this family (severe in subject V. 1 and moderate to
severe in V. 3).

Intrafamilial thyroid signs variability has been noted by some
other investigators which makes the distinction between syn-
dromic and non-syndromic deafness difficult [11–13]. PS and
DFNB4 are characterized by HL, temporal bone anomalies. While,
the development of euthyroid goiter is almost exclusive for PS [12].
However, thyroid abnormality is often not seen until the second
decade of life and or even after that. Therefore, patient V. 3 from IR1
maybe show goiter at higher age.

Concordant with the human pendrin protein model, predicted
by Everette et al. [1], the c.65-66insT and c.2106delG novel
variants, detected in this study, change amino acids close to the N
and C terminals of the protein, respectively, and could cause a
complete loss of function of pendrin in c.65-66insT and in case of
c.2106delG variant, would result in production of a shorter protein
with defective function (Fig. 5). The hypothesis has been put forth
that null or zero mutations, which abolish pendrin function
completely, are associated with PS but those accompanied with
reduced function can cause non-syndromic deafness [34].

Our results and other former studies emphasize that the
position of SLC26A4 mutations which affect pendrin function could,
in turn, affect the function of thyroid gland [34]. Alternatively, the
effect of SLC26A4 mutations on the thyroid phenotype might be
incomplete and additional parameters such as iodine uptake and
modifier genes may be involved in occurrence of thyroid
impairment in patients with these mutations [11–13].

Our findings suggest that c.65-66insT leads to PS and
c.2106delG variant most probably leads to PS.

The c.65-66insT and c.2106delG variants lead to a mutant
protein, without a big segment and C terminal portion of the
protein, respectively, resulting in the production of shorter
defective protein (Fig. 5) which probably cannot be processed
and function correctly and does not reach the plasma membrane.
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This results in abolishment of anion transporter function of
pendrin. However to exactly determine the impact of c.65-66insT
and c.2106delG on pendrin, more studies are warranted.

Altogether SLC26A4 gene defects have an important role in
pathogenesis of HL and are the second cause of autosomal
recessive hereditary HL in various populations such as Iran
[22,24,25].

Molecular study of SLC26A4 of patients with severe to profound
HL with reports of goiter in the pedigree could be important in DNA
diagnosis. Since clinical and laboratory tests are non-specific,
expensive and rather inaccessible, the molecular analysis has the
potential to assist in the differential diagnosis of PS and DFNB4
which, in turn, could have special implications in the treatment
strategy and genetic counseling in HL patients and their families.

Based on the ethnical differences in the frequencies of SLC26A4

mutations and in order to cheaper efficient molecular diagnostic
methods are designed, comprehensive data about the SLC26A4

mutations in each population is needed.
The structure of pendrin is still challenging and has not been

identified exactly. Studies of the effects of novel SLC26A4

mutations on pendrin can provide additional beneficial informa-
tion about the relation between structure-function of this protein,
and other structural features can be depicted.
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