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a  b  s  t  r  a  c  t

Background  and  purpose:  There  is  growing  evidence  that  stress  contributes  to cardiovascular  disease  and
triggers  the release  of oxytocin.  Moreover  previous  studies  confirmed  oxytocin  mimics  the  protection
associated  with  ischemic  preconditioning.  The  present  study  was  aimed  to assess  the  possible  cardiopro-
tective  effects  of the  centrally  released  oxytocin  in response  to  stress  and  intracerebroventricular  (i.c.v.)
administration  of  exogenous  oxytocin  in  ischemic-reperfused  isolated  rat  heart.
Methods  and subjects:  Rats  were  divided  in  two  main  groups  and  all of  them  were  subjected  to  i.c.v.
infusion  of vehicle  or drugs:  unstressed  rats  [control:  vehicle,  oxytocin  (OT;  100  ng/5  �l),  atosiban  (ATO;
4.3  �g/5  �l)  as  oxytocin  antagonist,  ATO  + OT]  and  stressed  rats  [St:  stress,  OT  +  St,  ATO  + St].  After  anes-
thesia,  hearts  were  isolated  and  subjected  to 30 min  regional  ischemia  and  60  min  reperfusion  (IR).
Acute  stress  protocol  included  swimming  for 10 min  before  anesthesia.  Myocardial  function,  infarct  size,
coronary flow,  ventricular  arrhythmia,  and  biochemical  parameters  such  as  creatine  kinase  and  lac-
tate  dehydrogenase  were  measured.  Ischemia-induced  ventricular  arrhythmias  were  counted  during  the
occlusion  period.
Results: The  plasma  levels  of  oxytocin  and  corticosterone  were  significantly  elevated  by stress.  Unexpect-

edly  hearts  of  stressed  rats  showed  a marked  depression  of  IR  injury  compared  to  control  group.  I.c.v.
infusion  of  oxytocin  mimicked  the  cardioprotective  effects  of stress,  yet did  not  elevate  plasma  oxytocin
level.  The  protective  effects  of  both  stress  and  i.c.v. oxytocin  were  blocked  by i.c.v. oxytocin  antagonist.
Conclusions:  These  findings  suggest  that i.c.v.  infusion  of  exogenous  oxytocin  and  centrally  released
endogenous  oxytocin  in  response  to stress  could  play  a role  in  induction  of  a preconditioning  effect
in  ischemic-reperfused  rat  heart  via  brain  receptors.

2  Jap
©  201

ntroduction

Intensive cardiovascular research is set to identify a reliable car-
ioprotective intervention that can salvage ischemic myocardium.

Cardiac preconditioning represents the most potent and con-
istently reproducible method of rescuing heart tissue from
ndergoing irreversible ischemic damage. Several recent clinical
tudies documented the significant role of stress in evoking the

everity of cardiovascular disease [1].  In this regard, heart failure
as been recognized as an autonomic nervous system dysfunction
2] and increasing parasympathetic and decreasing sympathetic
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nervous activity in patients with chronic heart failure improved
cardiac function [3].  Moreover, as a neurohormone and as a neu-
rotransmitter, oxytocin has been involved in the stress response
[4] and is well known to exert potent physiological anti-stress
effects [5].  Oxytocin has also been implicated in the cardiovascular
response to physical exercise and stress adjustments [1,6,7].  How-
ever, physiological functions of oxytocin released during stress are
not well understood. Regarding other stress hormones, oxytocin
was found to influence catecholamine release [8].

More recently, oxytocin has been considered to be a cardio-
vascular hormone [9].  Anatomical studies of oxytocin pathways in
the brain have revealed extensive innervation of the brain stem
structures regulating the cardiovascular, behavioral, and neuroen-

docrine responses to stress by oxytocin fibers projecting from the
paraventricular nucleus (PVN) [10]. Expression of oxytocin recep-
tors in the same regions of the brain stem has been also well
documented [11].

vier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jjcc.2012.08.021
http://www.sciencedirect.com/science/journal/09145087
http://www.elsevier.com/locate/jjcc
mailto:faghihim@Sina.tums.ac.ir
dx.doi.org/10.1016/j.jjcc.2012.08.021


8 al of C

b
o
s
o
t
s
s
n
w

r
r
i
t
c
i
h

s
r
t

M

A

v
c
a
h
s
a
i
s
o

I

k
a
(
b
0
l
t
a
r
w
o

r
w
a
a
d
R

F

d
t
i

0 M. Moghimian et al. / Journ

Some investigators have provided evidence that oxytocin may
e involved in regulation of the cardiovascular system by means
f direct peripheral and indirect central actions [12]. Our previous
tudies confirmed the peripherally protective effects of oxytocin
n myocardial injury of the ischemic reperfused heart in the anes-
hetized rat [13,14]. Moreover exposure to various stressors such as
wim stress (10 min, 19–21 ◦C) a combined emotional and physical
tressor triggered the release of oxytocin within both supra optic
ucleus (SON) and PVN, as studied in male and female rats [15,16],
hich paralleled oxytocin secretion into blood [15,17].

The engagement of central oxytocin in the controlling neu-
oendocrine responses to stress, its putative contribution to the
egulation of cardiovascular parameters, and its protective effect on
schemia/reperfusion-induced myocardial injury, raises the ques-
ion whether central release of oxytocin in response to stress and
entral administration of exogenous oxytocin may  also be involved
n regulation of the cardiovascular system in ischemic-reperfused
eart.

Therefore the present study was designed to evaluate the pos-
ible cardioprotective effects of oxytocin released into brain in
esponse to stress and central administration of exogenous oxy-
ocin on ischemic-reperfused isolated rat heart.

aterials and methods

nimals

Male Wistar rats (200–250 g) were obtained from Tehran Uni-
ersity of Medical Sciences and were housed in an air-conditioned
olony room on a light/dark (12/12 h) cycle (light on at 7 am)
t 21–23 ◦C with free access to food and water. The rats were
oused individually in stainless steel cages and anesthetized with
odium pentobarbital (60 mg/kg, 15 mg/0.5 ml,  i.p.) and given hep-
rin sodium (500 IU/0.5 ml,  i.p.). All experiments were conducted
n accordance with the institutional guidelines of Tehran Univer-
ity of Medical Sciences (Tehran, Iran) and the National Institutes
f Health guidelines for the care and use of laboratory animals.

mplantation of the intracerebroventricular guide tube

Rats were deeply anesthetized with i.p. injection of a mixture of
etamine (100 mg/kg) and xylazine (5 mg/kg) and then placed on

 stereotaxic device. A 23-gauge stainless steel thin wall cannulae
9 mm long), was implanted into the lateral ventricle (intracere-
roventricular; i.c.v.) using the following stereotaxic coordinates:
.8 mm posterior to the bregma and 1.5 mm lateral from the mid-

ine, 3.2 mm below the surface of the skull. The guide tube was  fixed
o the skull using two stainless screws and dental acrylic cement
nd closed with a stainless steel stylet (30G). After surgery, the rats
eceived antibiotic (penicillin 6.3.3., 30,000 U in 1 ml/rat i.m.) and
ere placed in their home cages. The animals were allowed 1 week

f recovery after surgery.
At the beginning of each experimental session, the stylet was

emoved from the guide tube and the stainless steel tube (30G) that
as 0.1 mm longer than the stylet was inserted into the guide tube

nd connected via the polyvinyl tubing to a micro syringe placed in
n infusion pump (NE-1000, New Era Pump Systems Inc., Farming-
ale, NY, USA). Each i.c.v. infusion was delivered at the rate of 5 �l/h.
ats received i.c.v. infusion of vehicle or drugs before anesthesia.

orced swimming
For stress induction, the rats were forced to swim for 10 min  in
eep water at 19–20 ◦C at 09:00 am.  The forced swimming appara-
us consisted of a Plexiglas cylinder that was 50 cm high and 30 cm
n diameter. The cylinder was filled with tap water to a height of
ardiology 61 (2013) 79–86

35 cm.  Rats were transferred to the cylinder from their home cages,
forced to swim in the apparatus for 10 min  and returned to their
home cage [18,19].

Preparation of isolated hearts

After anesthesia hearts were rapidly excised and placed in an
ice-cold buffer, and mounted on a constant pressure (80 mmHg)
Langendorff-perfusion apparatus.

Hearts were perfused retrogradely with modified
Krebs–Henseleit bicarbonate buffer containing (in mmol/l):
NaHCO3 25; KCl 4.7; NaCl 118.5; MgSO4 1.2; KH2PO4 1.2; glu-
cose 11; CaCl2 2.5 gassed with 95% O2/5% CO2 (pH 7.35–7.45 at
37 ◦C). A latex, fluid-filled, isovolumic balloon was inserted into
the left ventricle through the left atrial appendage and inflated
to give a diastolic pressure of 5–7 mmHg  and connected to a
pressure transducer (Harvard Apparatus, Holliston, MA,  USA).
To assess ventricular arrhythmia and heart rate monitoring,
electrocardiographic recording was performed by fixation of thin
stainless steel electrodes on ventricular apex and right atrium.
A surgical needle (6-0 silk suture) was passed under the origin
of the left anterior descending coronary artery, and the ends of
the suture were passed through two  plastic pipette tips to form
a snare. Regional ischemia was  induced by tightening the snare
and reperfusion was performed by releasing the ends of the
suture. The perfusion apparatus was  water-jacketed to maintain
constant perfusion temperatures of 37 ◦C. Hearts were allowed to
beat spontaneously throughout the experiments. Hemodynamic
parameters [left ventricular developed pressure (LVDP, the dif-
ference between left ventricular systolic and diastolic pressure)
and heart rate (HR)] were monitored with a homemade program
(Ossilo Graph Monitor, Biomed, Tehran, Iran). Left ventricular
function was  assessed by the rate pressure product (HR × LVDP).
Ischemia-induced ventricular arrhythmias were counted during
the occlusion period. Coronary effluent was  collected at the end
of reperfusion to measure enzymes including creatine kinase-MB
(CK-MB) and lactate dehydrogenase (LDH) as biochemical markers
of myocyte necrosis.

Experimental protocol

Rats were randomly divided in two main stressed and non-
stressed groups, and received i.c.v. infusion of vehicle or drugs
before anesthesia and isolated hearts were subjected to 30 min
ischemia and 60 min  reperfusion.

Unstressed groups included: (1) control (n = 7), rats received
vehicle; (2) OT (n = 7), oxytocin (OT) (100 ng/5 �l/h) was used; (3)
ATO + OT (n = 5), atosiban (ATO) was  administered (4.3 �g/5 �l/h)
prior to infusion of oxytocin; (4) ATO (n = 6); atosiban was infused.
Stressed groups exposed to swim stress for 10 min  before anesthe-
sia include: (1) St (stress) (n = 5), rats received vehicle 10 min  prior
to stress; (2) ATO + St (n = 5), atosiban was  infused 10 min  prior to
stress; (3) OT + St (n = 6), oxytocin was infused 10 min  prior to stress
(Fig. 1).

Infarct size measurement

After completion of the reperfusion period, the left coronary
artery was  reoccluded, and Evans blue dye was  infused via the
aorta to differentiate the ischemic zone (area at risk; AAR) from
the non-ischemic zone. Hearts were frozen overnight and then
sliced into 2.0 mm (using stainless steel rat heart slicer matrix with

2.0 mm coronal section slice intervals) transverse sections from
apex to base. Slices were then incubated with 1% triphenyl tetra-
zolium chloride (TTC in 0.1 M phosphate buffer, pH 7.4) for a period
of 20 min  at 37 ◦C. TTC reacts with viable tissue, producing a red
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ig. 1. Illustration of the experimental protocols. Hearts in all groups were subje
xytocin; ATO, atosiban; NS, normal saline.

ormazan derivative, which is distinct from the white necrotic
issue once fixed in 10% formalin for 24 h. The areas of the left
entricle, AAR, and infarcted tissues were measured by method of
lanimetry from the scanned hearts by using Photoshop program.
AR was expressed as a percentage of left ventricular size for each
eart and the infarct size was expressed as a percentage of AAR
20–22].

iochemical analysis

The coronary effluent was collected for cumulative CK and LDH
elease at 60 min  of reperfusion. LDH and CK concentration in per-
usate were determined by an autoanalyzer (Roche Hitachi Modular
P Systems, Mannheim, Germany) using specific kit (Sigma Chem-

cal Co., St. Louis, MO,  USA).

ssessment of ventricular arrhythmias

Ischemia-induced ventricular arrhythmias were determined in
ccordance with the Lambeth Conventions [23]. In this regard, three
orms of ventricular arrhythmias were analyzed as below: ventri-
ular ectopic beat (VEB), was identified as premature QRS complex;
entricular tachycardia (VT) was defined as four or more serial
EBs; and ventricular fibrillation (VF), was characterized as unde-

ectable QRS complex. Multipart forms of VEBs such as bigeminy
nd salvos (couplet and triplet) were counted as separate episodes.
he incidence, time of occurrence, and duration of arrhythmias
ere used to identify arrhythmia severity according to the follow-

ng scoring system [24]: 0: 0–49 VEBs; 1: 50–499 VEBs; 2: >499
EBs and/or 1 episode of spontaneously reverting VT or VF; 3: >1
pisode of VT or VF or both with a total duration <60 s; 4: VT or VF
r both 60–120 s total duration; 5: VT or VF or both >120 s duration;
: fatal VF starting at >15 min  after occlusion; 7: fatal VF starting
etween 4 and 14 min  59 s; 8: fatal VF starting between 1 and 3 min
9 s; 9: fatal VF starting <1 min  after occlusion.

ormone analysis

Blood samples for oxytocin and steroid analysis were taken from
ails in control, OT, and St groups after anesthesia. Blood samples

ere centrifuged at 5000 rpm, 4 ◦C for 5 min  in tubes contain-

ng EDTA (10% solution, 10 �l/100 �l blood), aprotinin (a protease
nhibitor 10 �l/tube) and PMSF (5 �l/tube) and plasma aliquots

ere frozen at −70 ◦C until assay.
o 30 min  of ischemia followed by 60 min  reperfusion. con, control; St, stress; OT,

Oxytocin

Oxytocin was  analyzed in extracted plasma using an enzyme-
linked immunoassay (ELISA; Phoenix Pharmaceuticals Inc.,
Burlingame, CA, USA) kit. The sensitivity of the assay was
0.11 pg/ml. The intraassay coefficients of variation were 6.8%.

Corticosterone

Plasma corticosterone concentration as a stress marker was
measured using an ELISA (DRG, Marburg, Germany) kit. The sen-
sitivity of assay was 1.63 nmol/l. The intraassay coefficients of
variation were 6.4%.

Chemicals

Atosiban, oxytocin acetate salt hydrate, TTC, and sodium pento-
barbital were obtained from Sigma–Aldrich and heparin sodium
was acquired from Caspian Tamin Pharmaceutical Co. (Tehran,
Iran).

Statistical analysis

The hemodynamic parameters were analyzed using repeated
measures of analysis of variance (ANOVA) with treatment and
stress as grouping factors and time as a repeated factor followed
by Tukey’s post hoc test. Differences in infarct size, CK-MB, and
LDH were evaluated by two-way ANOVA (stress and treatment as
factors). When significant interaction was found, Tukey’s post hoc
test was used for comparison between pair groups. Statistical anal-
ysis of hormone levels was determined by one-way ANOVA and
unpaired t-test.

Arrhythmia scores were analyzed with Kruskal–Wallis test fol-
lowed by post hoc test Mann–Whitney, and the incidences of VT or
VF were compared by Fisher exact test. All data were expressed as
mean ± SEM. Statistical significance was defined as p < 0.05.

Results

Cardiac function

Cardiac function data observed at the baseline, end of ischemia,

and reperfusion in all groups are reported in Table 1. Since HR
and LVDP may  recover to different degrees, rate pressure product
(RPP) was  calculated by multiplying heart rate by LVDP and data
are presented as a reliable left ventricular function parameter for
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Fig. 2. Myocardial area at risk (AAR/V %) and infarct size (IS/AAR %) in con, St,
ATO + St, OT + St, OT, ATO + OT, ATO groups. Data are presented as mean ± SEM.

*p  < 0.05 vs. con group. #p < 0.05 vs. St group. $p < 0.05 vs. OT group. con, control;
St, stress; OT, oxytocin; ATO, atosiban.

the isolated heart. In the baseline period all hearts had a similar
RPP, LVDP, HR, and coronary flow (CF).

There were significant differences between RPP under base-
line, end of ischemia, and end of reperfusion (repeated measures
ANOVA, F(2,62) = 115.7, p < 0.001). The main effects of stress and
treatment were not significant. Results showed a significant inter-
action between treatment and time on RPP (F(6,62) = 3.6, p < 0.001).
After combining treatment and stress groups, Tukey’s post hoc
test revealed RPP in St hearts was significantly higher than con-
trol group at the end of reperfusion period (p < 0.05). Similarly
oxytocin administration before stress significantly increased RPP
(p < 0.05). I.c.v. administration of atosiban prior to stress caused a
non-significant decrease in RPP in the ATO + St group compared to
the St group. Central pretreatment with oxytocin in the OT group
increased RPP in comparison with the control group (p < 0.05).
Administration of atosiban prior to oxytocin restored RPP to that
of the control group in the ATO + OT group (p < 0.01). No significant
differences were shown between ATO and control groups.

Area at risk and infarct size

No significant treatment by stress interaction and no main
effect of treatment and stress were revealed on AAR. Significant
main effect was  found for treatment on infarct size (two-way
ANOVA, F(3,32) = 21.35, p < 0.001). The main effect of stress was not
significant. The results showed a significant interaction between
treatment and stress for infarct size (F(2,32) = 6.73, p < 0.05). For a
combination of treatment and stress groups, all pairs of means
were compared by Tukey’s post hoc test adjusting for multiple com-
parisons. Stress significantly decreased infarct size in the St group
compared to the control group (25.5 ± 2.6 IS/AAR % vs. 41.5 ± 2.8
IS/AAR %, p < 0.05). Oxytocin administration before stress signifi-
cantly decreased the infarct size to 29.8 ± 4 IS/AAR % in the St + OT
group from 41.5 ± 2 IS/AAR % in the control group (p < 0.05). Cen-
tral administration of atosiban in the ATO + St group restored infarct
size to those of the control group in comparison with the St group
(48.3 ± 3.6 IS/AAR % vs. 25.5 ± 2.6 IS/AAR %, p < 0.001). Pretreatment
with oxytocin prior to stress could not decrease infarct size com-
pared to the St group. Central infusion of oxytocin in the OT group
decreased significantly infarct size compared to the control group
(22.5 ± 1.9 IS/AAR % vs. 41.5 ± 2.8 IS/AAR %, p < 0.001), whereas
administration of atosiban prior to oxytocin caused a significant
increase in infarct size in the ATO + OT group in comparison with

the OT group (54.8 ± 5.8 IS/AAR % vs. 22.5 ± 2.6 IS/AAR %, p < 0.001).
However, atosiban on its own had no significant effect on infarct
size with respect to the control group (Fig. 2).



M. Moghimian et al. / Journal of Cardiology 61 (2013) 79–86 83

Fig. 3. Level of creatine kinase (CK)-MB in coronary effluent at the end of reper-
fusion in con, St, ATO + St, OT + St, OT, ATO + OT, ATO groups. Data are presented as
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Fig. 4. Level of lactate dehydrogenase (LDH) in coronary effluent at the end of reper-
fusion in con, St, ATO + St, OT + St, OT, ATO + OT, ATO groups. Data are presented as
mean ± SEM. *p < 0.05 vs. con group. #p < 0.05 vs. St group. $p < 0.05 vs. OT group.
con, control; St, stress; OT, oxytocin; ATO, atosiban.

Fig. 5. Distribution of the arrhythmia score during 30 min  ischemia in con, St,

trols. However i.c.v. administration of atosiban prior to oxytocin
increased VT incidence compared to the OT group (p < 0.05) (Fig. 6).
ean ± SEM. *p < 0.05 vs. con group. #p < 0.05 vs. St group. $p < 0.05 vs. OT group.
on, control; St, stress; OT, oxytocin; ATO, atosiban.

iochemical analysis

DH and CK in coronary effluent
A significant main effect was found for treatment on CK-MB and

DH (two-way ANOVA; F(3,30) = 12.29, p < 0.001 and F(3,32) = 4.67,
 < 0.01 respectively). The main effect of stress was not sig-
ificant on CK-MB and LDH. The results showed a significant

nteraction between treatment and stress on CK-MB and LDH
F(2,30) = 11.38, p < 0.001 and F(2,32) = 9.34, p < 0.001, respectively).
ll pairs of means were compared by Tukey’s post hoc test
djusting for multiple comparisons. Stress administration prior
o ischemia/reperfusion significantly decreased CK and LDH lev-
ls in coronary effluent (64.8 ± 7.17 IU/l vs. 130 ± 17.2 IU/l and
7 ± 11.3 IU/l vs. 155.4 ± 22.9 IU/l, respectively, both p < 0.05). Sim-

larly, significant differences were found in CK and LDH levels
etween St + OT and control groups (51 ± 9 IU/l vs. 130 ± 17 IU/l,

 < 0.05 and 66.2 ± 26.3 IU/l vs. 155.4 ± 22 IU/l, p < 0.05, respec-
ively). Central administration of atosiban prior to stress in the
TO + St group significantly increased CK and LDH levels com-
ared to the St group (125 ± 15.3 IU/l vs. 64.8 ± 7.17 IU/l and
46.8 ± 11.8 IU/l vs. 47 ± 11.3 IU/l, respectively, both p < 0.05). CK
nd LDH levels in coronary effluent were markedly declined by
entral infusion of oxytocin compared to control at the end of
eperfusion period (22.2 ± 6.6 IU/l vs. 130 ± 17.2 IU/l, p < 0.001 and
7.2 ± 3.6 IU/l vs. 155.4 ± 22.9 IU/l, p < 0.01 respectively). However

.c.v. administration of atosiban prior to oxytocin increased CK and
DH compared to the OT group (92.2 ± 10 IU/l vs. 22.25 ± 6.6 IU/l,

 < 0.01 and 136.86 ± 29.6 IU/l vs. 27.2 ± 3.6 IU/l, p < 0.05, respec-
ively, p < 0.05). Intraventricular infusion of oxytocin prior to stress
n the OT + St group, had no significant effect on CK and LDH levels
ompared to the St group. Administration of atosiban alone prior
o ischemia/reperfusion had no significant effect on CK and LDH in
omparison with control (Figs. 3 and 4).

entricular arrhythmias during ischemia

everity of arrhythmias
Administration of stress prior to ischemia did not significantly

ecrease ischemia-induced ventricular arrhythmias severity with
espect to control group (2.1 ± 0.55 arrhythmia score vs. 3.85 ± 0.45
rrhythmia score, p < 0.05). But administration of atosiban prior to

tress in the ATO + St group intensified severity of arrhythmia com-
ared to the St group (4.1 ± 0.65 arrhythmia score vs. 2.1 ± 0.55
rrhythmia score, p < 0.05). Arrhythmia severity was  similar in
ATO  + St, OT + St, OT, ATO + OT, ATO groups. Data are presented as mean ± SEM.
#p < 0.05 vs. St group. con, control; St, stress; OT, oxytocin; ATO, atosiban.

hearts of the St and OT + St groups. Central administration of oxy-
tocin alone had no significant effect on arrhythmia severity (Fig. 5).

Incidence of VT and VF
In the control group, the incidence of VT and VF occurred in

100% and 14.3% of hearts, respectively. No significant differences
were observed in VF incidence among groups. Administration of
stress prior to ischemia significantly decreased incidence of VT
with respect to the control group. Central administration of atosi-
ban prior to stress in the ATO + St group significantly increased VT
incidence compared to the St group (p < 0.05). The incidence of VT
markedly declined by central infusion of oxytocin compared to con-
Fig. 6. Incidence of ventricular tachycardia (VT) and ventricular fibrillation (VF)
during 30 min  ischemia in con, St, ATO + St, OT + St, OT, ATO + OT, ATO groups. Data
are presented as mean ± SEM. *p < 0.05 vs. con group. #p < 0.05 vs. St group. $p < 0.05
vs. OT group. con, control; St, stress; OT, oxytocin; ATO, atosiban.
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lasma hormone level
The plasma concentrations of oxytocin and corticosterone were

.38 ± 0.6 pg/ml and 26.2 ± 5.07 nmol/l, respectively in the control
roup. However, following induction of stress these concentrations
ignificantly rose to mean concentrations of 17.9 ± 4.2 pg/ml and
1.7 ± 4.4 nmol/l, respectively. Administration of oxytocin in the
T group did not change the plasma oxytocin level in comparison

o the control group (one way ANOVA, p < 0.05).

iscussion

This study provides the first demonstration of the implication of
entral oxytocin released and its receptors in stress-induced cardio-
rotection. We  observed that stress significantly decreased infarct
ize, incidence of VT, level of CK and LDH, and increased RPP in
solated rat hearts subjected to an ischemia–reperfusion sequence.
tress-induced myocardial tolerance to ischemia was  abolished by
.c.v. administration of atosiban (as an oxytocin receptor antago-
ist) prior to stress exposure. To our knowledge this is the first
eport of the cardioprotective effect of i.c.v. infusion of oxytocin
gainst IR injury in the heart which was inhibited by the adminis-
ration of atosiban (i.c.v.).

It is well known that acute cardiovascular events (acute coro-
ary syndrome and stroke) can be triggered by abrupt emotional
r physical stressors [25] and stress can also be harmful to the
ardiovascular system [26]. Many clinical studies reported that
xposure to stress correlates with increased morbidity and mor-
ality from cardiovascular diseases, including myocardial ischemia
27,28]. Acute stress accelerates the HR, cardiac contractility, and
otal peripheral resistance [29] and consequently, cardiac work and
xygen consumption may  markedly increase [30,31]. Forced exer-
ise can induce maladjusted changes in both brain and heart tissues
32,33].  Mancardi et al. observed a worsening of IR outcomes in
he heart of rats forced to run experiment [34]. Scheuer and Mif-
in also showed that chronic stress increased the size of infarction
35]. These observations conflict with other studies showing heat
tress significantly reduced infarct size in the isolated rat heart sub-
ected to an IR sequence [36,37]. Acute exercise training [38,39] and
epeated physiologic stress provided myocardial protection against
R injury [40]. Moreover there is evidence for cold-restraint stress
ole in cardioprotection [41].

In our study, an acute episode of stress experienced just before IR
ould provide myocardial protection against IR injury and decrease
nfarct size as the hardest end point of ischemic heart injury. The

ajor effects of cardioprotection are reduction in infarct size (anti
ecrotic effect) [42], reduction in number and severity of cardiac
rrhythmias (anti arrhythmic effect) [43,44],  and improvement in
ontractile performance (protection against contractile dysfunc-
ion) [45]. Stress pretreatment improved contractile function, and
educed incidence of VT and biochemical parameters in the same
irection as the infarct size in our experiment. Elevated levels of CK
ave been regarded as a specific biochemical marker of myocyte
ecrosis [46] and LDH level plays an important role in systemic
issue damage [47].

It has been documented that stress evokes a few protective
esponses which can prevent the development of IR injury [35].
he stress response is probably due to interactions between the
euroendocrine system, the sympathetic nervous system, and the
arget organs, which result in the release of specific hormones
48]. Previous studies show that a 10-min forced swimming session
riggers the release of oxytocin within the hypothalamic SON and

he PVN [15,19],  which parallels oxytocin secretion into the blood
15,49]. Our study showed that oxytocin plasma concentration
as increased by swim stress, confirming the results of previ-

us studies. Hence in the present experiment, central infusion of
ardiology 61 (2013) 79–86

atosiban inhibited the protective effect of stress in the ATO + St
group and abolished the effects of stress on infarct size, RPP, inci-
dence of VT and release of CK and LDH. Since atosiban does not
cross the blood–brain barrier [50], the inhibitory effects of atosi-
ban may  be mediated via brain oxytocin receptors. These findings
seem to exclude the possibility that centrally released endogenous
oxytocin in response to stress could protect and prevent worsen-
ing or development of IR injury by activation of central oxytocin
receptors. Oxytocin is considered to be an endogenous stress-
relieving compound [51]. Wsol et al. showed that oxytocin buffers
the cardiovascular responses to stress and with central blockade
of oxytocin receptors indicated that centrally released endogenous
oxytocin significantly attenuates the intensity of the cardiovascu-
lar responses to acute stress in intact rats [7].  It is also shown that
infusion of oxytocin into the brain prior to stress did not change
the cardiovascular responses to stress [7].  In addition, our previ-
ous study assessing the role of peripherally released oxytocin in
stress provided the same result [52]. The role of oxytocin in the cen-
tral regulation of the cardiovascular system at rest was  previously
investigated by many authors but the results were inconclusive
[53–56]. In some studies intraventricular or intracisternal admin-
istration of oxytocin elicited pressor or tachycardiac effects [55,57],
whereas in others i.c.v. infusion of oxytocin for 5 days turned out to
be hypotensive and reacted with a larger elevation of blood pres-
sure and heart rate in response to unexpected and sudden noise
[58]. It has also been found that oxytocin reduces acceleration of
the heart rate during exercise [56].

Anatomical studies of oxytocin pathways in the brain have
revealed extensive innervations of the brain stem structures
regulating the cardiovascular, behavioral, and neuroendocrine
responses to stress by oxytocin fibers projecting from the PVN
[10], and there is a population of PVN-spinal oxytocin neurons that
excite cardiac sympathetic preganglionic neurons controlling heart
rate [59]. Moreover, most recently it has been documented that
peripheral administration of oxytocin induces a cardioprotective
and preconditioning effect on IR injury in both isolated rat heart
[42], and anesthetized rats [13]. However thus far, the role of central
administration of oxytocin in IR injury has not been investigated.

In our study, central infusion of exogenous oxytocin increased
recovery of LVDP and RPP at the end of reperfusion and decreased
infarct size, the level of CK and LDH in comparison with the con-
trol group, without any changes in oxytocin plasma concentration.
Central administration of an oxytocin receptor antagonist that does
not cross the blood–brain barrier [50] eliminated the direct stimu-
latory influence of oxytocin on brain receptor. This implies that
the cardioprotective effect of stress and i.c.v. infusion of oxytocin
against IR injury may  be transmitted in part by the actions of oxy-
tocin in the brain, although oxytocin probably also has a direct
cardioprotective effect. Therefore it may  be deduced that oxytocin
has a preconditioning effect via central action. Interestingly in the
present experiment, administration of oxytocin prior to stress did
not increase the protection of stress. There are two possible expla-
nations for these findings: first, swimming could stimulate release
of oxytocin in multiple ways and the release could be sufficient
enough to saturate oxytocin receptors and second, since we  have
previously reported that oxytocin has a biphasic dose-dependent
effect against IR injury [13], the combination of exogenous oxytocin
and oxytocin released in response to stress may provide higher
doses which show less activity.

In the present study, our model of stress could not cause a sig-
nificant attenuation in severity of arrhythmias showing that the
changes in infarct size do not correlate with the anti-arrhythmic

effects of stress. In this regard some studies showed that precon-
ditioning reduces infarct size, but accelerates time to ventricular
fibrillation in ischemic heart [60–62].  Therefore, it seems that the
extent of myocardial infarction may  not directly affect arrhythmia.



al of C

s
e
c
s
c
n
t
r
t
h

n
c
h

A

o

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

M. Moghimian et al. / Journ

Blockade of oxytocin receptor significantly offsets the effects of
tress on ventricular arrhythmias. This observation implies ben-
ficial effects of endogenous oxytocin on arrhythmia in stress
ondition. In this line some studies showed that adaptation to
hort-term non-damaging stress effect largely limits or prevents
ardiac arrhythmias in acute ischemia and reperfusion [63]. A large
umber of studies demonstrated that mild stress resulted in pro-
ection against exposure to subsequent more severe stress [64,65]
epresenting cardiac preconditioning. The present study showed
hat administration of stress prior to ischemia–reperfusion may
ave a preconditioning effect.

In conclusion these findings suggest that i.c.v. infusion of exoge-
ous oxytocin and oxytocin released into the brain during stress
ould induce a preconditioning effect in ischemic-reperfused rat
eart via brain receptors.
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