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Objective: Autosomal recessive non-syndromic hearing loss (ARNSHL) can be caused by many genes.

However, mutations in the GJB2 gene, which encodes the gap-junction (GJ) protein connexin (Cx) 26,

constitute a considerable proportion differing among population. Between 10 and 42 percent of patients

with recessive GJB2 mutations carry only one mutant allele. Mutations in GJB4, GJA1, and GJC3 encoding

Cx30.3, Cx43, and Cx29, respectively, can lead to HL. Combination of different connexins in heteromeric

and heterotypic GJ assemblies is possible. This study aims to determine whether variations in any of the

genes GJB4, GJA1 or GJC3 can be the second mutant allele causing the disease in the digenic mode of

inheritance in the studied GJB2 heterozygous cases.

Methods: We examined 34 unrelated GJB2 heterozygous ARNSHL subjects from different geographic and

ethnic areas in Iran, using polymerase chain reaction (PCR) followed by direct DNA sequencing to

identify any sequence variations in these genes. Restriction fragment length polymorphism (RFLP)

assays were performed on 400 normal hearing individuals.

Results: Sequence analysis of GJB4 showed five heterozygous variations including c.451C>A, c.219C>T,

c.507C>G, c.155_158delTCTG and c.542C>T, with only the latter variation not being detected in any of

control samples. There were three heterozygous variations including c.758C>T, c.717G>A and c.3*dupA

in GJA1 in four cases. We found no variations in GJC3 gene sequence.

Conclusion: Our data suggest that GJB4 c.542C>T variant and less likely some variations of GJB4 and GJA1,

but not possibly GJC3, can be assigned to ARNSHL in GJB2 heterozygous mutation carriers providing clues

of the digenic pattern.

� 2012 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Hearing loss (HL), with an incidence of about 1 in 1000
neonates, is the most frequent sensorineural disorder. It is
extremely heterogenous and may occur due to genetic or
environmental causes or both [1,2]. Despite this genetic heteroge-
neity, mutations in the GJB2 gene (MIM ID: 121011) which encodes
connexin (Cx) 26 protein, are involved in up to 50% of autosomal
recessive non-syndromic HL (ARNSHL) cases in many populations
Abbreviations: Cx, connexin; GJ, gap junction; HL, hearing loss; ARNSHL, autosomal

recessive non-syndromic hearing loss.
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[3]. From 10 to 42 percent of patients with GJB2 mutations are
heterozygous carriers of a mutant GJB2 alleles [4–10]. Cxs are the
building blocks of gap junctions (GJs) that build intercellular
channels allowing communication between adjacent cells. The
oligomerization of six Cx subunits forms a hemichannel called
connexon and assembling of two connexons build up a complete GJ
[11]. Mutations in the related genes of some members of the Cx
gene family such as Cx26, Cx29, Cx30, Cx31, Cx32, Cx30.3, and
Cx43 have been shown to lead to HL [12–14] and can be inherited
either in monogenic or digenic mode. Furthermore, Cxs have a
great potential to form different combinations of heteromeric and
heterotypic GJ assemblies [15]. In Iran 18.29% of ARNSHLs are
caused by GJB2 mutations, 22.8% of which, that is 4.17% of total
ARNSHL cases, would carry only one mutant allele in GJB2 gene
[16]. Digenic inheritance hypothesis in GJB2 heterozygous cases
has previously been proved for GJB6 and GJB3 alterations to
comprise the second mutant allele [17–21]. A few studies have
assessed GJB4 [22–24], GJA1 [23], and GJC3 [23,25] genes in
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Fig. 1. Sequencing electropherogram of detected variations. (A)–(D) GJB4 PCR products, below: WT allele. Above: heterozygous alleles (indicated by arrows): (A) 451C>A, (B)

219C>T, (C) 507C>G, (D) 542C>T. (E) and (F) GJA1 PCR product, below: WT allele. Above: heterozygous alleles: (E) 758C>T, (F) 717G>A, (G) GJB4 PCR product, above: WT

allele, middle and below: 155_158delTCTG heterozygous allele sequenced in two directions. (H) GJA1 PCR product, above: WT allele, middle and below: c.3*dupA

heterozygous allele sequenced in two directions.

Table 1
Genotypes and frequencies of study subjects.

Heterozygous GJB2 variants Frequency Percent

35delG/WT 30/34 88.23

E47X/WT 1/34 2.94

235delC/WT 1/34 2.94

W24X/WT 1/34 2.94

R184P/Wt 1/34 2.94

Total 34 100
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ARNSHL cases, though their chief aim was not to appraise the
digenic hypothesis.

In the present investigation, we have investigated the
contribution of GJB4, GJA1, and GJC3 in GJB2-related ARNSHL
patients with only one mutant allele.

2. Methods

Subjects and control samples. A total of 34 deaf subjects and 400
normal hearing individuals were included in this study. All deaf



Table 2
PCR conditions for amplification of GJB4, GJA1, GJC3, and GJB2 coding exons.

Gene Primer directions 50–30 primer sequences Product size (bp) Region Annealing for PCR (8C)

GJB4 Forward F1B4: TCAATCGCACCAGCATTAAG 964 Exon 2 Touch down 61 to 56

F2B4: GCTTCCTCTATATCTTCGACa 407

Reverse R1B4: GGGGGACCTGTTGATCTTATC

GJA1 Forward F1A1: TTTGCAATCTGTGATCCTTGA 1281 Exon 2 54

F2A1: CTGATGACCTGGAGATCCAGa 93

Reverse R1A1: CCTGGTGCACTTTCTACAGC

GJC3 Forward F1C3: GCTCCCTCTGAAGGACAGTG 896 Exon 1 Touch down 65 to 58

Reverse R1C3: GGGAGGAGATCATCAGGACA

Forward F2C3: TGGGTACGCACTGTGAAAAA 190 Exon 2 60

Reverse R1C3: AGCTCCTCCTTGGACAGGAT

GJB2 Forward F1B2: CTCCCTGTTCTGTCCTAGCT 809 Exon 2 Touch down 62 to 58

Forward R1B2: CTCATCCCTCTCATGCTGTC

a Semi-nested PCR primers. Mismatch nucleotides are given in italics.

Table 3
Full report of detected variations.

Variant genotypea Amino acid

changea

Primary GJB2

genotype

Protein

domain

Predicted

effect

Patients

freq. (%)

Control

Freq.

SNPc RFLP

enzyme

Ref.

GJB4

c.451C>A/Wt (Arg151Ser) 35delG/Wt E2 Missense 1/34 (2.94) 1/100 rs78499418 BsiEI This study

c.219C>T/Wt (p.=) 35delG/Wt M2 Silent 1/34 (2.94) – rs143547547 – This study

c.507C>G/Wt (p.Cys169Trp) 35delG/Wt E2 Missense 1/34 (2.94) 7/100 rs79193415 StyI [22]

c.155_158delTCTG/Wt (p.Ala52ValfsX55) 35delG/Wt E2 Frameshift 1/34 (2.94) 5/100 NR Tth111I [22]

c.542C>T/Wt (p.Thr181Met) R184P/Wt E2 Missense 1/34 (2.94) 0/100 rs142410428 NcoI This study

GJA1

c.758C>T/Wt (p.Ala253Val) 35delG/Wt C Missense 1/34 (2.94) 1/100 rs17653265 HhaI [32,33]

c.717G>A/Wt (p.=) 35delG/Wt C Silent 1/34 (2.94) – rs57946868 – This study

c.3*dupA/Wt (p.?)b 35delG/Wt C Unknown 2/34 (5.88) 2/100, 4/100 rs67678923 BslI This study

M, transmembrane domains; E, extracellular loop domains; C, C-terminal domain; NR, not reported.
a HGVS (Human Genome Variation Society) nomenclature.
b Protein has not been analyzed, an effect may be expected but too complex to predict.
c Reported in database of Single Nucleotide Polymorphisms (dbSNP).
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subjects were ARNSHL cases with only one mutant GJB2 allele (Table
1) identified in 890 affected families with mild to profound
sensorineural HL in our previous study [16]. We collected the
control samples from 4 provinces (100 for each region) based on the
geographic region from where patients with new allelic variants
were detected. Informed consent was obtained from all deaf subjects
and the controls. The study protocol was approved by the Ethics
Committee of Shahrekord University of Medical Science, Iran.

Molecular analysis. Genomic DNA was extracted from peripheral
blood of the deaf subjects and control individuals, using a standard
phenol–chloroform procedure. Polymerase chain reaction (PCR)
reactions were performed to amplify the entire coding sequence of
GJB4 (RefSeq ID: NM_153212), GJA1 (RefSeq ID: NM_000165), GJC3

(RefSeq ID: NM_181538), and GJB2 (RefSeq ID: NM_004004), plus
sequences of about 50 bp up/down stream. Except GJB2 primer
sequences which we reported in our previous study [26], other
primers were designed using Primer3 (v. 0.4.0) web-based
software1 [27] (Table 2) and were blasted (NCBI/Primer-BLAST2)
in order to check their specificity. The Quality of PCR products were
verified on poly-acrylamide gel electrophoresis (PAGE). DNA
sequencing of the PCR-amplified products was carried out bi-
directionally on an ABI 3130 automated sequencer (Applied
Biosystems, Macrogen, South Korea) using the same primers.

Sequencing data were then analyzed comparing with published
(UCSC Genome Browser3) sequences. The found variants were
1 http://frodo.wi.mit.edu/primer3/ (last accessed 4.10.12).
2 http://www.ncbi.nlm.nih.gov/tools/primer-blast/ (last accessed 2.28.12).
3 http://genome.ucsc.edu/cgi-bin/hgGateway/ Created by the Genome Bioinfor-

matics Group of UC Santa Cruz, �The Regents of the University of California (last

accessed 2.23.2012).
investigated in 100 geographically and ethnically matched control
samples by subjecting the related PCR product to the procedure of
restriction fragment length polymorphism (RFLP). All products
with positive RFLP results were sequenced. The GJB2 gene was
sequenced in all control individuals with variants in any of the
three genes. Conservation scores of the amino acids, which were
predicted to change, were acquired from the ConSurf Server (the
online server for the identification of functional regions in
proteins4) [28].

3. Results and discussion

Altogether, eight different heterozygous allelic variants were
identified in the three genes in 9 of 34 (26.47%) deaf subjects
studied (Table 3) (Fig. 1). Any variants found in the control
individuals for GJB4 or GJA1 using RFLP, were confirmed by DNA
sequencing. The GJB2 gene sequence was normal in all the control
individuals carrying variants in GJB4 or GJA1.

Analyzing GJB4 gene, we detected five different variants in 5/34
(14.70%) of the patients and 13/200 (6.5%) of the controls. Out of
the 5 patients, 4 were heterozygote for 35delG GJB2 mutation and
one carried R184P. The first variant c.451C>A (Arg151Ser) was
found in a patient from Golestan province in north of Iran. A semi-
nested PCR was performed using F2B4 primer with a mismatch
nucleotide (Table 2) to produce a restriction site for BsiEI enzyme.
We found one heterozygote in 100 controls from the correspond-
ing province. This allelic variant results in a substitution of arginine
to serine at codon 151 of Cx30.3 within the second extracellular
loop domain affecting a residue with a low conservation score of 2
4 http://consurf.tau.ac.il/ (last accessed 1.15.12).

http://consurf.tau.ac.il/
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Table 4
Conservation status of missense variations.

Gene Protein Position Amino acid Conservation

scorea (Scaleb)

MSA datac Residue variety

GJB4 Cx30.3 151 R 0.718 (2) 150/150 F,A,S,T,N,K,Y,V,H,Q,M,C,I,R,L

73 H �0.812 (9) 150/150 H,Q,N,L,Y

169 C �0.943 (9) 150/150 A,C

181 T �0.847 (9) 150/150 A,S,M,T

GJA1 Cx43 253 A 2.005 (1) 78/150 F,S,T,N,K,Y,E,V,Q,C,L,A,P,H,D,R,I,G

239 R 0.665 (2) 142/150 A,S,T,N,K,Y,E,V,H,Q,C,I,R,G

a The normalized conservation scores.
b Scale representing the conservation scores (9 – conserved, 1 – variable).
c The number of aligned sequences having an amino acid (non-gapped) from the overall number of sequences at each position.
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(Table 4). This domain is crucial for docking of GJ hemichannels
and is responsible for the compatibility between different
connexin proteins to form heterotypic functional GJ channels
[29]. However, considering that the altered arginine was a non-
conserved amino acid with possibly low functional property in the
protein, and observing the variation among healthy control
samples, there would be a low possibility of its contribution to
the disease.

Another variation was c.219C>T, found in one of the deaf
subjects from Gilan in north of Iran, accompanying GJB2 35delG
allele. It does not change the highly conserved histidine codon in
position 73 in the second transmembrane domain and is
considered a silent (synonymous) variation. Although the integrity
of this domain is essential for the accurate transport of connexin
into plasma membrane, it seemed fairly improbable for a silent
variation to play a role in disease pathogenesis. No control samples
were screened for that. More studies are necessary to specify any
possible role of this variation on protein levels or conformation
[30].

The variant c.507C>G (p.Cys169Trp), found in a patient from
Azerbaijan Sharqi, Northwest Iran, was in double heterozygosity
with GJB2 35delG. This patient had two other siblings with HL. The
altered cysteine is a residue with a high conservation score of 9
(Table 4) substituted by tryptophan at codon 169 of Cx30.3 in the
second extra cellular domain. Therefore, this alteration may result
in incompatible forming of heterotypic functional channels. As the
variation generated an additional restriction site for StyI, using the
restriction enzyme, we detected seven heterozygotes carrying this
variant in 100 control samples from the same region. As the GJB2

sequence of all the healthy control individuals was normal, it can
be regarded as the evidence of possible digenic effect between GJB4

and the mutant GJB2. Cys169Trp has previously been suggested to
contribute to HL in two studies based on the fact that its observed
frequencies in patients were significantly higher than those of the
controls [22,23].

In one patient from Azerbaijan Sharqi, with GJB2 35delG
mutation, a 4 bp deletion (c.155_158delTCTG) was detected in
GJB4. The patient was the only affected person in his family. This
allelic variation causes a frameshift generating a new stop codon at
position 55 (counting starts with the changed amino acid). This
deletion eliminated a restriction site of Tth111I enzyme. Among
100 control samples from Azerbaijan Sharqi, five had this variant in
heterozygote form. López-Bigas et al. [22] proved that this
variation is not a cause of HL since they found no significant
difference between patient and control groups in this variant. In
view of digenic hypothesis, this protein with the premature stop
codon that would be exposed to degradation in the cell, would
have minimal effect on the HL pathogenesis [31].

The c.542C>T variant was detected to be double heterozygous
with GJB2 R184P mutation in one patient from Azerbaijan Sharqi.
He had another affected brother. The variation substituted a
tryptophan, with the high conservation score of 9 (Table 4), to
methionine in second extra cellular loop domain of Cx30.3. While
the tryptophan residue is present in the sequences from a diverse
set of taxa including fish, Primata and rodent, M residue is only
seen in Xenopus sp. based on the multiple sequence alignment
involving 150 sequences from different sources. Thus, it is very
probable to negatively affect the hemi-channel docking and the co-
assembly of GJB4 with different connexins in a heterotypic channel.
This variant introduced one restriction site for NcoI. We did not
detect this allelic variation in any of 100 control individuals from
Azerbaijan Sharqi. Therefore Among our detected GJB4 variations
T181M is the most likely variant to contribute to HL in digenic
mode together with the GJB2 mutation R184P.

Analysis of GJA1 gene showed 3 variants in 4/34 (11.76%)
patients and 7/200 (3.5%) of the controls. They all carried 35delG as
the primary GJB2 mutation. One patient from Khuzestan, in
southwest Iran, was found to carry c.758C>T in GJA1 along with a
35delG mutation in GJB2. The variant was seen in 1/100 of the
controls from Khuzestan province. The variant results in a
substitution of an alanine with a low conservation score of 1
(Table 4), to valine in unusually long cytoplasmic C-terminal
domain of Cx43. This domain of the protein is the only part of it
that includes functional phosphorylation sites for kinases. In the
presence of this variation, one of the restriction sites for HhaI was
abolished. The variation has been previously reported to contrib-
ute to glucoma [32] and oculodentodigital dysplasia [33]. Taking
into account that the altered alanine is a non-conserved amino
acid, it is less likely to have a contributory effect on HL
pathogenesis in this case.

The c.717G>A was detected in one patient from Khuzestan, in
double heterozygosity with GJB2 35delG mutation. It caused no
change in arginine residue in cytoplasmic C-terminal domain of
Cx43. This variation seems to have no causative effect on protein
and/or disease pathogenesis.

A variation of c.3*dupA, in which the third nucleotide
downstream of the stop codon was duplicated, was found in
one patient from Khorasan Razavi, northeast Iran, and in another
case from Azerbaijan-Sharqi, both being in double heterozygosity
with GJB2 35delG. A mismatch forward primer (F2A1) was
designed (Table 2) to conduct a semi-nested PCR which generated
a restrictions site of BslI. This variant was found in two of 100
control individuals from Khorasan Razavi and 4/100 of controls
from Azerbaijan Sharqi. Since this variant is not located in the
coding sequence (30 UTR), the possible outcome is currently
unclear and warrants functional studies.

We detected no variations in the two exons of GJC3 gene and all
the 34 patients showed normal sequences. In the present study, we
tried to clarify the possible contribution of digenic inheritance in
ARNSHL in Iran and to identify probable suitable genes to be
assessed in this issue. In this study, 26.47% of GJB2 heterozygotes
had a second variant in another Cx gene, actually being double
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heterozygote. Notably, none of the controls were in double
heterozygosity status for the studied genes and GJB2. Thus, a
given variant in one of the studied Cx genes might be pathogenic
when accompanied by another variant in GJB2 in a digenic pattern.
We propose that GJB4 T181M variant and with lower possibility
some other variations of GJB4 and GJA1, but not possibly GJC3, can
contribute to ARNSHL in a digenic pattern in GJB2 heterozygous
mutation carriers. Further functional and familial studies are
required to definitely confirm the role of other variations of GJB4

and GJA1, and to determine whether other members of the
Connexin gene family play any role in the digenic hypothesis in HL.
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