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a b s t r a c t

Finite conductivity, surface energy and nonlocal effect can influence the electromechanical performance
of micro/nano-electromechanical systems (MEMS/NEMS). However, these factors are yet ignored on
stability analysis of MEMS/NEMS fabricated from functionally graded materials (FGM). In this paper,
dynamic stability of double-sided NEMS fabricated from non-symmetric FGM is investigated incorpo-
rating finite conductivity, surface energy and nonlocal effect. The GurtineMurdoch model and Eringen's
elasticity are employed to consider the surface energy and nonlocal effect, respectively. Effect of finite
conductivity of FGM on electrostatic and Casimir attractions is incorporated via relative permittivity and
plasma frequency of the material. The stability analysis of the nanostructure is conducted by plotting
time history and phase portraits. Moreover, bifurcation analysis is conducted to investigate the stability
of the fixed points of the nano-structure. The validity of the proposed model is examined by comparing
the results of the present study with those reported in the literature. The impact of various parameters
i.e. finite conductivity, nonlocal parameter, surface stresses and material characteristics on the dynamic
instability of the NEMS are addressed.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

With recent developments in nano-scale manufacturing tech-
nologies, functionally graded materials (FGMs) are being consid-
ered as potential structural materials with promising applications
in optoelectronics, biomechanics, tribology and micro/nanotech-
nology [1,2]. Functionally Graded Materials belong to a class of
advanced materials with continuously varying properties over the
thickness. The graded properties of FGMs result in high resistance
to temperature gradients and significant reduction in the stress
concentrations, thermal stresses and residual stresses. Due to the
inherent properties of FGMs as the multi-functional materials,
these advanced composites are very good candidates for smart
structures. Interestingly, FGMs have received considerable atten-
tion in developing ultra-small systems and miniature devices.
ighi@scu.ac.ir (H.M. Sedighi),
ahoo.com (M. Abadyan).
Previous researchers have theoretically addressed the mechanical
behavior of FGM miniature elements. Eltaher et al. [3] studied the
static bending and buckling of functionally graded nanobeams.
They indicated that, the material-distribution profile may be
manipulated to change the maximum deflection and maximize the
critical buckling load. Ke and Wang [4] investigated dynamic sta-
bility of FGMmicro-beams using the modified couple stress theory.
Nonlinear finite element model of functionally graded micro-
beams by considering the power-law variation of material
through the beam height, and microstructure length scale param-
eter was developed by Arbind and Reddy [5] for the
EulereBernoulli and the Timoshenko beam theories. They
demonstrated that the effect of micro-structural parameter is to
stiffen the micro-beams. The vibration of axially functionally
graded material (AFGM) nanobeam was investigated by Zeigh-
ampour and Tadi Beni [6] by employing strain gradient theory. They
studied the impacts of the diameter of the nanobeam, the stiffness
and damping of the visco-Pasternak foundation on the natural
frequency of the nanobeams. With recent growth in micro/nano-
fabrication technology, FGMs are explored for constructing micro/
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nano-electromechanical systems (MEMS/NEMS) [7e9]. In this re-
gard, some researchers have focused on modeling FGM-fabricated
MEMS/NEMS. Abbasnejad et al. [10] studied the mechanical
behavior of a fixedefixed FGMmicro-beam subjected to a nonlinear
electrostatic pressure using modified couple stress theory and
classic theory. They showed that by increasing the power law
constant, the position of the saddle node bifurcation moves to the
right in the state-space. Ji et al. [11] investigated the pull-in insta-
bility and free vibration of functionally graded poly-SiGe micro-
beams under combined electrostatic force and axial residual stress,
with an emphasis on the effects of ground electrode shape. The
dynamic pull-in behavior of FGM nano-actuators has been previ-
ously addressed by the authors [12] using classical continuum
elasticity. In present article, a modified continuum model is pro-
posed to investigate the pull-in instability of double-sided beam-
type NEMS bridges made of asymmetric FGM beam. Three impor-
tant modifications are considered in order to increase the accuracy
of the model.

The first modification is incorporating the finite conductivity of
FGMs in the equation of motion of the nano-bridge. It is well
established that for precise simulation of NEMS, both Casimir and
Coulomb forces should be considered in deriving the governing
equation [13]. The strength of Casimir and Coulomb forces between
interacting surfaces strongly depends on the material characteris-
tics of the surfaces [14,15]. Correction of Casimir force due to finite
conductivity of the interacting flat plates have been calculated to
first order by Hargraves [16] and to second order by Bezerra et al.
[17]. These researchers have proposed simple approximations for
Casimir force as a function of plasma wavelength of material.
Similar to Casimir force, the Coulomb attraction between two FGM
plates (with finite conductivity) is less than that of perfect metals.
The corrected Coulomb force for FGM NEMS can be obtained
considering the dielectric characteristics (permittivity) of FGM. It
should be mentioned that all the previous researchers who inves-
tigated FGM NEMS have used force relations that are valid only for
perfectly conductive metals. However, this is not acceptable for
graded materials especially ceramic-metal FGMs. Herein, the finite
conductivity of FGM is taken into account for computing Coulomb
attraction between surfaces as well as Casimir force.

The second correction is due to the presence of surface layer that
affects the elastic stiffness of the micro-/nano-beams. The experi-
mental results have demonstrated that for nanoscale structures, the
surface effects become significant due to the high surface/volume
ratio [18]. Gurtin and Murdoch [19] developed a surface elasticity
theory for isotropic materials that model the surface layer of a solid
as a membrane with negligible thickness. A size-dependent finite
elementmodel, forMindlin plate theory accounting for the position
of the neutral plane for continuum incorporating surface energy
effect, was proposed by Shaat et al. [20] to study the bending
behavior of ultra-thin FGM plates. Wang et al. [21] summarized the
advances in the surface stress effect in mechanics of nano-
structured elements, including nanowires, nanobeams, and nano-
films. Sedighi [22] investigated the dynamic pull-in instability of
nonlocal nano-bridges incorporating the surface effect and inter-
molecular forces. The influence of surface effects on the pull-in
instability of a cantilever nano-actuators was investigated by
Koochi et al. [23] incorporating the effect of Casimir attraction.
Ansari et al. [24] examined the instability characteristics of hy-
drostatically and electrostatically actuated circular nanoplates
including surface stress effect on the basis of GurtineMurdoch
elasticity theory. Hosseini-Hashemi and Nazemnezhad [25] studied
the nonlinear free vibration of simply supported FG nanoscale
beams with considering surface effects. They discussed the in-
fluences of the FG nanobeam length, volume fraction index,
amplitude ratio, mode number and thickness ratio on the
normalized nonlinear natural frequencies of the FG nanobeams. In
the current study, the impact of surface layer on the pull-in
behavior of FGM nano-bridges is taken into account.

The third modification that is considered in the proposed model
is the nonlocal effects that appears at micro/nanoscales. In order to
modeling the nonlocal effects, size-dependent continuum theory
such as Eringen elasticity has been proposed for modeling the size
phenomenon in nanostructures [26]. This theory has been
employed to investigate the size dependent behavior of miniature
structures. Li et al. [27] presented the analytical solution for the
transverse vibration of nano-beams subjected to initial axial force
based on the nonlocal theory. To simulate transient thermo-elastic
responses of the nanostructure subjected to a sudden thermal
loading, Yu et al. [28] extended the classical thermo-elastic models
using Eringen's nonlocal elasticity and Caputo fractional derivative
and memory dependent derivative (MDD). Reddy and El-Borgi [29]
derived the governing equations of Timoshenko beams assuming
the Eringen's nonlocal differential model andmodified von K�arm�an
nonlinear strains. They also developed the finite element models of
the resulting equations and presented the numerical results for
various boundary conditions, showing the effect of the nonlocal
parameter on the deflections. Kiani [30] studied the axial buckling
behavior of vertically aligned single-walled carbon nanotubes
based on the nonlocal continuum theory and addressed the roles of
the influential factors on both in-plane and out-of-plane axial
buckling loads. Jung et al. [31] employed the modified couple stress
theory which accounts for the asymmetric couple stress tensor, for
buckling analysis of S-FGM nanoplates embedded in Pasternak
elastic medium. They addressed the effects of power law index,
small scale coefficient, aspect ratio, side-to-thickness ratio, loading
types, and elastic medium parameter on the buckling load of S-FGM
nanoplates. Ebrahimi and Salari [32] employed the nonlocal
EulereBernoulli beam theory for vibration analysis of functionally
graded (FG) size-dependent nanobeams by using Navier-based
analytical method and investigated the effects of systems param-
eters on the normalized natural frequencies of the FG nanobeams.
In another research [33] they studied the thermal effect on free
vibration characteristics of functionally graded (FG) size-dependent
nanobeams subjected to an in-plane thermal loading using the
same method of solution. The nonlocal elasticity has also been
applied for simulating the pull-in instability of MESM/NEMS actu-
ators fabricated from isotropic material. In this research work, the
Eringen elasticity is employed for considering the influence of
nonlocal effects on the pull-in characteristics of the double-sided
nano-bridge.

The present article is organized to study the effects of finite
conductivity of FGMs on the dynamic instability of double-sided
NEMS bridge considering the surface energy and nonlocal effects.
To this end, the influences of actuation voltages, nonlocal param-
eter, properties of FGMmaterials, surface stresses and Casimir force
on the pull-in parameters are investigated. To verify the soundness
of the present analysis, the obtained results are compared with the
reported results in the literature.

2. Mathematical modeling

Fig. 1 depicts an asymmetric functionally graded nano-bridge
actuated by a pair of parallel-plate electrodes with length l, thick-
ness h, width b and initial gaps g1 and g2 from the bottom and top
substrates which is under DC actuation voltages V1 and V2,
respectively. The distance of any point of the nano-beam from the
neutral axis and the top surface are represented by z and ~z,
respectively. Moreover, the distance of the neutral axis from the top
surface is denoted by ~zc. The coordinate system is also illustrated in
Fig. 1.



Fig. 1. Configuration of a non-classical asymmetric FGM nano-bridge.
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It is assumed that the lower surface of the FGM nano-beam is
made of perfectly conductive material (such as metal) and the
upper surface is made of finite conductive material (such as
dielectric). The typical material property P of nano-structure is
varied through the beam thickness according to the volume frac-
tion rule described as follows:

PðzÞ ¼ PþVþðzÞ þ P�V�ðzÞ (1)

in which superscripts � andþ refer to the perfectly conductive and
finite conductive constituents, respectively, V is the volume fraction
and P(z) is an arbitrary material property of the nano-structure.
Therefore, based on the power law distribution, the material
properties can be expressed by the following formula [34]:

Eð~zÞ ¼ Eþ þ
�
~z
h

�n�
E� � Eþ

�
(2-a)

rð~zÞ ¼ rþ þ
�
~z
h

�n�
r� � rþ

�
(2-b)

cð~zÞ ¼ cþ þ
�
~z
h

�n�
c� � cþ

�
(2-c)

where E is the modulus of elasticity, r is the density of nano-beam
and c ¼ 1/ε, in which the parameter ε is the relative permittivity of
dielectric (finite conductive) medium and the gradient index n
determines the type of the variation of the properties along the
Fig. 2. Distribution of the volume fraction of finite conductive constitue
thickness. Fig. 2 details the variation of Vþ (volume fraction of finite
conductive constituent) through-the-thickness for different values
of gradient power n.
2.1. Surface stresses

To model the surface energy, the nano-bridge is divided into
three laminated layers, including two surface layers and a core
(bulk) layer. The modulus of elasticity for the surface layer is rep-
resented by E0 which can be determined from atomistic calcula-
tions. It is assumed that there is no residual stress in the bulk FGM
due to surface tension; so the corresponding bulk stressestrain
relations of the beam can be expressed as:

sxx ¼ Eð~zÞεxx þ vszz (3)

where v is the Poisson's ratio of nano-beam. In classical theory, the
stress component szz is assumed to be equal to zero. However,
when the surface stress is taken in to consideration, the equilibrium
relation will not be satisfied with this assumption. In this case, the
stress component szz is expressed as follows [35]:

szz ¼ 1
2

�
sþzz þ s�zz

�
þ z
h

�
sþzz � s�zz

�
(4)

where sþzz and s�zz are stresses at the top and bottom surface layers,
respectively. The stresses of the surface layer satisfy the following
equilibrium relation [36]:
nt (Vþ) through the thickness for different gradient index n values.
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szz ¼1
"�

tþ � t�0
� v2w!�

�
rþ � r�0

� v2w!#

2 0 vx2 0 vt2

þ z
h

"�
tþ0 þ t�0

� v2w
vx2

!
�
�
rþ0 þ r�0

� v2w
vt2

!# (5)

Moreover, the constitutive equations for the surface layers
developed by Gurtin and Murdoch [19] are written as:

txx ¼ t0 þ E0
vu
vx

; tzx ¼ t0
vw
vx

(6)

where txx and tzx are non-zero membrane stresses exist on the
contact surfaces between the FG bulk material and surface layers.
The stresses of the surface layers must satisfy the following equi-
librium relations:

�
vtbi
vb

�þ
¼ sþiz þ rþ0

 
v2ui
vt2

!þ
(7-a)

�
vtbi
vb

��
¼ s�iz þ r�0

 
v2ui
vt2

!�
(7-b)

where b ¼ x, y and i ¼ x, y, z, uþi ¼ uiðz ¼ h=2Þ and
u�i ¼ uiðz ¼ �h=2Þ denote the displacement of surface layers in the
i-direction.
2.2. Eringen nonlocal elasticity

In the classical theory, the stress at a point is related to the strain
at the same point while in the Eringen's non-local elasticity theory
[26], the stress at a point is a function of strains at all points of the
body. The relation between the non-local stress tensor and the
strain tensor is written as:

sijðxÞ ¼
Z
V

aðjx0 � xj; tÞCijklðx0Þεklðx0ÞdVðx0Þ (8-a)

εij ¼
1
2
�
ui;j þ uj;i

�
(8-b)

where a(jx0�xj, t) is the nonlocal kernel function (nonlocal
modulus) which gives the long range interactions specifying the
nonlocal effects at a reference point x produced by the local
strain at the source x′ [37], jx0�xj is the Euclidean distance,
Cijkl(x) is the elastic modulus tensor, εij(x) is the strain tensor, ui
is the displacement vector, t ¼ e0a/l is the material constant
where e0 and a represent the nonlocal effects depend on the
material and an internal characteristic length nanoscale. When
the internal characteristic length is negligible compared to
external characteristic length, t approaches to zero and hence
nonlocal elasticity theory reduces to classical elasticity theory.
Eringen [26] assumed that the nonlocal modulus a can be
expressed as a Green's function of a linear differential operator
as follows:

Laðjx0 � xj; tÞ ¼ dðx0 � xÞ (9)

It is demonstrated that by applying the linear operator
L ¼ (1�t2l2V2) on the integral constitutive equation (9), it is
simplified to the following partial differential equation namely the
nonlocal constitutive formulation:
�
1� t2l2V2

�
sij ¼ Cijklεkl (10)

where V2 ¼ v2=vx2 is the Laplacian operator for the beam type
structures. As mentioned earlier, the properties of functionally
graded materials vary along the thickness of the body. Hence, for a
nonlocal FG beam, Eq. (10) can be written as:

sxx � e20a
2v

2sxx

vx2
¼
�
Eþ þ

�
~z
h

�n�
E� � Eþ

��
εxx (11)

By assuming the identical nonlocal parameter for both FG ma-
terial and surface layer, the non-local constitutive relations for the
nano-scale beams can be written as follows [38]:�
1� e20a

2V2
�
Mnl ¼ M (12)

�
1� e20a

2V2
�
tnlxx ¼ txx (13)

�
1� e20a

2V2
�
tnlzx ¼ tzx (14)

where the superscript “nl” denotes the nonlocal parameters.

2.3. Finite conductivity

The transverse load per unite length of the nanobeam q(x,t)
includes the electrostatic actuation Fe(x,t) and Casimir attraction
FC(x,t) from the lower and upper plates.

2.3.1. Coulomb force correction
The Coulomb force between parallel perfect conductive surfaces

can be obtained from capacitive model. In the case of dielectric
(finite conductive) interacting surfaces, the gap should be replaced
with effective gap [39]. Considering the fringing field correction,
the distributed electrostatic force from lower and upper plates can
be expressed as:

Fes;1 ¼ bε0V2
1

2ðg1 �wÞ2
�
1þ 0:65

g1 �w
b

�
(15-a)

Fe;2 ¼ � bε0V2
2

2ðg2 þwÞ2
�
1þ 0:65

g2 þw
b

�
(15-b)

where ε0 ¼ 8.854 � 10�12 C2 N�1 m�2 represent permittivity of
vacuum. In above relation, the effective gap gi which accounts for
the dielectric characteristics of FGM is written as:

g2 ¼ g2 þ
Zh
0

crdz ¼ g2 þ
h
ε
rþ
� n
nþ 1

�
(16)

and ε
rþ is the relative permittivity of finite conductive layer

2.3.2. Casimir force correction
As mentioned earlier, if the initial gap between the rigid

plate and the electrode is on the order of several 10 nm, the
Casimir forces exerted from the lower and upper substrates
should be taken into account. Previous researchers analyzed the
Casimir attraction between mirrors with arbitrary frequency-
dependent reflectivity and found that it is always smaller
than that between perfect conductive reflectors [40]. For more
precise modeling of Casimir force in FGM structures one might
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use the following second order corrected equations that
consider the finite conductivity of the material in the theoret-
ical model [41]:

FC;1ðx; tÞ ¼
p2Zbc

240ðg1 �wÞ4
(17-a)

FC;2ðx; tÞ ¼ � p2Zbc

240ðg2 þwÞ4
"
1� 16c

3upðg2 þwÞ þ
24c2

u2
pðg2 þwÞ2

#

(17-b)

where Z ¼ 1.055 � 10�34 is the Planck's constant divided by 2p and
ð1� e20a

2v2=vx2Þ m/s is the speed of light [25]. In the above equa-
tion, up is the plasma frequency which is proportional to the
effective free-electron density in the material [42].

Thereby, the contribution of the two plates can be introduced by
an effective distributed loading Fe and FC as:

Fe ¼ Fe;1 þ Fe;2 ¼ bε0V2
1

2ðg1 �wÞ2
�
1þ 0:65

g1 �w
b

�

� bε0V2
2

2ðg2 þwÞ2
�
1þ 0:65

g2 þw
b

� (18-a)

FC ¼ FC;1 þ FC;2 ¼ p2Zbc

240ðg1 �wÞ4
� p2Zbc

240ðg2 þwÞ4

�
"
1� 16c

3upðg2 þwÞ þ
24c2

u2
pðg2 þwÞ2

# (18-b)
2.4. Governing equation of motion

In this section, the governing equation for size-dependent
vibration of electro-statically actuated nano-bridges made of
functionally graded materials in the presence of surface effects
and Casimir forces is developed. Based on EulereBernoulli
beam theory, the displacement field can be expressed as
follows:

uðx; z; tÞ ¼ �zqðx; tÞ ¼ �z
vw
vx

w ¼ wðx; tÞ
(19)

The strain of a material point located at a distance z from the top
plane for the nano-beam is represented as:

εxx ¼ vu
vx

¼ �z
v2w
vx2

(20)

Based on the surface elasticity theory, the strain energy in the
surface layer with zero thickness can be expressed as [43]:

Us ¼ 1
2

Z l
0

Z
S

�
tabεab þ tkauk;a

�
dSdx; (21)

in which a, b denote the in-plane Cartesian coordination of the
surface and k is the out-plane Cartesian coordination of the surface.
Substituting equation (6) in equation (21) results in:
Us ¼ 1
2

Z Z �
t0 þ E0

vu
vx

�
εxx þ t0

�
vw
vx

�2
dSdx
l

0 S

" #

¼ 1
2

Z l
0

Z
Sþ

"
�
 
tþ0 � Eþ0 z

v2w
vx2

!
z
v2w
vx2

þ tþ0

�
vw
vx

�2
#
dSþdx

þ 1
2

Z l
0

Z
S�

"
�
 
t�0 � E�0 z

v2w
vx2

!
z
v2w
vx2

þ t�0

�
vw
vx

�2
#
dS�dx

(22)

Simplifying the surface energy described in (22) yields:

Us ¼1
2

Z l
0

2
4�tþ0 þt�0

�
S*0

�
vw
vx

�2

þ
�
Eþ0 þE�0

�
I*0

 
v2w
vx2

!2
3
5dx (23)

where for rectangular cross section I*0 ¼ R
S�

z2dS� ¼
R
Sþ

z2dSþ ¼ bh2=4þ h3=12 and S*0 ¼ R
S�

dS� ¼ R
Sþ

dSþ ¼ b. Moreover,

the virtual work W performed by the axial, electrical, Casimir and
damping forces incorporating the von-Karman type nonlinear
strain can be written as [44]:

W ¼� 1
2

Z l
0

0
B@N0 þ

ðEAÞeq
2L

Z l
0

�
vw
vx

�2
dx

1
CA�vw

vx

�2
dx

þ
Z l
0

ðFe þ FC þ FdÞwdx

(24)

where Fd ¼ �cvw/vt is the damping force (EA)eqis the equivalent
axial rigidity of FGM nano-beam which can be represented as:

ðEAÞeq¼
Zh
0

�
Eþþ

�
~z
h

�n�
E��Eþ

�	
bd~z¼

�
1þEmc�1

nþ1

�
bhEþ (25)

In which the non-dimensional parameters Emc denotes the ratio
of elastic modulus of the two FGM phases. The kinetic energies for
the FG bulk material and surface layer are obtained as follows:

T ¼1
2

Z l
0

Z
A

rðzÞ
�
vw
vt

�2
dAdxþ 1

2

Z l
0

Z
Sþ

rþ0

�
vw
vt
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dSþdx

þ 1
2
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0

Z
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r�0

�
vw
vt

�2

dS�dx ¼ 1
2

�
ðrAÞeq

þ
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rþ0 þ r�0

�
S*0
�Z l

0

�
vw
vt
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dx

(26)

where Zh�
þ

�
~z
�n�

� þ
�	 �

rmc�1
�

þ
ðrAÞeq¼
0

r þ
h

r �r bd~z¼ 1þ
nþ1

bhr (27)

in the aforementioned equation, rmc is the ratio of density of the
two FGM phases. The first variation of the strain energy is obtained
as [45,46]:

dUb ¼
Z l
0

Z
A

sijdεijdAdx (28)
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where A is the area of the cross-section of the nano-beam.
Substituting Eq. (20) into Eq. (28), the variation of strain energy
can be obtained as:

dUb ¼ �
Z l
0

Z
A

zsxx
v2dw
vx2

dAdx ¼
Z l
0

Mðx; tÞ
 
v2dw
vx2

!
dx (29)

inwhichMðx; tÞ ¼ � R
A
sxxzdA is the local resultant bendingmoment

of the nano-beam. Applying the Hamilton's principle results into:

Zt2
t1

ðdT � ½dUb þ dUs� þ dWÞdt ¼ 0 (30)

After some mathematical computations, the nonlinear govern-
ing equation of motion is expressed as follows:

v2M
vx2

¼ �
�
ðrAÞeq þ

�
rþ0 þ r�0

�
S*0
� v2w
vt2

�
�
Eþ0 þ E�0

�
I*0
v4w
vx4

þ
�
tþ0 þ t�0

�
S*0
v2w
vx2

þ

0
B@N0 þ

ðEAÞeq
2L

Z l
0

�
vw
vx

�2

dx

1
CA v2w

vx2

þ Fe þ FC � c
vw
vt

(31)

The corresponding boundary conditions at the ends of the nano-
bridge require:

x ¼ 0; l : w ¼ 0;
vw
vx

¼ 0 (32)

Using the relation of the normal stress described in equations
(3) and (6), the local resultant bending moment of the nano-beam
is expressed as:
Mðx; tÞ ¼ �
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in which
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0

z2
�
Eþ þ

�
~z
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~zðnÞ ¼ 12E2mc þ
�
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ðnþ EmcÞðnþ 3Þðnþ 2Þ2
(35)

Assuming tnlxx ¼ txx, tnlzx ¼ tzx [27] and substituting equations
(31) and (33) into equation (12), results in the explicit expression
for the nonlocal bending moment Mnl as follows:

Mnl ¼ ðEIÞeq
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(36)

The governingequation ofmotion for thenon-local nano-bridges
can be obtained by inserting equation (36) into equation (31):
2

!#(
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�
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By assuming the same initial gaps from the bottom and top
plates and introducing the following non-dimensional variables:

W ¼ w
g
; x ¼ x

l
; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþh2

12rþl4

s
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12
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V
2
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2
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�
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(38)

the non-dimensional equation of motion for FGM nonlocal nano-
beam vibration incorporating surface effects and dispersion forces
can be written as:
�
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(39)
with the following boundary conditions:

Wð0; tÞ ¼ W 0ð0; tÞ ¼ Wð1; tÞ ¼ W 0ð1; tÞ ¼ 0 (40)
Mij ¼ ð~rðnÞ þ k2Þ
Z1
0

4i4jdxþ ½k1 � ε0ð~rðnÞ þ k2Þ�
Z1
0

4i4
00
j dx
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nþ 3
þ s1

!Z1
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4i4
ðivÞ
j dx� ðf0 þ s2Þ

Z1
0

4i4
00
j dxþ ε0f0

Z1
0

4i4
ðivÞ
j dx
3. Numerical analysis

In order to numerically study the dynamic behavior of FGM
nano-bridge, the governing equation of motion (39) should be in-
tegrated over the time domain. For this purpose, in each time step
of integration, the nonlinear terms on the right hand side of
equation (39) are considered as a function of the values in the
previous step [47]. If the time steps are selected small enough,
accurate enough results is achieved. The reduced order models
eliminate the spatial dependence in the PDEs using the Galerkin-
based methods [48]. To this end, the displacements are expressed
as a linear combination of independent basis functions. The basis
set must satisfy the boundary conditions. By defining the orthog-
onality condition of the residue to every basis function, the second-
order time-dependent ODEs in terms of the generalized co-
ordinates (associated with the basis functions) can be obtained.

To obtain a Reduced-Order-Model (ROM), the non-dimensional

deformation can be assumed as Wðx; tÞ ¼PN
j¼1TjðtÞfjðxÞ, where N

denotes the number of considered modes and fj(x) is the jth mode
shape of nano-bridge which can be written as:

fjðxÞ ¼ cosh
�
ljx
�� cos

�
ljx
�� cosh

�
lj
�� cos

�
lj
�

sinh
�
lj
�� sinh

�
lj
� �sinh�ljx�

� sinh
�
ljx
��

(41)

in which lj is the root of characteristic equation for jth eigenmode.
By substituting equation (31) into equation (39), multiplying by
fj(x) and integrating from x ¼ 0 to mmc, the Reduced-Order-Model
based on the BubnoveGalerkin decomposition procedure [48] can
be expressed as:
XN
j¼1

Mij
€TijðtÞ þ

XN
j¼1

KijTijðtÞ ¼ Fi (42)

in which
where Fi describes the nonlinear terms. By integrating equation
(42) over the time domain, the dynamic behavior of the system can
be simulated.
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4. Results and discussion

4.1. Validation of the present analysis

In order to validate the present numerical analysis, the values of
dynamic pull-in voltage for the system, calculated by different
methods, are presented in Table 1 using an example of 300 mm long,
Table 1
A comparison between dynamic pull-in voltages calculated by different methods.

Method Present
analysis

Three modes
assumption

Reduced order
model, three
modes [49]

Finite
difference
[49]

Vpid 41.73 41.85 41.68 41.61
20 mm wide and 2 mm thick double clamped beam with the initial
gap g0 ¼ 2 mm. The beam is assumed to be made of single crystal
silicon with Young modulus E ¼ 169 GPa and Poisson's ratio
v ¼ 0.28 [49]. Since the width of the beam is much larger than its
thickness, the Young modulus E is replaced by ~E ¼ E=ð1� v2Þ. It is
obvious that the values of computed dynamic pull-in voltage (Vpid)
agrees well with those reported in the literature by using the
reduced order model (ROM) with three modes and finite difference
method [49]. Another comparison with experimental and theo-
retical results in the literature is performed using 100 mmwide and
1.5 mm thick micro-beams with initial gap of 1.18 mm. The effective
Young's modulus for the micro-beamsmaterial is ~E ¼ 166 GPa with
a residual axial load Ni ¼ 0.0009 N representative of pre-tensioned
micro-beams [50]. Table 2 presents the calculated and empirical



Table 2
Comparison between fundamental frequencies of micro-beams calculated by different methods.

Beam length (mm) D.C. voltage (V) u/2p (kHz)

Present analysis Measured [50] Calculated [50] Calculated [51] HAM [52]

210 6.0 324.71 322.05 324.70 324.70 324.78
310 3.0 163.96 163.22 164.35 163.46 163.16
410 3.0 103.74 102.17 103.80 103.70 103.42
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fundamental frequencies for vibrating pre-tensioned micro-
bridges. This table reveals that the results of present model are in
excellent agreement with the numerical and experimental results
presented in the literature.

As another comparison, the dynamic pull-in voltage of a double-
clamped silicon beam is considered. The geometrical properties of
the beam is L ¼ 1000 mm, b ¼ 30 mm, b ¼ 2.4 mm and g0 ¼ 10.1 mm.
Thematerial properties of the beam is r¼ 2231 kg/m3, E¼ 97.5 GPa
and y¼ 0.26 GPa. The obtained results togetherwith those reported
in literature [53,54] are tabulated in Table 3. Krylov et al. [53]
measured the pull-in voltage of the micro-beam (experimentally)
as 100 V. On the other hand, Das and Batra [54] also determined the
pull-in voltage of this beam based on the finite element analysis.
They reported that the pull-in voltage of the microbeam is between
99 V and 100 V. As can be observed in Table 3, good agreement
between the present method and those of literature is achieved.

To verify the results of the present analysis to predict the dy-
namic pull-in voltage for small-scale FGM beams, another com-
parison are conducted. The considered small-scale beam has the
geometric and material properties as listed in Tables 4 and 5. The
dynamic pull-in voltages of the micro-beam for different values of
the power law exponent n are listed in Table 6. As can be seen, the
obtained results are in a good agreement with those reported in
Ref. [55]. On the other hand, one can observe that due to increasing
Table 3
A comparison between dynamic pull-in voltages of typical microbeam.

Method Present modeling Experiment [53] Finite difference [54]

Vpid 98 100 99e100

Table 4
Material properties of FGM micro-beam.

Parameter Length Width Thickness Initial gap

Value 500 mm 100 mm 90 mm 2 mm

Table 5
Geometrical properties of FGM micro-beam.

Parameter Value

Ceramic Meta

Material type Alumina (Al2O3) Aluminum (Al)
Young's modulus (E) 390 GPa 70 GPa
Poisson's ratio (v) 0.22 0.228
Mass density (r) 3960 kg/m3 2700 kg/m3

Table 6
Dynamic pull-in voltage versus the gradient index n.

Gradient index n n ¼ 5 n ¼ 10 n ¼ 20 n ¼ 80

Ref. [55] 93 100 104 108
Present analysis 93.78 100.41 104.03 108
in equivalent stiffness of the FGMmicro-beam, the dynamic pull-in
voltage is increased by increasing the value of gradient power n.

4.2. Dynamic stability analysis

As the step DC voltage is applied on the nano-bridge, any in-
crease in the actuation voltage leads to increase in the dynamic
deflection until pull-in phenomenon occurs and the mid-point of
nano-bridge adheres the substrate. This critical value of the applied
voltage is known as dynamic pull-in voltage.

Fig. 3aee represent the dynamic motion trajectories of the
nano-bridge for different values of the actuation voltages V1 and V2,
damping coefficient C and Casimir parameter lC, with different
initial conditions. As indicated in Fig. 3a, when there is no applied
voltage (V1 ¼ V2 ¼ 0) and for micro gaps (lC ¼ 0), there exists only
one stable center equilibrium position at zero (W ¼ 0); for any
initial condition, there is a limit cycle around the stable center
point. However, it can be observed from Fig. 3b that in the presence
of Casimir attraction (lC s 0), the first fixed point is a stable center
and the second is an unstable saddle node. There exists a homo-
clinic orbit which starts from the unstable branch and goes back to
the saddle node at the stable one. According to Fig. 3c, for double-
side actuated nano-bridges and when there are no corrections in
the governing equation, the phase portrait of the system has two
saddle nodes and one stable center point. According to the prop-
erties of the stable node and the saddle point, there exist two
heteroclinic orbits which depart from the unstable branch of one
saddle point and arrive at the stable branch of the other one. The
influence of damping parameter C on the dynamic behavior of
vibrating nano-bridge is illustrated in Fig. 3d. The obtained results
show that the stable center equilibrium point becomes a stable
focus point when the damping parameter is taken into account. It
can be concluded that the nano-bridge makes convergent oscilla-
tions near the focus point because of the damping, and shows pe-
riodic oscillations if the damping is neglected. Asmentioned earlier,
in this paper some modifications are considered in the governing
equation. In order to demonstrate the effect of corrections on the
dynamic behavior of the system, the phase portrait for
V1 ¼ V2 ¼ 7.5, fu ¼ 0.05 is plotted in Fig. 3e. As seen, the heteroclinic
orbits vanish and the homoclinic orbit appears in the phase portrait
of the nano-structure. Fig. 3f illustrates the trajectory of the nano-
bridge when the non-dimensional actuation parameters V1 and V2
increase to dynamic pull-in ones (Vpid ¼ 11.995). In this state, the
nano-structure becomes dynamically unstable for any initial con-
ditions. There is no heteroclinic orbits and the physically center
point coalesces with the saddle nodes.

4.3. Effect of nonlocal parameter

Tables 3 and 4 report the effect of nonlocal parameter (ε0) on the
dynamic pull-in voltage (Vpid,1) of the nano-bridge for various
values of the gradient index and the Casimir parameter lC. The
obtained results revealed that the nonlocal parameter induces a
softening behavior i.e. the dynamic pull-in voltage of nano-bridge
decreases with increasing the nonlocal parameter.



Fig. 3. Phase portraits of FGM nano-bridge for different initial conditions: (a) lC ¼ 0, V1 ¼ 0, V2 ¼ 0 (b) lC ¼ 10, V1 ¼ 0, V2 ¼ 0 (c) lC ¼ 10, V1 ¼ 0, V2 ¼ 0 (d) lC ¼ 10, V1 ¼ 0, V2 ¼ 0,
C ¼ 2 (e) lC ¼ 10, V1 ¼ 7.5, V2 ¼ 7.5, fu ¼ 0.05 (f) lC ¼ 10, Vpid,1 ¼ 11.995, Vpid,2 ¼ 11.995.
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The values of the system parameters used in Table 7 are lC ¼ 10,
f0 ¼ 1, Emc ¼ 1.5, s1 ¼ �0.2, s2 ¼ 5, V2 ¼ 0, k2 ¼ 0.4. It is observed
from this table that the dynamic pull-in voltage decreases by
Table 7
Effects of gradient index n and nonlocal parameter on the dynamic pull-in voltage.

Nonlocal parameter (ε0) Dynamic pull-in voltage (Vpid,1)

n ¼ 1 n ¼ 10 n ¼ 20 n ¼ 50 n ¼ 100

0 7.9658 7.4554 7.3309 7.2234 7.1772
0.1 7.8162 7.2995 7.1767 7.0697 7.0258
0.2 7.4432 6.9094 6.7904 6.6880 6.6464
0.3 6.9826 6.4236 6.3085 6.2113 6.1721
0.4 6.5301 5.9383 5.8261 5.7335 5.6964
increasing the nonlocal parameter ε0. Moreover, the dynamic pull-
in value decreases by increasing the gradient index n for Emc > 1.

The impacts of nonlocal parameter on the instability behavior of
the nano-bridges are tabulated in Table 8 for different values of
Table 8
Effects of Casimir force and nonlocal parameter on the dynamic pull-in voltage.

Casimir parameter (lC) Dynamic pull-in voltage (Vpid,1)

ε0 ¼ 0 ε0 ¼ 0.1 ε0 ¼ 0.2 ε0 ¼ 0.3 ε0 ¼ 0.4

0 9.1468 9.0669 8.8764 8.6621 8.4772
10 8.0749 7.9189 7.5278 7.0416 6.5608
20 7.1832 6.9567 6.3716 5.5849 4.7003
30 6.3605 6.0643 5.2685 4.1058 2.5241



Fig. 4. Nondimensional gap versus the applied voltage of the lower plate for various values of nonlocal parameter and n ¼ 1, Emc ¼ 1.5, f0 ¼ 1, fu ¼ 0.05, s1 ¼ 0.2.
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Casimir force. For micro-scale gap, the Coulomb force is dominant
and dispersion forces might be neglected due to the large distance
between the nano-bridge and the ground. However, if the distance
between the moveable electrode and the ground is of the order of
sub-micron, the presence of Casimir force should be taken into
consideration. It appears from the obtained results that any in-
crease in the Casimir force results in a significant decrease in the
dynamic pull-in voltage. Moreover, Table 8 implies that effect of
Casimir force is more pronounce for higher values of nonlocal
parameters.

Fig. 4 reports the non-dimensional gap (1�W) versus the
voltage of the lower plate for different values of the nonlocal
parameter ε0. According to Fig. 4, it is clear that at the given value
for DC voltage, the maximum deflection W of the system increases
by increasing the nonlocal parameter. Furthermore, by increasing
the nonlocal parameter, the mid-point of the nano-bridge deflects
to the bottom substrate at lower values of applied voltage V1. This
means that the dynamic pull-in phenomenon occurs at lower
values of actuation voltage V1 as the size-effect parameter
ε0 increases.
4.4. Effect of surface layer

The influences of the surface stress and actuation voltage V2 on
the dynamic pull-in value of nonlocal FGM nano-bridge for ε0 ¼ 0.1
are listed in Table 9. One can observe that, any increase in the
applied voltage of the upper electrode V2 leads to a stabilizing effect
i.e. increase in the dynamic pull-in voltage applied by the lower
electrode. Furthermore, it is concluded from the reported results
that the pull-in voltage decreases by decreasing the surface stress
parameters2.
Table 9
Effects of surface stress effect and the upper voltage V2 on the dynamic pull-in
voltage.

Applied voltage (V2) Dynamic pull-in voltage (Vpid,1)

s2 ¼ 5 s2 ¼ 0 s2 ¼ �5

0 7.8162 7.7484 7.6798
2 7.9189 7.8519 7.7845
4 8.2253 8.1613 8.0968
6 8.7337 8.6746 8.6148
It can be seen from Eq. (39) that the non-dimensional parameter
s1 which stands for the surface elastic modulus E0 can affect the
dynamic behavior of the nano-structure. Fig. 5 reports the non-
dimensional gap versus the voltage of the lower plate for
different values of the surface effect parameter s1. Fig. 5 shows the
non-dimensional gap versus the applied voltage of the lower
electrode under different values of s1. It can be seen that any in-
crease in the s1 can decrease the pull-in voltage of the structure.

To investigate the influence of surface layer on the pull-in time
of nano-bridge, the time history of FGM nano-beam at the corre-
sponding dynamic pull-in voltages for several values of non-
dimensional parameter s1 is illustrated in Fig. 6. According to the
reported results, it is concluded that by increasing the surface effect
parameter s1, the pull-in time decreases. Moreover, by increasing
the parameter s1, the pull-in happens at larger values of mid-point
deflection of the nano-bridge.
4.5. Effect of finite conductivity

Previous experimental measurements by the rotational NEMS
devices imply the importance of the finite conductivity correction
in simulating the NEMS fabricated from finite-conductive and non-
metallic materials [42,56]. It is reported that without considering
the finite conductivity, the experimental data are in disagreement
with the ideal metal Casimir force whereas the inclusion of the
finite conductivity correction leads to excellent agreement between
the data and theory [42,56]. Indeed, the finite conductivity of the
constitutive material reduces the Casimir force.

To investigate the influence of modifications due to finite con-
ductivity of FG materials on the instability of the FGM nano-bridge,
the dynamic pull-in voltage as a function of small-size parameter
(ε0) is plotted in Fig. 7. One can observe that the dynamic pull-in
value decreases by increasing the non-local parameter until the
critical point which the flexible electrode collapses onto the rigid
electrode without any applied actuation. According to the illus-
trated results, it is concluded that if the Coulomb force correction is
taken into account, the pull-in voltage shifts upward. The differ-
ences between the predicted values of pull-in voltages are very
significant at lower values of nonlocal parameter. Similarly, incor-
porating the Casimir force correction results in lower values of pull-
in voltage due to the lower strength of Casimir attraction. It is also
inferred that for high values of nonlocal parameter, the effect of



Fig. 5. Nondimensional gap versus the applied voltage of the lower plate for various values of surface elasticity parameter and ε0 ¼ 0, n ¼ 1, Emc ¼ 1.5, f0 ¼ 1, k2 ¼ 0.4, s2 ¼ 5.
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Casimir force correction on the instability is more significant in
comparison with the Coulomb force correction.

For better understanding the importance of finite conductivity,
the dynamic stability of freestanding nanobridge is investigated. A
NEMS device might adhere to its substrate due to Casimir force
(evenwithout an applied voltage), if theminimum gap between the
electrode and substrate is not considered. Besides interfering with
the stability of freestanding nanostructures, the Casimir force can
also induce undesired adhesion during the fabrication stages. The
maximum permissible length of the nanowire Lmax, which is
required to prevent stiction, is called the detachment length
[57,58]. For a given gap value, if the length of the nanowire exceeds
Lmax, then the movable electrode sticks to the ground. Thus, the
maximum length is very important in design and fabrication of the
nanostructure. By substituting the critical value of lc into the
definition of lc (Eq. (38)), the Lmax can be determined. As a case
study, Fig. 8a shows the variation of Lmax as a function of initial gap
and thickness for typical gold (Au) beam. As seen, this finding re-
veals that Casimir force can substantially affect the stability of
freestanding nano-bridge in sub-micron scales. One can observe
that if the finite conductivity is taken into consideration, the
detachment length increases because of the reduction of Casimir
force. It should be noted that if the nano-beam length is greater
than the detachment length, any undesirable disturbance in the
fabrication process results in the instability of the structure even in
Fig. 6. History of vibrating FGM nano-bridge for different values of s1 at corresponding dyn
the absence of any actuation voltages. The influence of non-local
parameter on the instability of freestanding double-side nano-
bridges is also investigated in Fig. 8b by plotting the variation of
Lmax as a function beam thickness. According to the illustrated re-
sults, it is concluded that Lmax decreases by increasing the non-local
parameter and the thickness of the nano-bridge will increase the
detachment length of the system.
4.6. Effect of material composition

Fig. 9 illustrates the dimensionless gap versus the voltage of the
lower plate for different values of gradient index n. From Fig. 9, one
can observe that when the gradient index n increases, the dynamic
pull-in voltage decreases and pull-in instability happens at lower
values of applied voltage V1.

Fig. 10 shows the impact of material properties on the dynamic
pull-in voltage of the considered nonlocal nano-bridge using
different values of non-dimensional parameter Emc by varying the
gradient index n. It appears from the illustrated results that for
Emc > 1, the dynamic pull-in voltage decreases by increasing the
gradient power index. On the other hand, if Emc < 1, the instability
voltage decreases by increase in gradient index. This figure also
shows that if the power n approaches to infinity, the values of pull-
in voltages tend toward to the pull-in voltage of isotropic material
with Emc ¼ 1.
amic pull-in voltage for lC ¼ 10, ε0 ¼ 0.1, n ¼ 1, Emc ¼ 0.1, f0 ¼ 1, k2 ¼ 0.4, s2 ¼ 5, V2 ¼ 0.



Fig. 7. Effect of finite conductivity correction on the dynamic pull-in voltage vs. nonlocal parameter.
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4.7. Bifurcation analysis

In this section, the stability analysis of the nano-beam is
investigated. To this end, the governing integro-partial differential
Fig. 8. Variation of the detachment length, Lmax of freestanding double-side nano-bridge fo
parameter.
equation (39) for FGM actuated nano-bridge has been reduced to a
single-degree of freedom (SDOF) model using BubnoveGalerkin
based reduced order model (ROM). Thereby, the response of the
non-linear system is assumed to be in the form:
r various initial gap and thickness (a) effect of finite conductivity (b) effect of nonlocal



Fig. 9. Nondimensional gap versus the applied voltage of the lower plate for various values of gradient power and ε0 ¼ 0, Emc ¼ 1.5, fu ¼ 0.05.
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Wðx; tÞ ¼ q1ðtÞf1ðxÞ (43b)

where f1(x) is the first mode shape of double-clamped nano-beam
and q1ðtÞ is the time-dependent function that serves as the
generalized temporal coordinate of SDOF model. After some com-
putations, the governing equation (39) is reduced to:

M€TðtÞ þ KTðtÞ ¼ FðTðtÞÞ (44)

By setting TðtÞ ¼ q1; dTðtÞ=dt ¼ q2, the ordinary differential
equation (44) can be transformed into the following state-space
form:

dq1
dt

¼ q2

dq2
dt

¼ �K
M

q1 � Fðq1; q2Þ
(45)

Thereby, the equilibrium points of the system can be obtained
by setting the left-hand sides of equation (45) equal to zero. In
order to construct the bifurcation diagram, the positions of the
equilibrium points versus the actuation voltage as a control
Fig. 10. Dynamic pull-in voltage vs. gradient index n and the parameter Emc in
parameter must be plotted. On the other hand, in order to inves-
tigate the stability of the fixed-points, the following Jacobian ma-
trix is used:

J ¼
2
4 0 1

�K
M

� vFðq1; q2Þ
vq1

0

3
5 (46)

if l denotes the eigenvalue of the Jacobian matrix, for l2 < 0, the
system has two pure imaginary roots, which means that the equi-
librium point is a stable center point; whereas, for l2 > 0, the eigen-
values are real and have opposite signs, hence the fixed point is an
unstable saddle node. In Fig. 11, solid and dashed curves represent
the stable and unstable fixed points, respectively. As illustrated in
Fig. 11, for V < Vpid there exist two fixed points. The first equilibrium
point is stable center and the other one is an unstable saddle node.
Moreover, it is inferred that by increasing the actuation voltage, the
distance between two fixed points decreases and for a critical
voltage namely the “pull-in value”, they coalesce in a saddle node
bifurcation.

To examine the effect of double-side actuation on the dynamics
of the considered nano-structure, the bifurcation diagram for the
the absence of surface effect for lC ¼ 10, f0 ¼ 1, g ¼ 0.195, ε0 ¼ 0.1, V2 ¼ 0.



Fig. 11. Bifurcation diagram for nano-bridge under one-side actuation.
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identical applied voltages (V1 ¼ V2 ¼ V) is shown in Fig. 12. One can
observe that the pull-in instability is the subcritical pitchfork
bifurcation, two unstable equilibria exist along with the stable
center point for V < Vpid and no stable equilibrium exists for the
voltages higher than the pull-in value. In other words, the origin is
stable for V < Vpid and unstable for V > Vpid.

Finally, the influence of the Casimir parameter lC on the dy-
namic stability of double-sided actuated nano-beams is studied in
Fig. 13. It is concluded that by increasing the Casimir parameter, the
distance between the unstable saddle nodes decreases and the
bifurcation point happens at lower values of applied voltage.

5. Concluding remarks

Herein, the nonlocal elasticity was employed to study the dy-
namic stability of double-sided asymmetric NEMS FGM bridges
incorporating the effects of surface energy and finite conductivity
of FGM. It was observed that:

1- The pull-in voltage increases by increasing the surface stress
parameter. On the other hand, increasing the elastic modulus
of surface layer, can increase or decrease the pull-in voltage
Fig. 12. Bifurcation diagram for nano-b
depending on the sign of the elastic modulus of the surface
layer.

2- The impact of finite conductivity of FG materials on the
instability of nano-bridges was investigated by considering
corrected Coulomb and Casimir force corrections. It is found
that neglecting the finite conductivity of FGM leads to un-
derestimate the computed pull-in voltage and maximum
length of the freestanding nano-bridge.

3- The obtained results revealed that the nonlocal parameter
induces a softening behavior i.e. the dynamic pull-in voltage
of nano-bridge decreases with increasing the nonlocal
parameter. Moreover, effect of Casimir force becomes more
pronounce by increasing the nonlocal parameter value.

4- Freestanding micro-bridge (no Coulomb and Casimir forces)
exhibits periodic motion around the stable center point. For
single-side actuated nano-bridge under Casimir attraction,
an unstable saddle node appears in the phase plane and
there exists a homoclinic orbit which starts from the unsta-
ble branch and turns back to it at the stable one. For double-
sided actuated nano-bridge, when the considered model was
modified, the heteroclinic orbits vanished and the homo-
clinic orbit appeared in the phase portrait of the nano-
ridge under double-side actuation.



Fig. 13. Bifurcation diagram of nano-bridge under double-side actuation for different values of Casimir parameter lC .
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structure. When the actuation voltage exceeds dynamic pull-
in value, there is no heteroclinic orbits and the physically
center point coalesces with the saddle points.
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