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 Background: Time to donating blood plays a major role in a regular donor to becoming 
continues one. The aim of this study was to determine the effective factors on the interval 
between the blood donations.  

Methods: In a longitudinal study in 2008, 864 samples of first-time donors in Shahrekord Blood 
Transfusion Center,  capital city of Chaharmahal and Bakhtiari Province, Iran were selected by a 
systematic sampling and were followed up for five years. Among these samples, a subset of 424 
donors who had at least two successful blood donations were chosen for this study and the time 
intervals between their donations were measured as response variable. Sex, body weight, age, 
marital status, education, stay and job were recorded as independent variables. Data analysis 
was performed based on log-normal hazard model with gamma correlated frailty. In this model, 
the frailties are sum of two independent components assumed a gamma distribution. The 
analysis was done via Bayesian approach using Markov Chain Monte Carlo algorithm by 
OpenBUGS. Convergence was checked via Gelman-Rubin criteria using BOA program in R. 

Results: Age, job and education were significant on chance to donate blood (P<0.05). The 
chances of blood donation for the higher-aged donors, clericals, workers, free job, students and 
educated donors were higher and in return, time intervals between their blood donations were 
shorter. 

Conclusions: Due to the significance effect of some variables in the log-normal correlated frailty 
model, it is necessary to plan educational and cultural program to encourage the people with 
longer inter-donation intervals to donate more frequently. 
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Introduction 

lood and blood products play a big part in saving 

patients’ lives. Regarding the increase in the 

consumption of blood because of various reasons, it is 

necessary that donors increase as well
1
. Providing sufficient 

and healthful blood is up to blood transfusion centers. Unless 

enough healthy blood is provided, the society’s health will be 

at stake. Therefore, those in charge of health care in society 

are looking for ways of supplying blood and preventing lack 

of it in blood banks. For this end, detecting and attracting 

constant donors is of great importance
2
. Constant blood 

donors, according to the standards of the Blood Transfusion 

Organization, are those who donate blood at least twice a 

year. Therefore, the blood transfusion centers try to increase 

the number of constant donors in order to ample blood supply 

for the patients in need of it
3
. 

When it is possible for a person to experience something 

several times, a recurrent event takes place. The data obtained 

from the repetition of these events are called recurrent events 

data. Blood donation is considered a recurrent event in 

survival analysis
4
. In recurrent events survival data, due to 

individual differences and the effect of previous events, there 

is a correlation between survival time intervals
5
. Owing to the 

correlation between the independent survival recurrent times, 

hazard regression models with independent data cannot be 

applied and it is necessary that a model capable of covering 

this correlation is used
6-8

. One way of handling this problem 

is to use a frailty models. In this model, a common random 

effect called frailty effect is given to the members of each 

group later multiplied in the hazard function of each group 

member
 8
. 

Since the log-normal hazard model with correlated frailty 

is very complex, Bayesian approach was used to estimate 

parameters of this model. In this approach, the prior 

knowledge about the parameters and likelihood is used to 

produce the posterior distribution, which represents total 

information about the parameters after the data have been 

observed
9
. Due to the complexities of frailty models, it is not 

possible to calculate the posterior distribution of the 

parameters in an analytic way
10

. Therefore, in order to do a 

Bayesian analysis, it is necessary to estimate the posterior 

B 
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distribution of parameters using Markov Chain Monte Carlo 

(MCMC) method. Successive sampling of full conditional 

distributions of parameters produces a Markov Chain; so that 

after convergence these samples can be assumed as 

dependent samples from marginal posterior distributions of 

parameters and based on them inference about parameters of 

interest can be done. In recent years, by using MCMC 

methods, complex and extensive models for any sample size 

have been conducted and precise estimations have been 

yielded
11

. 

Log-normal hazard model is one of important applicable 

model in survival analysis which belongs to the generalized 

gamma parametric survival model
12

. In the log-normal 

model, the hazard rate increase from zero rapidly to a peak  

and then decrease gradually, so that it is a unimodal with 

comparatively long tail in the right
13, 14

. In a primary study on 

some parametric models without frailty, the log-normal 

model showed a better fit on our data compare to exponential, 

Weibull, log-logistic and generalized gamma models. Getting 

the log-normal model to fitting the interval between blood 

donations is reasonable because immediately after a 

successful donation, the chance to another donation is zero, 

then the donation chance increase with time, and after 

passing a long time from previous donation, the chance 

decline.  

The aim of this study was to determine the effective 

factors on the interval between the blood donations in a 

sample consisting of first-time blood donors based on log-

normal hazard model with correlated frailty. 

Methods 

A subset of the data related to the time intervals between 

return to donation were used
 15

. This subset included 424 out 

of 864 samples that had had at least two successful donations 

(which mean that the samples have at least two recorded 

survival times). In this case at least one uncensored time 

interval was existed for each donor. This data was obtained 

from a longitudinal study, which included a group of donors 

referred to Shahrekord Blood Transfusion Center, capital city 

of Chaharmahal and Bakhtiari Province, Iran for the first time 

in 2008. Their statistical behavior was followed for five years 

till 2013 and the information recorded in Negareh Software in 

this transfusion center was used for analysis. This 

information included each person’s date of donations, 

donation status (successful or deferral), and each person’s 

demographic variables. The time interval between two 

donations was defined as survival time. Therefore, the time 

between the first and second donations was regarded as the 

first survival time. If no second donation had been recorded 

until the end of the study, the time between the first donation 

and the end of the study was considered as the censored time.  

The response variable is defined as the number of the 

days between two subsequence donations for each person. In 

order to deal with the factors influencing these time intervals, 

age, sex, body weight, marital status, stay, education, and job 

have been entered into the hazard model as independent 

variables. 

A series of unknown factors can influence the time 

intervals between donations including donor's related and 

specific donation related. Therefore, a correlation between 

each person’s survival times is expected, which is the time 

interval between two donations for that person. Accordingly, 

a random variable called correlated frailty is considered for 

each person in order to recognize the correlation of the time 

interval between two donations of that person then the hazard 

function is multiplied
16

. The correlated frailty (𝑌ij ) consists of 

shared frailty (Wi) plus individual frailty (Zij ), which are 

independent from each other; moreover, by considering their 

values, it can be said to what extent the survival time of each 

sample has been influenced by either common unknown 

factors or specific ones
16

. In this study, it was supposed that 

frailties were of gamma distributions with θ scale; hence, 

given the independent nature of frailty terms from each other, 

correlated frailties will also have gamma distributions. As a 

result, shared frailty is of a gamma distribution with  φ, θ  

parameters and individual frailty is of a gamma distribution 

with  θ − φ, θ  parameters provided that 0< 𝜑 < 𝜃. Then, 

the correlated frailty (𝑌ij ) has a gamma distribution 

with  θ, θ  parameters with mean one and variance of  θ−1. 

Since the survival times for each person are correlated, the 

correlated frailty model was used. Therefore, regarding the 

frailty in the model, the survival times for each person were 

supposed to be independent (from each other)
16

. A full 

presentation of correlated frailty model for baseline log-

normal hazard model is given in the appendix. 

In order to modeling the baseline hazard function, log-

normal hazard model was used. For analyzing return to 

donation, data three models were used as log-normal hazard 

model without frailty, log-normal hazard model with gamma-

shared frailty, and log-normal hazard model with gamma 

correlated frailty. Furthermore, the estimation of parameters 

was done using Bayesian analysis and Markov Chain Monte 

Carlo (MCMC) method. Considering the complexity of 

posterior distribution calculations, MCMC method is used to 

estimate the parameters for any sample size
11

. 

For prior distribution of the model parameters, first the 

log-normal hazard model applying non-informative prior of 

regression coefficient was carried out and later their estimate 

was used for determining informative prior distribution in the 

shared frailty and correlated frailty models. Therefore for the 

parameters of regression, the prior for the coefficient of age 

assume as normal distribution with mean 1 and variance 100, 

sex as normal distribution with mean 1 and variance 4, body 

weight as normal distribution with mean 0 and variance 100, 

education as normal distribution with mean 1 and variance 4, 

job as normal distribution with mean 1 and variance 4, 

marital status as normal distribution with mean 0.1 and 

variance 4, stay as normal distribution with mean 1 and 

variance 2 and a 𝛽0 (constant value) as  normal distribution 

with mean 1 and variance 4 were used. The prior distribution 

for frailty parameter of (𝜑) as uniform distribution on (0, θ) 

and for frailty parameters of (θ) as gamma distribution 

(𝛼 = 0.5, β = 10) were used as well. The parameters were 

estimated using OpenBUGS
17

 software version 3.2.3. In 

order to make sure of the coverage of Monte Carlo 

simulations, Gelman-Rubin convergence criteria via BOA 

(Bayesian Output Analysis) program in R software version 3, 

2, 0 was used
18

. Comparing between log-normal hazard 

model without frailty, log-normal hazard model with gamma 

shared frailty, and log-normal hazard model with gamma 

correlated frailty was done based on deviance information 

criterion (DIC)
19

. 

http://jrhs.umsha.ac.ir/public/site/Files/Appendix-kheiri.pdf
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Results 

Out of the 864 samples, 424 samples that had at least two 

successful donations were enrolled in this study. From them, 

404 people (95.3%) were male. The donors’ age at the first 

donation was from 21 to 69 yr with mean of 36.1 ±10.2 yr. 

Their body weight at the first donation was from 45 to 120 kg 

with the mean of 80.2 ±11.6 kg. Only one case with body 

weight lower than 50 kg was seen.   Overall, 306 people 

(72.2%) were married at their first donation and the rest were 

single and 344 (81.1%) lived in the city. Number of donation 

for each donor was varied from 2 to 13 donations. The 

frequency distribution of donors' characteristics is shown in 

Table 1. 

Table 1: Some characteristics of donors in the study (n= 424) 

Continuous variables Mean (SD) 

Age (yr) 36.50 ±10.20 

Body weight (kg) 80.16 ±11.63 

Categorical variables Number (%) 

Gender  

Male 404 (95.3) 

Female 20 (4.7) 

Marital Status  

Single 118 (27.8) 

Married 306 (72.2) 

Residential location  

Urban 344 (81.9) 

Rural 80 (18.9) 

Occupation  

Housewife 13 (3.1) 

Clerical 101 (23.8) 

Worker 59 (13.8) 

Free Job 192 (45.3) 

Student and Unemployed 59 (13.9) 

Educational level  

Elementary school 69 (16.3) 

High School 102 (24.1) 

Diploma 145 (34.2) 

Academic level 108 (25.5) 

The time between recurrent donations was a response 

variable. The number of donations in each interval, the mean 

of time interval between donations and the censoring rate for 

each time interval is given in Table 2.  

Table 2: Summary information of blood donation interval  

Blood donation 

interval 

Number of  

donation 

Censor rate 

of interval (%) 

Survival time 

Mean ±SD (day) 

First 424 34.0 555 ±432 

Second 280 38.2 438 ±365 

Third 173 36.4 317 ±278 

Fourth 110 32.7 242 ±199 

Fifth 74 29.7 203 ±144 

Sixth 52 23.1 162 ±127 

Seventh 40 35.0 170 ±128 

Eighth 26 26.9 157 ±990 

Ninth 19 31.6 166 ±980 

Tenth 13 69.2 172 ±117 

Eleventh 4 75.0 176 ±145 

Twelfth 1   1.0 314 ±000 

The results of fitting the log-normal hazard model with 

gamma correlated frailties, including  mean, median, standard 

deviation, and 95% credible intervals, based on 30,000 

simulated values after considering 5000 samples as burn-in 

period, is shown in the Table 3. Since there was a very high 

autocorrelation in the successive values of the simulated 

observation, every 50-th sample was monitored. The estimate 

of Gelman-Rubin convergence criteria is shown in the last 

column of Table 3. These values are very close to one 

ensuring the convergence of all parameters of model. In our 

data, DIC for log-normal hazard model without frailty was 

32814800, for the log-normal hazard model with gamma 

shared frailty was 32810000, and for the log-normal hazard 

model with gamma correlated frailty was 32210000, which 

showed a better fitting for the log-normal hazard model with 

gamma correlated frailty. Based on estimate of  𝜑 and θ 

parameters, the estimate of variance of frailty random effect 

is 0.41, the mean of shared frailty is 0.66, the mean of 

individual frailty is 0.34, and the coefficient correlation of 

shared and individual frailty is 0.66. 

 Table 3: Posterior summaries for the parameters of log-normal correlated frailty model 

Parameter Mean Median SD Chain Error 95% CI Gelman-Rubin Criteria 

Age (yr) 0.012 0.012 0.004 0.0001 0.004, 0.020 1.000 

Education Level       

High School vs. Elementary 0.097 0.099 0.120 0.005 -0.141, 0.333 1.002 

Diploma  vs. Elementary 0.257 0.259 0.120 0.005 0.025, 0.491 1.000 

University vs. Elementary 0.321 0.320 0.133 0.004 0.064, 0.584 1.000 

Job       

worker vs. housewife 1.075 1.065 0.234 0.012 0.647, 1.548 1.000 

Clerical vs. housewife 1.040 1.024 0.240 0.013 0.612, 1.569 1.003 

Free Job vs. housewife 1.189 1.178 0.229 0.012 0.775, 1.691 1.003 

Student and Unemployed vs. housewife 0.640 0.627 0.237 0.012 0.201, 1.144 1.006 

Marital status(Single) 0.071 0.071 0.069 0.002 -0.065, 0.207 1.000 

Sex(Male) -0.061 -0.060 0.232 0.011 -0.520, 0.390 1.001 

Stay(Village) 0.136 0.135 0.083 0.002 -0.030, 0.303 1.001 

Body Weight(kg) -0.004 -0.004 0.003 0.001 -0.011, 0.002 1.003 

Constant 4.260 4.272 0.299 0.015 3.666, 4.798 1.002 

Parameter θ 2.419 2.286 0.649 0.054 1.638, 4.499 1.005 

Parameter φ 1.614 1.428 0.782 0.069 0.744, 4.290 1.002 

τ 0.946 0.946 0.068 0.004 0.811, 1.081 1.001 
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The parameters of regression coefficients of body weight, 

marital status, sex, and stay were not significant, while age 

had a positive effect on blood donation hazard function, 

which means as the age increases, the chances of blood 

donation increase as well and the time intervals between 

donations decrease (Table 3). The variable of education had a 

significant impact on blood donation (P<0.05): university 

students and people with diploma education had a higher 

chance of donation compare with people with elementary 

education, i.e. they have returned to donation sooner than 

people with elementary education and their time intervals 

between donations were consequently shorter. Regarding job, 

all jobs including clerks, workers, the free job, and students 

and unemployed were significant against housewives, which 

mean these jobs donated more than housewives and their 

intervals were shorter. 

Discussion 

Blood and its products are very critical in saving some 

people live especially patients. Therefore, detecting and 

attracting potential continues donors are of great importance
1
. 

The response variable in this study was the time intervals 

between donations which were calculated on the number of 

days and it was learned that with increase in the number of 

donations, the average time interval between two donations 

decreases. Due to unknown and immeasurable factors such as 

genetic, environmental and physical factors and people’s 

insight toward blood donation, there is dependence between 

time intervals of blood donations for each donor. In this 

study, for modeling the survival times, the baseline log-

normal hazard model was used, however, because of the 

correlation between each person’s survival times, the 

correlated frailty was used
4
. The correlated frailties in the 

log-normal hazard model show correlation between donation 

time intervals for each person
6
. The correlation indicates that 

a series of unknown factors influence on the interval times 

between donations for each person and that person has 

donated blood either in long or in short time intervals. 

In this dataset, the log-normal gamma correlated frailty 

model indicated that the variable of age had a positive impact 

on the hazard function of time intervals between donations, 

which means that as the age increases, the chances of 

donation increase and as a result time intervals between two 

donations accordingly decrease. Therefore, by raising 

awareness and giving appropriate training, the young donors 

can become continues donors. Donation rate increased as age 

increases
20,21

. However, age had minor significance and had a 

negative effect on the chances of blood donation
22

; the same 

findings were achieved in James and Matthew’s study 
23

, but 

in another study 
24

, age had no impact on return behavior. Job 

influenced the time intervals between donations statistically, 

which indicates that housekeeper's chances for donation were 

lower than other jobs. The same result was found in another 

study
3
, i.e. the variable of job was significant. The number of 

donors who were clerks or free jobs was more than other 

jobs. Repeated visits from universities to blood transfusion 

centers can be organized in order to attract more university 

students for donating blood. University students and people 

with diploma education had a higher chance of donation 

compare with people with elementary education, i.e. they 

have returned to donation sooner than people with elementary 

education and their time intervals between donations were 

consequently shorter. Education had a positive effect on 

return behavior
3
 while the variable of education had no effect 

on the time intervals between donations 
21,25,26

. Since training 

plays a major role in continuity of the donation, planning 

instructive programs that fit different levels of education is a 

big step in enhancing the blood donation culture. In our 

previous works on the total dataset
15, 22

, body weight had 

significant effect on the time interval between donations, 

such that the time interval between donations was shorter for 

donors with higher body weight. However, in this subset of 

data, body weight did not show any significant effect on the 

time interval between donations.  

In the transfusion data framework, the correlated effect is 

sum of donor random effect (known as shared frailty) and 

specific donation random effect (known as individual frailty). 

The mean estimate of donor random effect in our data was 

almost 2 times of specific donation random effect. This 

results show that effect of donor's unknown factors are higher 

than specific donation's unknown factors. The correlation of 

interval times between donations of each donor means that 

each donor returns to donation in a roughly equal interval 

which show stability in his/her return to donation behavior.  

The correlated frailty was used in many applications
27, 

28
. Here we used it to explain unknown random effect in the 

recurrent event survival data. Log-normal hazard model for 

survival analysis is complex especially in present of 

censoring
29, 13

. Its complexity increased by applying the 

random effect in the model. This problem causes the 

difficulty in convergence of simulated samples and 

encountering a high autocorrelation between subsequent 

samples of simulated values. In running of MCMC algorithm, 

one sample was monitored from every 50 produced samples 

to reduce autocorrelation between subsequent samples and 

obtaining convergence. Although a large development in 

computational speed has been created, Bayesian analyzing of 

such model is very time-consuming presently.  

In this study, it was presupposed that components of 

frailty were of gamma distribution. Research can also be 

done on log-normal hazard model with correlated frailty 

having Inverse Gaussian and Positive Stable distributions. 

Conclusions 

Due to the significance effect of some variables in the 

log-normal correlated frailty model, it is necessary to plan 

educational and cultural program to encourage the people 

with longer inter-donation intervals to donate more frequently 

and hence these people will become constant donors. 
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Highlights 

• The effects of donor's unknown factors are higher than 

specific donation's unknown factors. 

• Interval times between donations of each donor are 

correlated. 

• In our survival data, the correlated frailty showed better 

fitting than shared frailty 
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