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Abstract: In this paper, the electromechanical response and instability of the nanobridge immersed in ionic electrolyte

media is investigated. The electrochemical force field is determined using double-layer theory and linearized Poisson–

Boltzmann equation. The presence of dispersion forces, i.e., Casimir and van der Waals attractions are incorporated

considering the correction due to the presence of liquid media between the interacting surfaces (three-layer model). The

strain gradient elasticity is employed to model the size-dependent structural behavior of the nanobridge. To solve the

nonlinear constitutive equation of the system, three approaches, e.g., the Rayleigh–Ritz method, Lumped parameter model

and the numerical solution method are employed. Impacts of the dispersion forces and size effect on the instability

characteristics as well as the effects of ion concentration and potential ratio are discussed.
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1. Introduction

With recent advances in nanotechnology, beam-type

nanobridges are increasingly used in various engineering

and science branches, i.e., mechanics, chemistry, optics,

biology, electronics [1]. This miniature element is one of

the most essential electromechanical structural components

that is highly potential for developing nanoscale resonators

[2], switches [3], memories [4] and sensors [5]. A typical

nanobridge is constructed from a movable conductive

beam, which can be excited via applying electrical force

field. The electrical stimulation results in deflection,

vibration or actuation of the movable component,

depending on the system design. Generally, when the

applied voltage exceeds its critical value, the pull-in

instability occurs and the system suddenly fails. Prediction

and simulation of the electromechanical response and sta-

bility of nanobridge are very crucial for reliable design and

fabrication of nanodevices; hence, many researchers have

studied the pull-in behavior of these ultra-small structures

[6–9].

Recently, microelectromechanical/nanoelectromechani-

cal systems (MEMS/NEMS) have been widely considered

for in-liquid applications especially in biological, chemical

and electronic sciences. Some of the promising applica-

tions of MEMS/NEMS in bio-fluid include developing

sensors and manipulators for cellular handling, bio-com-

ponent characterization, device motion, DNA manipula-

tion, bio-mimetic cilia, drug delivery, etc. [10–13]. Besides

biology, nanodevices such as actuators, probes, tweezers,

valves are employed as precise instruments operated in
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ionic liquid media [14]. Moreover, usages of liquid-im-

mersed MEMS/NEMS have great potentials in developing

supercapacitors, fuel cells, batteries, filters, microdensito-

meter, micropump/nanopump, active microfluidic devices

and atomic force microscopy [14–17]. In this regard some

researchers have investigated the mechanical behavior of

MEMS/NEMS in liquid environment. Oh et al. [12] have

fabricated and characterized the oscillating bio-mimetic

microfluidic device that mimics biological cilia for

manipulation of microfluidics. Maali et al. [18] have

attempted to measure the influence of the fluid motion on

the oscillating behavior of ultra-small cantilever beams

immersed in viscous fluids. Yang and Zhao [19] have

investigated the influences of hydration force on the sta-

bility of solid film in a very thin solid-on-liquid structure.

The hydration forces become very strong at short range and

are particularly important for determining the magnitude of

the adhesion between two surfaces or interaction energy

due to hydration-induced layering of liquid molecules close

to a solid film surface [19]. The pull-in performance of

electrostatic parallel-plate actuators in liquid solutions has

been studied by Rollier et al. [10]. They have claimed that

the pull-in deflection of the actuators can be suppressed in

liquid. Only few works [14, 17, 20] have focused on the

pull-in behavior of liquid-immersed NEMS in ionic media.

In ionic electrolyte media, the electrochemical field is

characterized by double-layer interaction [14, 17, 20].The

double layer appears on the surface of an electrode if the

electrode is exposed to ionic electrolyte fluid. Indeed, the

double-layer concept implies the presence of two parallel

layers of electrical charges surrounding the electrode sur-

face. A simple lumped model for calculating the pull-in

voltage of electrostatic actuators in ionic liquid electrolytes

has been presented by Boyd and Kim [14]. They have

incorporated the effect of double-layer electrochemical

force in the pull-in model by solving the linearized Pois-

son–Boltzmann equation. In another work, Boyd and Lee

[20] have modified their model with a distributed param-

eter model in order to achieve more accurate results. The

electromechanical behavior and frequency response of an

inter-digitated silicon comb-drive actuator in various ionic

liquids has been investigated by Sounart et al. [17]. They

have presented a theoretical model that predicts the char-

acteristic actuation frequency of the system. Noghrehabadi

et al. [21] have theoretically investigated the static stability

of cantilever nanobeams in a liquid electrolyte using a

distributed force model. It should be noted that to the best

knowledge of the authors, all the mentioned works have

studied the cantilever NEMS, while no researcher has yet

investigated the electromechanical performance of double-

clamped NEMS bridges in electrolyte media. The present

work aims to investigate the electromechanical response

and pull-in instability of the electromechanical nanobridge

immersed in ionic liquid electrolyte environment.

It is well established that the electromagnetic vacuum

fluctuations, i.e., dispersion forces, can significantly affect

the electromechanical performance of nanostructures. The

dispersion forces between interacting bodies are generally

explained as Casimir or van der Waals (vdW) attractions

depending on the distance between the bodies. The effect

of dispersion forces on the pull-in instability of nanoactu-

ators operating in non-liquid environments (i.e., gas or

vacuum) has been studied by previous researchers [22–30].

Herein, we examine the impact of dispersion forces on the

pull-in instability of liquid-immersed nanobridge consid-

ering the corrections due to the presence of liquid media in

between the electrodes.

A powerful method for study of nanoscale systems is

molecular dynamics/mechanics. However, this method is

very time consuming in modeling nanostructures with large

number of interacting atoms such as nanobridge. To

overcome this shortcoming, nanoscale continuum

mechanic models are developed to investigate the elec-

tromechanical performance of nanostructures [20]. Since

the elastic characteristics of materials in nanoscale may be

size dependent [31–33], the applied models should be able

to consider this size dependency in constitutive equations.

The size dependency cannot be modeled by using classical

continuum mechanics. In this regard, the non-classical

theories such as strain gradient theory [33] have been

developed to consider the size effect in theoretical con-

tinuum models. The strain gradient theory introduces

additional elastic constants, i.e., three material length scale

parameters, to interpret the size-dependent behavior of

elastic solids. While some researchers have utilized strain

gradient theory for analyzing the MEMS/NEMS pull-in

instability in non-liquid environments (gas and vacuum)

[34–42], none of them has investigated this phenomenon in

liquid electrolyte media. In this work, the size-dependent

pull-in instability of nanobridge immersed in liquid elec-

trolytes has been investigated in the presence of vdW and

Casimir forces. The electrochemical force field has been

determined using double-layer theory and linearized Pois-

son–Boltzmann equation. The strain gradient theory in

conjunction with Euler–Bernoulli beam model has been

used to derive the nonlinear equilibrium equation of system

incorporating the beam stretching effect. The Rayleigh–

Ritz method (RRM) has been applied to solve the gov-

erning equation of the system. The obtained results have

been compared with those of numerical method. Moreover,

a lumped parameter model (LPM) has been developed to

explain the influences of the electrical double layer, dis-

persion forces and size phenomenon on the stable perfor-

mance of the anno-bridge.
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2. Theoretical model

Figure 1 shows the schematic representation of the

nanobridge which is constructed from a conductive dou-

ble-clamped electrode suspended over another fix one

(grounded electrode). The moveable electrode with a

length of L, wide of b and thickness of h is considered. The

total energy of the system is the summation of the stored

strain energy and work of external forces.

2.1. Stored strain energy

By employing the strain gradient theory modified by Lam

et al. [33], �U, the stored strain energy density in elastic

materials is written as the following:

�U ¼ 1

2
rijeij þ pici þ sð1Þijk g

ð1Þ
ijk þ ms

ijv
s
ij

� �
ð1Þ

in which

eij ¼
1

2
ui;j þ uj;i
� �

ð2Þ

ci ¼ emm;i ð3Þ

gð1Þijk ¼ 1

3
ðejk;i þ eki;j þ eij;kÞ �

1

15
½dijðemm;k þ 2emk;mÞ

þ djkðemm;i þ 2emi;mÞ þ dkiðemm;j þ 2emj;mÞ� ð4Þ

vsij ¼
1

2
ejklul;ki ð5Þ

In above equations, ui; ci; g
ð1Þ
ijk ; v

s
ij; dij and eijk indicate

components of displacement vector, dilatation gradient

vector, deviatoric stretch gradient tensor, symmetric

rotation gradient tensor, Kronecker delta and permutation

symbol, respectively. Also rij; pi; s
ð1Þ
ijk ;m

s
ij, are components

of Cauchy’s stress and high order stress tensors,

respectively, that are identified as [33]:

rij ¼ 2l eij þ
m

1� 2m
emmdij

� �
ð6Þ

pi ¼ 2ll20ci ð7Þ

sð1Þijk ¼ 2ll21g
ð1Þ
ijk ð8Þ

ms
ij ¼ 2ll22v

s
ij ð9Þ

In the above equations, m and l are Poisson’s ratio and

shear modulus, respectively. Also l0, l1 and l2 are additional

material length scale parameters which are related to

dilatation gradient vector, deviatoric stretch gradient tensor

and symmetric rotation gradient tensor. The material length

scale parameters can be measured using experimental

techniques, molecular dynamics, etc. Some experimental

measurements evaluate the material length scale parameter

of single-crystal and polycrystalline copper to be 12 and

5.84 lm, respectively [43, 44]. Also, the size-dependent

behavior has been detected in some kinds of polymers [45].

For hardness measurement of bulk gold, it is found that the

plastic length scale parameter (for indentation test and

hardness behavior) of Au increases from 470 nm to

1.05 lm with increasing the Au film thickness from

500 nm to 2 lm [46]. Based on test results gathered via

microhardness test, the plastic length scale parameter for

metals such as Cu, Ag and Brass was determined in the

range about 0.2–20 lm based on the crystallinity [47].

Using microbend testing method, the plastic intrinsic

material length scale of 4 lm for copper and 5 lm for

nickel were determined [48]. All these experiments imply

that when the characteristic size (thickness, diameter, etc.)

of a microelement/nanoelement is in the order of its

intrinsic the material length scales (typically sub-micron),

the material elastic constants highly depend on the element

dimensions. Molecular dynamic simulations also could be

used to compute the material length scale parameters of

materials [49]. By comparing the results of size-dependent

continuum theories with those of molecular dynamics, one

can extract the size parameters [50].

Now, based on Euler–Bernoulli beam theory, the dis-

placement field can be written as the following:

u1 ¼ �Z
oWðXÞ
oX

; u2 ¼ 0; u3 ¼ WðXÞ ð10Þ

where u1, u2, u3 and W are the displacement field of the

beam in the X, Y, Z directions and centerline beam dis-

placement, respectively.

Fig. 1 Schematic

representation of double-

clamped nanobridge
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By using Eq. (10) in conjunction with Eqs. (2)–(9), the

stress and strain components are defined. By substituting

the stress and strain components in Eq. (1), the energy

density is obtained. Afterward, by integrating the energy

density over the beam volume the bending strain energy,

Ubend, is obtained as:

Ubend ¼
Z

V

�UdV ¼ 1

2

ZL

0

EIþ 2lAl20 þ
8

15
lAl21 þ lAl22

� �
o2W

oX2

� �2
"

þA 2ll20 þ
4

5
ll21

� �
o3W

oX3

� �2
#
dX

ð11Þ

In above equation, I is second cross section moment around

Y axis and A is the cross section area.

Besides the bending energy, the elastic stored energy

due to the beam stretching should be taken into account.

The stretching arises from resisting the double-clamped

beam against the change in the length that is induced by the

beam deflection. The stretching energy stored in the beam,

Ustretch, due to axial forces can be written as [51]:

Ustretch ¼
1

2

ZL

0

Fa

oW

oX

� �2

dX ð12Þ

In the above equation, Fa is the axial resultant force

associated with the mid-plane stretching. When nanobeam

is in tension, the actual beam length L0 becomes longer than

the original length L. However, the beam is immovable at

both ends of the nanobridge. Thus, an additional axial force

occurs and can be expressed as:

Fa ¼
EA

L
ðL0 � LÞ � EA

2L

ZL

0

oW

oX

� �2

dX ð13Þ

By substituting Eq. (13) into Eq. (12), the elastic energy

due to stretching is determined.

2.2. Work of external forces

The external forces are the summation of electrochemical

and dispersion forces. Considering the distribution of

external forces per unit length of the beam (fext), the work

by the external forces, Vext, can be obtained as:

Vext ¼
ZL

0

ZW

0

fextðXÞdWdX ¼
ZL

0

ZW

0

fEC þ
fCas

fvdW

(" #
dWdX

ð14Þ

where fEC is the electrochemical force which is the sum of

the electrical force and chemical (or osmotic) force. In

above relation the Casimir attraction per unit length, fCas

and the vdW force per unit length, fvdW, are considered

corresponding to the gap distances. These forces are

determined in the following subsections.

2.2.1. Electrochemical force

The electrochemical force is the sum of the electrical force

Fe and chemical force Fc which can be written as Eqs. (15)

and (16), respectively [20]:

Fe ¼ � 1

2
ee0 rwj j2 ð15Þ

Fc ¼ 2n1KBTb cosh
z0ew
KBT

� �
� 1

� 	
ð16Þ

where e0 is the permittivity of vacuum, e is the relative

permittivity of the dielectric medium, KB is the Boltzmann

constant, n? is the bulk concentration, T is the absolute

temperature, e is the electronic charge, z0 is the absolute

value of the valence, and b is the width of electrode. In the

above equation w is the electric potential of the liquid-

immersed electrodes which is the summation of applied

potential and zeta potential for each electrode and can be

obtained from the Poisson–Boltzmann equation as the

following [20]:

r2w ¼ 2z0en1
ee0

sinh
z0ew
KBT

� �
ð17Þ

For small potentials by solving the linearized form of

Eq. (17), the total electrochemical force is obtained as:

fEC ¼ Fe þ Fc

¼ bee0j2w
2
1

2 sinh2½jðg�WðXÞÞ�

� 2
w2

w1

cosh½jðg�WðXÞÞ� � 1� w2

w1

� �2
 !

ð18Þ

where g is the initial gap between two electrodes, j2 ¼
2e2z20n1=ee0KBT and 1=j is the Debye length. The elec-

trochemical force can be attractive or repulsive, depending

on the dominant parameters.

2.2.2. Dispersion force

It should be mentioned that the strength of nanoscale forces

between two surfaces interacting across a non-vacuum

media in between them is affected by the characteristics of

the intervening media. In this case a three-layer approach

should be considered for determining the dispersion forces

[52, 53]. The dispersion forces per unit length of the

nanobridge are defined considering the vdW and Casimir

force regimes. Based on what mentioned, two interaction

regimes can be defined:
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First, the large separation regime in which the Casimir

force is dominant (typically above several tens of

nanometers [54–56] ). The Casimir energy due to a quan-

tum field is the sum of the zero point energies of the

quantum field [52]. The Casimir force between two per-

fectly conducting planar geometries separated by medium

with constant refractive index is calculated as a limit case

of a three-layer model using the piston approach [55].

Using piston approach, the Casimir attraction per unit

length, fCas, of conductive electrode of nanobridge oper-

ating in a liquid media is obtained as [52]:

fCas ¼
p2�hb

240n g�W Xð Þð Þ4
ð19Þ

where �h = 1.055 9 10-34 Js is Planck’s constant divided

by 2p and n is the refractive index of fluid, respectively.

The second regime is the small separation regime

(typically below several tens of nanometers [54–56] ), in

which the vdW force is the dominant attraction. In this

case, the attraction between two ideal surfaces is propor-

tional to the inverse cube of the separation. Considering

three-layer interaction (two metals separated by liquid

medium), the vdW force per unit length, fvdW, of the

movable conductive electrode of the nanobridge is [53]:

fvdW ¼
�AðnÞb

6pðg�WðXÞÞ3
ð20Þ

where �AðnÞ is the Hamaker constant for three-layer inter-

action which is a function of refractive index (n) of the

liquid media. For conductive metals (such as Ag, Cu, Au,

etc.) interacting across water-based media, the Hamaker

constant is about 10–40 9 10-20 J [53]. It should be noted

that the van der Waals interaction potential is largely

insensitive to variations in electrolyte concentration and

pH, and so may be considered as fixed in a first approxi-

mation [53].

2.3. Dimensionless total energy

By using Eqs. (11), (12) and (14) the total energy of system

can be summarized as:

P ¼ Ubend þ Ustretch � Vext

¼ 1

2

ZL

0

EIþ 2lA l20 þ
8

15
l21 þ l22

� �� �
d2W

dX2

� �2
"

þAl 2l20 þ
4

5
l21

� �
d3W

dX3

� �2
#
dX

þ 1

2

ZL

0

Fa

dW

dX

� �2

dX �
ZL

0

fextWðXÞdX ð21Þ

Now, by using the substitutions x = X/L and w ¼ W=g the

non-dimensional total energy can be explained as:

�P ¼ 1

2

Z1

0

D1

d2w

dx2

� �2

þD2

d3w

dx3

� �2
" #

dx

þ 1

2

Z1

0

g
Z1

0

dw

dx

� �2

dx

2
4

3
5 dw

dx

� �2

dx

�
Z1

0

am
ð1� wðxÞÞm �

b2 2k coshðn0ð1� wðxÞÞÞ � 1þ k2
� �
 �

2 sinh2ðn0ð1� wðxÞÞÞ

" #
wðxÞdx

ð22Þ

where the dimensionless parameters are identified as the

following:

am ¼
�AðnÞbL4
6pg4EI vdW interaction ðm ¼ 3Þ
p2�hbL4

240ng5EI Casimir interaction ðm ¼ 4Þ

8<
: ð23Þ

b ¼ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bee0j2L4

g

s
ð24Þ

g ¼ 6
g

h

� �2
ð25Þ

ls ¼
12l

E h
l2

� �2 ð26Þ

k ¼ w2

w1

ð27Þ

n0 ¼ jg ð28Þ

D1 ¼ 1þ ls
15

30
l0

l2

� �2

þ8
l1

l2

� �2

þ15

 !
ð29Þ

D2 ¼
ls

30 L
h

� �2 5
l0

l2

� �2

þ2
l1

l2

� �2
 !

ð30Þ

In above relations, b;ls; am and n0 interpret the dimen-

sionless values of beam electrode voltage, size effect,

dispersion forces and bulk ion concentration. The dimen-

sionless parameter k indicates the ratio of potential on the

ground electrode over the beam electrode.

Note that the effect of hydration forces is not incorpo-

rated in the theoretical double-layer model. Indeed, the

classical double-layer theory is a continuum theory that

does not consider the discrete molecular nature of the

surfaces that can become important at small distances. It

has long been postulated that a modified water structure

exists at solid–water interfaces. In fact, hydrophobicity is a

manifestation of water structure at surfaces. For interfaces

in aqueous media, the predominant effect is attributed to

the hydration of the adsorbed counterions and ionic func-

tional groups in the surface [19]. As the close-enough
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interacting surfaces, some dehydration of the ions and

surface would have to occur, resulting in an increase in the

free energy and hence a repulsion [19]. This phenomenon

is usually known as hydration force. So the hydration force

should be taken into account when the liquid medium

between two interacting surfaces is only few molecular

diameters in width. Since, the hydration forces become

important at small gaps (\5 nm) [19], the present model

should be corrected for nanobridges with\5 nm gap in

order to incorporate the hydration forces.

3. Solution methods

3.1. Rayleigh–Ritz method (RRM)

To solve the governing equation of the systems by Ray-

leigh–Ritz method, the displacement is expressed as a

linear combination of a complete set of independent basis

functions ui(x) in the form of:

w xð Þ ¼
Xn
i¼1

qi/i xð Þ ð31Þ

where the index i refers to the number of terms included in

the simulation. We have used the free vibration mode

shapes of the nanobeam as basic functions in the Rayleigh–

Ritz procedure. The mode shapes of clamped nanobeam

(based on classical theory) can be expressed as [57]:

/iðxÞ ¼ coshðkixÞ � cosðkixÞ

� coshðkiÞ � cosðkiÞ
sinhðkiÞ � sinðkiÞ

ðsinhðkixÞ � sinðkixÞÞ ð32Þ

where ki is the ith root of characteristic equation of

clamped–clamped beams (k1 = 4.73, k2 = 7.8532). In the

equilibrium point the following relation must be satisfied:

o �P
oqi

¼ 0 i ¼ 0; 1; . . .;N ð33Þ

This leads to a system of algebraic equation which can be

solved numerically to obtain the final solution. Using

Taylor expansion for electrostatic and dispersion force,

substituting Eqs. (22), (31) and (32) into Eq. (33),

assuming the orthogonality of ui(x) and then following

some straightforward mathematical operations, a system of

algebraic equation can be found as:

D1k
4
i qi � D2

Z 1

0

XN
j¼1

qj
d6

dX6
/j

" #
/idx

� g
Z1

0

Z1

0

XN
j¼1

qj
d/j

dx

 !2

dx

0
@

1
AX

N

j¼1

qj
d2/j

dx2

2
4

3
5/idx

�
Z 1

0

X1
k¼0

Ak

XN
j¼1

qj/j

 !k
2
4

3
5/idxþ B:C: ¼ 0 i ¼ 1; 2; . . .;N

ð34Þ

whereN is the number of considered terms of Rayleigh–Ritz.

In above relation, Ak and B.C. are the Taylor expansion

coefficient of the external force term and the boundary

condition terms, respectively, which are defined as:

Ak ¼
dk

k!dwk

am
ð1� wÞm � b2f2k coshðn0ð1� wÞÞ � ð1þ k2Þg

2 sinh2ðn0ð1� wÞÞ

� 	
w¼0

ð35Þ

B:C: ¼ D2

d3

dX3

XN
j¼1

qj/j

 !
d2/i

dX2


x¼1

�D2

d3

dX3

XN
j¼1

qj/j

 !
d2/i

dX2


x¼0

ð36Þ

The obtained system of algebraic equations is solved to

obtain qi value and consequently w(x). The instability

occurs when dwðx ¼ 0:5Þ=db2 ! 0. The instability

parameters of the system can be determined via the slope of

the w� b graphs by plotting w versus b.

3.2. Lumped parameter model (LPM)

Lumped parameter models are very beneficial for

explaining the physical behavior of systems without

mathematical complexity. To obtain a simple model for

simulation of the electromechanical behavior of the nano-

bridge, a lumped parameter model is developed in this

subsection. For this purpose, the nanobridge shown in

Fig. 1 is replaced by a one-dimensional simple structure

which undergoes uniformly distributed loading (Fig. 2).

The structure is constructed from a linear spring with

stiffness of K. LPM can be developed by minimizing the

total energy of the system. The detail of the method is

found in ‘‘Appendix’’. Based on LPM, the relation between

applied voltage and the maximum deflection of the nano-

bridge, wmax, can be obtained as:

b2 ¼
2 sinh2ðn0ð1� wmaxÞÞ �p4wmax 4D1 þ 16p2D2 þ 1

2
w2
maxg

� �
þ am 1� wmaxð Þ�m

� �

2k coshðn0ð1� wmaxÞÞ � 1� k2
ð37Þ
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In the case of LPM, the pull-in parameters can be obtained

from Eq. (40) by setting db2=dwmax ¼ 0.

3.3. Numerical solution method

In addition with the RRM and LPM, the deflection of the

nanobridge is numerically simulated using MAPLE soft-

ware. Utilizing Hamilton principle, i.e., dð�Þ ¼ 0, in which d
indicates variations symbol, the governing equation of lat-

eral deflection of the system can be derived as the following

D1

d4w

dx4
� D2

d6w

dx6
� g

Z1

0

dw

dx

� �2

dx

2
4

3
5 d2w

dx2

¼ am
ð1� wÞm �

b2 k coshðn0ð1� wÞÞ � 1
2
ðk2 þ 1Þ

� �

sinh2ðn0ð1� wÞÞ
ð38Þ

And the following boundary conditions

wð0Þ ¼ dw

dX
ð0Þ ¼ d3w

dX3
ð0Þ ¼ wð1Þ ¼ dw

dX
ð1Þ ¼ d3w

dX3
ð1Þ ¼ 0

ð39Þ

The highly nonlinear integro-differential equation Eq. (38)

cannot be solved analytically. Hence the iterative method is

used to solve the equation [58]. The step size of the

parameter variation is chosen based on the sensitivity of the

parameter to the maximum deflection (mid-length deflec-

tion). By numerically solving the differential equations, the

deflection of the nanobridge is determined. When the

instability occurs, no solution exists and the pull-in

parameters of the system can be determined by plotting the

mid-deflection versus the applied force.

It should be noted that Eq. (38) turns to that of the

classical theory, by setting the l0, l1 and l2 equal to zero.

Furthermore, the size-dependent behavior of nanobeam

Fig. 2 Lumped parameter model
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Fig. 4 Deflection of the nanobridge for different values of applied
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Fig. 3 Variation of the normalized tip deflection as a function of

normalized applied voltage
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based on the modified couple stress theory can be obtained

by considering l0 = l1 = 0 and l2 = l.

4. Results and discussion

In the following, typical clamped nanobridge with the

geometrical characteristics of L ¼ 25h and k ¼ 0:1 are

considered. The Young’s modulus E, and shear modulus l
are selected as 169 GPa and 65.8 GPa, respectively.

4.1. Comparison with literature

To the best knowledge of the authors, the electromechan-

ical behavior of clamped nanobridge immersed in the ionic

liquid electrolyte has not been modeled yet. Indeed, only

cantilever configuration is considered by a few researchers

[20, 21]. Therefore, in this section a cantilever nanobeam

(g = 0) is simulated using presented model and the

obtained results are compared with literature [18, 19]. The

governing equation of the cantilever nanobeam was

obtained based on classical theory (l0 = l1 = l2 = 0) and

neglecting dispersion forces. The boundary conditions of
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Fig. 5 Effects dispersion force on pull-in voltage deflection (a)
Casimir and (b) vdW for l0=l2 ¼ l1=l2 ¼ h=l2 ¼ 1,n0 ¼ 1:5; k ¼ 0:1

Table 1 Relations for determining the detachment length and mini-

mum gap

Casimir regime vdW regime

Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
240nEIg5a�

4

p2�hb
4

q
Lmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6pg4EIa�

3
�AðnÞb

4

q

gmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2�hbL4

240nEIa�
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q
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the cantilever beam is selected the same as Refs. [20, 21].

Figure 3 shows the influences of the normalized applied

voltage, b, on the normalized tip deflection, w(x = 1), of

the cantilever beam for am ¼ 0; k ¼ 0:1; n0 ¼ 1. It can be

observed that the normalized tip deflection would increase

with an increase in the input voltage. This figure reveals

that RRM results are in very good agreement with the

results of finite element solution [20] and the modified

Adomian method [21].

4.2. Deflection and stability

Figure 4 shows the variation of deflection of typical

nanobridge when the applied voltage increases from zero to

pull-in value. The vertical axis reveals the deflection of the

nanobridge, while the horizontal axis reveals the dimen-

sionless length of the beam. As seen, increasing the applied

voltage increases the deflection of the nanobridge. When

the applied voltage exceeds its critical value, bPI, then no

solution exists and the pull-in instability occurs. Note that

the operation distance of the system is limited by this

instability. This figure shows that the nanobridge has an

initial deflection even when no voltage applied which is

due to the presence of dispersion forces. It is observed that

the results of RRM are in good agreement with those of

numerical method. The relative error of presented methods

with respect to the numerical solution is\1 %.

4.3. Influence of dispersion forces

If the gap between the beam and the ground is of the order

of several nanometers, the effect of dispersion forces must

be taken into account. The effect of dispersion forces on

the pull-in voltage of the nanobridge—is presented in

Fig. 5a, b. As seen, increasing the dispersion forces leads to

a decrease in the pull-in voltage of the system. Interest-

ingly, the intersection point of the curves and the horizontal

axis corresponds to the critical value of dispersion forces in

liquid media; if the nanobeam is close enough to the

ground, dispersion forces can induce stiction even without

any electrostatic force.

Influence of dispersion on the pull-in deflection (mid-

point deflection at pull-in) of the system is presented in

Fig. 6a, b. This figure shows that while increase in the

Casimir force slightly reduces the pull-in deflection of the

nanobridge, increasing the vdW attraction increases the

pull-in deflection of the system.
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As seen in Figs. 5 and 6, the lumped parameter model

(LPM) exhibits the same physical trend in comparison with

those of numerical solution and RRM. However, some

deviations from the numerical and RRM values (error) are

observed. Note that the LPM can be considered as a simple

technique for rapidly evaluating the qualitative impact of a

design parameter on the bridge stability. However, it may not

be appropriate for precisely determining the pull-in values.

4.3.1. Detachment length and minimum gap

When the gap between the moveable electrode and the

ground is sufficiently small, then even without an applied

voltage (w1 ¼ w2 ¼ 0), the nanoactuators can adhere to the

ground due to the nanoscale attractions. The maximum

length of the nanobeam, Lmax, at which the nanoactuators

does not stick to the substrate without the application of a

voltage difference is called the detachment length [59, 60].

The detachment length is the maximum permissible length

of the freestanding nanobeam. On the other hand, if the

length of nanobridge is known, there is a minimum gap,

gmin, which prevents stiction due to the dispersion forces.

The Lmax and gmin are very important for reliable operation

of nanodevices and can be determined from the critical

value of dispersion forces. The critical values of Casimir of

vdW force, a�m, and the corresponding critical tip deflec-

tion, wPI
tip, can be acquired by setting b = 0 and then

plotting w(x = 1) versus am. Substituting a�m into definition

of am, one can calculate the values of Lmax and gmin.

Table 1 shows the relations for determining the Lmax and

gmin values for liquid-immersed nanobridge.

4.4. Influence of size effect

Variation of the pull-in voltage (bPI) of the nanobridge is

demonstrated in Fig. 7a–c as a function of size effect

parameter, l2=h for different theories. These figures show

that increasing l2=h results in enhancing the instability

voltage of the system. This means size effect provides a

hardening behavior that enhances the elastic resistance and

consequently pull-in voltage of the nanobridge. On the

other hand, with increase in the beam thickness, results of

strain gradient theory approaches to those of classic theory

(horizontal lines). Figure 8a–c represents the influence of

size effect on the instability deflection (wPI) of the nano-

bridge. As seen, with increasing l2=h the pull-in deflection

of the nanobridge decreases, although in classical theory

the pull-in deflection is independent of the size effect.
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4.5. Effects of ion concentration

The effect of ion concentration parameter (n0) on the

instability behavior of the nanobridge is shown in Fig. 9a,

b considering the presence of dispersion forces. This fig-

ure reveals that the pull-in voltage enhances by increasing

n0. The results of Fig. 9a, b demonstrate that the aug-

mentation of ions in the vicinity of electrodes surface

increases the instability voltage. Figure 10a, b shows the

effect of ion concentration on the pull-in deflection of the

nanobridge. As seen, increase in ion concentration can

decrease the pull-in deflection. Indeed, Figs. 9 and 10

reveal that increase in the Debye length of the electrolyte

enhances the instability voltage while reduces the maxi-

mum stable deflection of the system.

4.6. Effect of potential ratio

Figure 11a, b shows the influence of the potential ratio (k)
on mid-point deflection of the nanobridge for different size

parameter values. As seen, mid-point deflection of the

double-clamped nanobridge is always positive for any

amount of k value. Note that this trend is different from

what observed in cantilever nanobeam where its free-end

deflection can be positive or negative depending on k value

[19]. This figure implies that for both repulsive and

attractive electrochemical forces, the double-clamped

beam deflects downward. This difference is the result of

nonlinear stretching term that induces stiffening effect in

the nanobridge.
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5. Conclusions

The strain gradient theory has been employed to investigate

the size-dependent pull-in instability of electromechanical

nanobridge immersed in liquid electrolyte, considering the

effect of electrical double layer and dispersion forces. The

nonlinear governing equation has been solved using three

different approaches. The obtained results show that the

dispersion forces reduce the pull-in voltage of the nano-

bridge. While Casimir force reduces the pull-in deflection

of the nanobridge, vdW attraction increases the instability

deflection of the system. For ultra-thin nanobridge that the

thickness is comparable with the material length scale

parameters, size effect increases the pull-in voltage due to

the stiffening effect. It is found that augmentation of bulk

ion concentration increases the pull-in voltage of the

nanobridge while decreases the pull-in deflection of the

system. Nanobridge can only bend down for any potential

ratio value. This trend is different from that reported for

nanocantilevers. The results obtained using Rayleigh–Ritz

method is in good agreement with those of numerical

method. The LPM has the advantage of providing simple

closed-form approximation for engineers and designers.

Appendix: Lumped parameter model

In order to develop a lumped parameter model, a trial

solution for deflection of the nanobridge is selected as the

following:

WðXÞ ¼ Wmax

2
1� cos

2pX
L

� �� �
ð40Þ

Taking the derivative from total energy of the system

[Eq. (22)] with respect to Wmax and setting the result to

zero (e.g., dP
dWmax

¼ 0), yields the load–deflection

characteristic equation:

p4WmaxE

4L4
16ID1 þ 64Ip2D2 þ AW2

max

� �
� fext ¼ 0 ð41Þ

Substituting fext at W = Wmax in the above relation one can

obtain:

p4WmaxEð16ID1 þ 64Ip2D2 þ AW2
maxÞ

4L4

þ
bee0j2w

2
1 2

w2

w1
cosh jðg�WmaxÞð Þ � 1� w2

w1

� �2� 	

2 sinh2 jðg�WmaxÞð Þ

�
�Ab

6pðg�WmaxÞ3

p2�hb
240

ffiffiffi
st

p
ðg�WmaxÞ4

8<
: ¼ 0

ð42Þ

Using the definition of wmax ¼ Wmax=g the dimensionless

relation can be written as:

p4wmax 4D1 þ 16p2D2 þ
1

2
w2
maxg

� �

þ b2½2k coshðn0ð1� wmaxÞÞ � 1� k2�
2 sinh2ðn0ð1� wmaxÞÞ

� am
ð1� wmaxÞm

¼ 0

ð43Þ

By rearranging Eq. (43), the relation between applied

voltage and the maximum deflection can be obtained in the

form of Eq. (37).
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