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Helicobacter pylori (H. pylori) colonization induces vigorous innate and specific immune
responses; however, the infection does not disappear and a chronic active gastritis
continues if left untreated. It has been shown that the topographical pattern and immune
response of gastritis are the main reasons for the bacteria persistence and the clinical
outcome. Gastritis due to H. pylori is caused by a complicated interaction among a variety
of T cell subsets. Regulatory T (Treg) cells suppressing the immune response of antigen-
specific T-cells have recently been demonstrated to play a key role in chronic inflammation
by immunologic tolerance. Treg cells have been identified as the major regulatory compo-
nent of the adaptive immune response and being involved inH. pylori-related inflammation
and bacterial persistence. There have been many controversies over the role of Treg cells in
H. pylori infection. Many studies have shown that the local Treg response protects the
gastric mucosa from intensified inflammation and tissue damage, and the risk of H. py-
lori-associated diseases has an inverse correlation with Treg accumulation, even if the
decrease in the inflammatory response is recognized by Treg it causes increase in bacterial
density. This paper reviews the role of Treg in different clinical expressions of H. pylori
infection. � 2016 IMSS. Published by Elsevier Inc.
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Introduction

Helicobacter pylori (H. pylori) is a helical, microaerophilic,
gram-negative, and flagellated bacteria. This bacterium is
one of the most important human pathogens, affecting
O50% of humans. H. pylori and mankind have had an
ancient relationship for at least 58,000 years (1,2). H. pylori
infection commonly happens in early childhood and, if left
untreated, the host may carry the bacterium during their
entire lifetime (3). H. pylori colonization is usually asymp-
tomatic (4). However, carriage of H. pylori for long terms
considerably increases the risk of acquiring site-specific
diseases. Of the infected population, |10% develop peptic
ulcer disease, 0.1% develop mucosa-associated lymphoid
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tissue lymphoma (MALT), and 1e3% develop gastric
adenocarcinoma, (5e8). The variable outcomes in H.
pylori-infected patients may depend on various factors such
as H. pylori virulence factors, inflammatory responses
influenced by host genetic diversity, or environmental fac-
tors (such as smoking, malnutrition, high salt intake,
vitamin and antioxidant deficiency), which ultimately affect
the interactions between pathogen and host (9). H. pylori
colonization causes a powerful and complicated immune
response in the gastric mucosa, which is not adequate to
eliminate the pathogen and may even have a contribution
to chronic infection or other complications (7,10,11). The
exact mechanisms by which the H. pylori-induced immune
response contributes to gastrointestinal mucosal damage
have not yet been explained adequately. However, many
studies have demonstrated that immune response and cyto-
kines contribute to controlling the infection and sustaining
the development of the chronic inflammation (12e15). In
this review, we seek to discuss the role of regulatory T-cells
Inc.
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and their signature cytokines in different clinical expres-
sions of H. pylori infection.

Bacterial Virulence Factors

Chronic inflammation caused by H. pylori in the gastric
mucosa plays a major role in the development of gastric
cancer (16). Several bacterial virulence factors contribute
to the inflammatory response towards H. pylori by either
altering host-signaling pathways important for maintaining
tissue homeostasis in epithelial cells or stimulating
innate immune cells differentially. Of these, the best-
characterized ones are cag pathogenicity island (PAI),
CagA, and VacA. However, some bacterial determinants
such as g-glutamyltranspeptidase (gGT), urease or peptido-
glycan have been demonstrated to be significant inducers of
gastric inflammation.

CagPAI

Cag PAI is an approximate 40-kb locus composed of 27e31
genes. Several genes within this island encode the cag type
IV secretion system (T4SS) and the CagA protein (17). The
T4SS forms a syringe-like pilus structure through which
CagA can be ‘‘injected’’ into the target cells. Binding to
the ectodomain of a5b1 integrin is a very important step
for the translocation of CagA into the host cells (18). After
assembly of the T4SS and pilus formation, CagA is trans-
located into host cells where it can phosphorylate at EPIYA
sites (19) by SRC and ABL. Several studies have demon-
strated that CagA can directly activate NF-kB and induce
IL-8 release (20,21). CagA is injected into not only gastric
epithelial cells but also B lymphoid cells (22) and murine
and human dendritic cells (DCs) (23,24). Notably, CagA
translocation into DCs suppresses host immune response
through declining pro-inflammatory cytokine secretion
such as IL-12p40 and increasing the expression of the
suppressive cytokine IL-10 (24), suggesting pro- and anti-
inflammatory property of CagA throughout H. pylori infec-
tion, which depends on the cellular context. In addition,
the study of Cook et al. demonstrated that the concentration
of the chemokine CCL20 is dramatically increased in the
gastric mucosa of patients infected by H. pylori and the
vast majority of mucosal Tregs express its receptor
CCR6. Gastric biopsy samples from patients infected with
cagþ strains contain higher concentrations of CCL20.
CCL20 expression is induced in gastric epithelial cells in
a cag type IV secretion system-dependent manner. Recom-
binant CCL20 induces the migration of Tregs in vitro,
demonstrating its importance as a chemoattractant for these
cells (25).

VacA

All H. pylori strains carry VacA gene, which codes for the
secreted pore-forming protein VacA. Cell type-specific
toxicity, expression levels, and disease severity are associ-
ated with sequence variation in VacA different domains
(26). The VacA gene is present in all strains. Initial studies
on VacA detected two main polymorphic regions, the signal
sequence (s1 and s2) and two types of mid-region (m1 and
m2), and the more recently identified intermediate (i1 and
i2) region, which is located between the s and m regions
(27,28). The mosaic combination of the VacA s and m
region alleles can give rise to s1/m1, s1/m2, s2/m1 and
s2/m2 type strains. VacA s1/m1 chimeric strains induce
greater vacuolation than s1/m2 strains, and there is typi-
cally no vacuolating activity in s2/m2 strains (29). The i re-
gion plays a functional role in vacuolating activity because
VacA s1/i1/m2 strains are vacuolating types and VacA
s1/i2/m2 strains do not induce vacuolation. All s1/m1 VacA
alleles are type i1, all s2/m2 alleles are type i2, and s1/m2
alleles can be either i1 or i2 (30). VacA is secreted by the
bacterium via a type V autotransport secretion system and
enters the host cells by endocytosis. When it is internalized,
VacA accumulates in different cellular compartments and
induces apoptosis (31). Moreover, VacA disrupts tight con-
nections of epithelial cell and is distributed in the lamina
propria where it faces T-cells recruited to the infection sites.
Therefore, T cell proliferation and effector functions are
inhibited, which allows persistence of the bacterium (32).
VacA has also been reported to affect T-cells indirectly;
however, the mechanisms are still unknown. VacA can
induce DC tolerance and regulatory T cell induction, but
this effect has not yet been demonstrated in human cells
(33). Although VacA affects the host inflammatory
response mainly by suppressing activation of T cells, the
toxin induces a pro-inflammatory effect on T-cells mediated
by NF-kB activation and leads to IL-8 upregulation (34).
Moreover, VacA-elicited disruption of autophagy is another
mechanism by which gastric inflammation may occur (35).
Another distinct VacA effect is its role in persistent H.
pylori infection by inhibiting T-cells immune response
and proliferation (28). During H. pylori infection, T-cells
are virtually hyporesponsive, which is attributed to trans-
forming growth factor-b (TGF-b), which exerts a suppres-
sive effect on T-cells. Moreover, the mucosal TGF-b1
expression levels were shown to be dependent on VacA
genotypes, with a positive correlation between secreted
VacA s1 (or s1 m1) types and increase in mucosal TGF-b1
mRNA activity and increased mucosal TGF-b1 mRNA
levels, hence contributing to persistent infection. VacA-
exposed dendritic cells produce IL-10 and induce the
FOXP3 and contact-dependent differentiation of T-cells
into CD4þCD25þFOXP3þ regulatory T (Treg) cells while
simultaneously preventing T helper 1 (Th1) and Th17 dif-
ferentiation (33). A study by Fassi Fehri et al. indicated that
miR-155 was commonly regulated by H. pylori in different
cell lineages (epithelial and hematopoietic). Bacterial miR-
NA inducers were identified (VacA, GGT and LPS) and
shown to be activators of cAMP. In turn, cAMP was found



247Regulatory T-cells in Helicobacter pylori Infection
to be necessary for Foxp3 induction. Eventually, miR-155
was shown to repress the protein kinase A (PKA) inhibitor
(PKIa) protein expression in order to facilitate continuous
intracellular cyclic adenosine monophosphate (cAMP) pro-
duction. These results established a direct link between
Foxp3 and miR-155 in human T-cells and highlight the
importance of cAMP in the miR-155 induction cascade
elicited by H. pylori infection (36). Other studies have
suggested the sequential induction of Foxp3 and miR-155
by H. pylori keeps the cAMP pathway functional in order
to achieve a long-lasting modulation of the immune system
(36,37).

gGT

gGT is constitutively expressed by all H. pylori strains and
its presence was shown to be essential for establishment of
infection in mice (38). It has been shown that an H. pylori-
secreted low molecular weight protein suppresses T-cell
proliferation (39). This inhibitory factor was then identified
as gGT and disruption of the Ras signaling pathway was
shown as the molecular mechanism used by gGT to induce
T-cell cycle arrest (40). Recent data on murine models of
infection indicate that gGT contributes to DC polarization,
which leads to skewing the T-cell response towards a regu-
latory phenotype (33). Nevertheless, further studies are
required to clarify how gGT induces DC tolerance. In addi-
tion, gGT contributes to subsequent activation of NF-kB,
gastric inflammation via generation of H2O2, and upregula-
tion of IL-8 in primary gastric epithelial cells (41). GGT
exposed dendritic cells produce IL-10 and induce the
FOXP3 and contact-dependent differentiation of T-cells
into CD4þCD25þFOXP3þ regulatory T-cells while simul-
taneously preventing T helper 1 (Th1) and Th17 differenti-
ation (33).

Urease and LPS

H. pylori express many proteins that are important in the
pathogenesis of the bacterium. These proteins not only
facilitate the survival of the bacterium in the gastric mucosa
but also induce a vigorous innate and adaptive immune
response. Of these factors, urease represents a critical viru-
lence determinant for this species as it protects the bacteria
from gastric acidity by generating ammonia from the urea
in host tissues (42). In addition, urease is one of the most
abundant proteins produced by H. pylori, representing 5%
of the total bacterial cell protein. It consists of two subunits,
subunit A (UreA) and subunit B (UreB), UreB is a major
target for immune recognition in patients with H. pylori-
induced gastroduodenal diseases and host immune response
to UreB contribute to inflammation (42). H. pylori LPS and
the urease B subunit (UreB) promote NLRP3 inflamma-
some and caspase-1 activation as well as IL-1b and IL-18
processing and secretion. H. pylori LPS activates IL-1b
expression via TLR4, MyD88 and NF-kB, whereas UreB
signals via TLR2, MyD88 and NF-kB to activate NLRP3
transcription. The assembly of NLRP3, ASC and pro-
caspase-1 leads to caspase-1 activation and to the process-
ing of pro-IL-1b and pro-IL-18. Mature cytokines are
released, bind to their receptors on naive T-cells and pro-
mote Th1 differentiation and H. pylori control in the case
of IL-1b, and Treg differentiation, immune tolerance and
persistence in the case of IL-18 (43). Interestingly, H. pylori
infection of TLR2�/� and NLRP3�/� mice phenocopied the
effects of caspase-1 or IL-18 gene deletion. These mice
were able to control the bacteria more efficiently and
exhibited more pronounced Th1 (and Th17) responses upon
infection (44). In contrast, FoxP3þ Treg frequencies in the
stomach-draining mesenteric lymph nodes were lower in
TLR2�/� mice, presumably due to their inability to produce
bioactive IL-18. Indeed, a defect in any of the factors of the
TLR2/NLRP3/caspase-1/IL-18 axis produces a phenotype
reminiscent of Treg or DC depletion, which leads to better
infection control and more pronounced chronic inflamma-
tion and immunopathology (45e47).
Subpopulations of Regulatory T-cells

There are several different types of Treg cells, commonly
characterized as CD4þ, FOXP3þ, CD127low, and express-
ing high levels of CD25 (48). Treg cells can be divided into
two subgroups, natural Treg cells (nTreg) and inducible
Treg cells (iTreg), based on their maturation site
(Figure 1). A major breakthrough was the report by
Miyara et al. demonstrating that, by combining FOXP3
with CD45RA, Treg cells were classified as either
resting (FOXP3dim CD45RAþ) or activated (FOXP3high

CD45RA�), while at the same time FOXP3dim CD45RA�

cells were classified as activated non-suppressive T-cells
(‘false positive’ FOXP3 expression) and therefore correctly
excluded from the Treg cell enumeration (49). Infection of
C57BL/6 mice with H. pylori demonstrated that different
subpopulations of CD4þ T lymphocytes play distinct roles
in mediating and regulating H. pylori-induced gastritis. For
example, adoptive transfer of CD4þCD45RBhigh effector
T-cells from naive donors to immunodeficient recipients
causes severe gastritis in H. pylori-infected recipients,
whereas cotransfer of CD4þCD45RBlow regulatory T-cells
(known as ‘‘Treg’’) protects against gastritis (50).
Natural Treg Cells

nTreg cells develop during normal T-cell maturation in
the thymus and enter peripheral tissues where they suppress
the activation of self-reactive T-cells (51). nTreg cells as a
distinct lineage are released from the thymus with already
expressed FoxP3. They are antigen-specific and survive as
a long-lived population in the periphery (52). IL-2 is
required for their generation and expansion, together with
stimulation of the TCR/CD3 complex and co-stimulation



Figure 1. Subpopulations of regulatory T-cells and suggested immunosuppressive mechanism: Thymus-derived Treg (nTreg) and induced or adaptive Treg

(iTreg). nTreg cells develop during normal T-cell maturation in the thymus and enter peripheral tissues where they suppress the activation of self-reactive

T-cells. The iTreg cells directly develop in the peripheral lymphoid organs from naive T-cells after antigen priming. (A color figure can be found in the online

version of this article.)
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via CD28 (53,54). TGF-b is required to maintain nTreg
cells after their emigration from the thymus (55).

Inducible Treg Cells

iTreg cells directly develop in the peripheral lymphoid
organs from naive T-cells after antigen priming. iTreg cells
are FoxP3þCD4þCD25þ cells, which mediate their inhibi-
tory activities by production of immunosuppressive cyto-
kines such as IL-10 and TGF-b (51). The main factors
detected as vital for inducing FoxP3 expression in
CD4þCD25� cells are IL-2 and TGF-b (55). After interact-
ing with TCR, FoxP3 is induced downstream to TGF-b
signaling (52) and is required for complete differentiation
of iTreg cells. The two best-characterized iTreg types are
FoxP3(þ)iTreg and FoxP3� IL-10-producing so-called
type 1 regulatory T cells (Tr1 cells). In addition, a popula-
tion of TGF-producing Th3 cells has been described with
regard to intestinal antigen-induced tolerance (56). Tr1
cells are defined as regulatory T-cells that are induced when
antigen and IL-10 are present and are, in turn, able to pro-
duce large amounts of IL-10 (57). They were first found in
the gut where they effectively suppress colitis (58).
Depending on the conditions during generation, Tr1 cells
usually display a high TGF-b production and lower or
remove IFN-g, IL-2, and IL-4 secretion. Both types of
induced Tregs equally suppress Th1� as well as Th2�

mediated immune responses. Tr1 and Th3 have been shown
to originate from naive resting T-cells after stimulation with
dendritic cells (DCs) (59), depending on DC type and
activation status. In addition, naturally occurring Tregs
are also involved in the generation of induced Tregs, a
mechanism proposed as infectious tolerance. Whereas the
Tr1 and Th3 populations of iTregs were long considered
to be the only defined induced regulatory populations,
research has identified another population of induced Tregs
that can are potent mediators of suppression as well as in
the propagation of infectious tolerance: iTr35 regulatory
cells. These inducible regulatory cells were identified by
Vignali et al. and mediate suppression primarily through
the expression of the regulatory cytokine IL-35 (60).

Regulatory T-cells in H. pylori Infection

During acute infections, a prompt and robust immune
response is needed to eradicate the infectious organisms.
However, if eradication fails, a continued and strong but un-
successful immune response would be detrimental, leading
to severe tissue damage. Therefore, during chronic inflam-
matory states several immunomodulatory mechanisms are
involved. One of these mechanisms is iTreg activation
and expansion. iTreg accumulates in H. pylori-induced dis-
eases and chronically infected mucosal tissues (61). It has
not yet been established whether the pathogens induce
iTreg responses as a strategy for increase in survival or
whether the chronic inflammation results in iTreg induc-
tion. However, different pathogens’ purified antigens have
been demonstrated to enhance the induction of Treg
in vitro, which makes the former alternative more likely.
H. pylori is able to skew the DC responses towards a
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Treg-inducing IL-10-secreting phenotype (62), which is
often concurrent with decreased IL-12 secretion and Treg
induction during H. pylori antigen presentation. This effect
can be mediated by both CagA phosphorylation in DC and
Toll-like receptor 2 ligands (24,63). Studies on H. pylori-in-
fected children and adults have shown that children possess
reduced gastric inflammation in comparison to infected
adults, despite similarity in mean levels of H. pylori coloni-
zation. More importantly, inflammation in the children has
been shown to be less at each level of bacterial colonization
in comparison to that of adults, indicating an overall down-
regulation of the immune response to H. pylori in children
(64). Studies on H. pylori-infected children and adults have
demonstrated that H. pylori-induced gastritis in adults is
derived from involvement of both Th1 and Th17 immune-
mediated inflammatory pathway and that both pathways
are likely to down-regulate in the gastric mucosa of infected
children. As a result, TGF-b gastric levels, IL-10 and
gastric number of Treg Foxp3þ cells are higher in children
Figure 2. Role of Treg and H. pylori infection: H. pylori-induced gastritis is cha

cells. The various T-cell lineages secrete different cytokines that modulate further

diseases such as peptic ulcer or gastric cancer. (A color figure can be found in t
than in adults in H. pylori-positive populations (64e66). In
this regard, the predominant Treg differentiation in H.
pylori-infected children might explain more susceptibility
of children to the H. pylori infection and the bacterium
persistence. A study in mice infected with H. pylori indi-
cated that transfer of T-cells after removal of Treg to
immune-deficient hosts and subsequent infection with H.
pylori were shown to result in enhanced inflammation in
the stomach and increased IFN-g production compared to
transferred T-cells containing Treg in mice (67). Further
studies have shown an accumulation of Treg in the stomach
of H. pylori-infected mice and that depletion of Treg in
C57BL/6 (H2b) mice using CD25 antibody in vivo followed
by challenge with H. pylori bacteria results in enhanced
inflammation and recruitment of T-cells, macrophages,
and B cells to the stomach compared to untreated infected
wild-type mice (68,69). The events described above could
explain the state of tolerance implemented by the bacterium
and are summarized in Figure 2.
racterized by a predominant Th1/Th17 response that is regulated by Treg

the immune response that is a critical factor for the development of severe

he online version of this article.)
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Regulatory T-cells and Gastritis

Human-based studies have shown that the degree of active
H. pylori-induced inflammation is negatively correlated
with Treg cells number in periphery or gastric mucosa
(70e73). Interestingly, a similar activity was reported for
peripheral Treg cells towards H. pylori-stimulated AGS
cells showing impairment in IL-8 secretion compared to
those cultivated with Treg cells (71). Lundgren et al.
isolated peripheral CD4þCD25highT-cells from H. pylori-
infected individuals and demonstrated their immune sup-
pressive activity towards the CD4 cells primed by H.
pylori-presenting DCs (71). Consistently, increased
numbers of Treg cells were shown in the gastric mucosa
in H. pylori-infected patients (71e74). Treg cells were
found to be associated with increasing bacterial coloniza-
tion (72), chronic inflammatory changes and the expression
of immune suppressive cytokines (74,75). Eradication ther-
apy of the infection causes a significant decrease in Treg
cells and corresponding cytokine levels of gastroduodenal
mucosa (74). Although H. pylori infection tends to transmit
within a family in early childhood, interestingly a strong
correlation could exist among increased numbers of
mucosal Treg cells, lower inflammatory scores and elevated
cytokine levels (IL-10, TGF-b1) characteristic of the func-
tional importance of Treg cell activity in early stages of the
acute infection (64,76). Although there is limited knowl-
edge of the interaction between Treg response and H. pylori
infection from acute childhood infection, Treg cell activity
could sensibly explain a more moderate acute phase of
infection resulting in the persistence of the bacteria and
chronic changes in an inflammatory equilibrium between
H. pylori and the host immune system (77). In a functional
assay, Robinson et al. isolated mucosal T-cells from
biopsies and stimulated those with H. pylori antigens
(75). Compared to uninfected donors, the stimulated cells
presented a predominant CD4þIL-10þ response character-
ized by a 36-fold increase in IL-10 production. Moreover,
patients with peptic ulcer disease were characterized by
remarkably reduced amounts of IL-10 and decreased Treg
cell activity, indicating that a low expression of IL-10 by
Treg cells is very likely to cause immune-mediated cell
damage and acute inflammatory changes leading to peptic
ulceration. Consistent with Str€omberg et al. (78), IL-10
was shown to be able to down-regulate epithelial cells
(AGS) inflammatory response through interfering with the
NF-kB signal pathway, which results in a decrease in
IL-8 secretion after H. pylori stimulation (75).

Regulatory T-cells and Peptic Ulcer

H. pylori-infected patients with duodenal ulcer have, on
average, higher acid secretion than normal, healthy individ-
uals, which results in development of areas with gastric
metaplasia in the duodenum where H. pylori preferentially
colonize (79,80). Interestingly, a decreased cytokine
secretion has been reported in these areas of duodenal
metaplasia compared to asymptomatic carriers, indicating
that an active suppression of epithelial responses in the
duodenum of duodenal ulcer patients (81) could contribute
to the bacteria persistence and subsequent development of
duodenal ulcers (Figure 2). The reduced duodenal cytokine
response to H. pylori infection could be as a result of
host-derived or bacterial factors and perhaps to Treg accu-
mulation at the infection site in an effort to control tissue
damage. Indeed, Foxp3þ T-cells have been found to prefer-
entially localize to areas of gastric metaplasia in duodenum
of patients with duodenal ulcer (74). Unfortunately, there
has been very little research on the Treg response in the
stomach of H. pylori-infected individuals with peptic
ulcers. The study by Robinson et al. found a 2.5-fold lower
IL-10þTreg frequency but increased Th1 and Th2 response
in the mucosa of peptic ulcers patients compared to infected
asymptomatic volunteers (75). In addition, stimulation of
peripheral blood mononuclear cells with H. pylori antigens
showed that mononuclear cells from peptic ulcer patients
secreted much less IL-10 than cells from asymptomatic
controls, indicating that defective regulation of T-cell res-
ponses to H. pylori may lead to peptic ulcer diseases (75).
Regulatory T-cells and Gastric Cancer

As with H. pylori infection, several studies demonstrated
escalated numbers of Treg cells in patients with gastric can-
cer (82e84). The study by Wang et al. of H. pylori-infected
patients including patients with gastric cancer showed
increased number of Treg cells in the peripheral mononu-
clear cell population in addition to the local mucosal
changes (84). Interestingly, Th1/Th2-derived cytokines
was found to decline, starting from asymptomatic gastritis
to gastric atrophy, intestinal metaplasia and intraepithelial
neoplasia to gastric cancer. The steady decline was associ-
ated with a parallel increase in the Treg cell compartment in
peripheral blood and the presence of CagAþ H. pylori
strains, which favored a Treg cell-mediated chronic inflam-
mation and CagAþ strain persistence (84). Wang et al. (84)
and Jang et al. (73) reported increased numbers of mucosal
Tregs in H. pylori-associated gastritis where they were
positively correlated with a chronic grade of gastritis.
Mucosal Treg cells were found to increase further
in patients with dysplastic changes and at the highest
density for gastric cancer (73). Data also demonstrated
elevated levels of peripheral blood FOXP3-expressing
CD4þCD25þCD127lowTreg cells in patients with gastric
cancer. The increased numbers of FOXP3þ CD4þ

CD25þCD127lowTreg in the tumor tissue, the mucosal
microenvironment and the adjacent lymph nodes and the
ascitic fluid of advanced tumor stages have been noted. A
positive correlation has been found with the tumor-node-
metastasis (TNM) stage and particularly high numbers in
advanced tumor stages. Additional data on the functional



Table 1. Schematic representation of potential mechanism behind the

context of Treg cells and response toH. pylori eradication treatment (92)
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activity were demonstrated via Treg cell-mediated anti-
proliferative effect on T effector cells (83). A retrospective
immunohistochemical study showed increased numbers of
Treg cells were associated with vascular, perineural and
lymphatic invasion of gastric tumor cells. Higher numbers
of Treg cells were correlated with advanced tumor stage
and negatively correlated with the total survival of 110 pa-
tients (85), proposing FOXP3þTreg cells as an additional
marker to identify high-risk gastric cancer patients that
need further therapy after R0 resection (85). The pattern
of mucosal infiltration and the total number of Treg cells
were immunohistochemically characterized with regard to
TNM tumor stage and survival, exhibiting a more diffuse
pattern of Treg cell infiltration, which correlated with poor
prognosis and survival (86).
Regulatory T-cells and MALT

More than 5% of all gastric malignancies are primary gastric
lymphoma. MALT lymphoma emerges from the extranodal
sites and is initiated in response to chronic antigenic stimu-
lation caused by H. pylori antigen and is the best example
for the malignant transformation caused by the pathogen
(87). Neoplastic B cells have been proposed to arise in
MALT from the marginal zone of lymphoid follicles (88).
It has been suggested that persistent H. pylori infection
may induce chronic inflammatory responses, contributing
to DNA damage in lymphocytes. Genetic abnormalities sub-
sequently increase the neoplastic B-cell clone (87). It has
been suggested that neoplastic B-cell proliferation is antigen
dependent and functions similar to ordinary immune
response and therefore needs T-cells specifically activated
by H. pylori antigens (89). Regression of |75% of lym-
phoma cases after H. pylori eradication by antibiotics is
the significance of this stimulation (90). The other patients
who do not respond to H. pylori therapy may indicate that
initiation of neoplastic lymphocytes in these subjects is
not dependent on H. pylori infection (87). Many investiga-
tions proposed the hypothesis that the gastric MALT homeo-
stasis in lymphoma is the same as chronic gastritis but not
similar to the regulatory mechanisms that assume control
over the actions leading to progression (91,92). Current
investigations showed that patients with gastric MALT lym-
phoma with a high number of tumor infiltrating FOXP3þ

cells usually show better response to eradication therapy
(Table 1) (91). Among the H. pylori-positive MALT lym-
phoma patients who received H. pylori eradication therapy,
a significantly higher number of FOXP3þ Treg cells among
CD4þ T-cells (the FOXP3þ/CD4þ cell ratio) were seen in
responders compared with non-responders. This may indi-
cate that the ratio can predict responsiveness to H. pylori
eradication therapy. Furthermore, this investigation showed
that the FOXP3þ/CD4þ ratio in gastric MALT lymphoma is
nearly three times larger than that of chronic active gastritis
(83). In contrast to immune effector cells and regulators
(Treg cells) that are induced in inflamed areas, the immune
responses in the nonresponder group are highly divergent
from normal inflammation. This may suggest that, in the
nonresponder group, the possible driving force of the tumor
is more pronounced (Table 1) (92). To demonstrate the pre-
cise biological significance of Treg cells in MALT lym-
phomas, additional studies should be carried out.

Regulatory T-cells and Allergic Diseases

An inverse association between H. pylori and asthma is
postulated. It has been shown that the high level of Tregs
is seen in H. pylori infection. According to this hypothesis,
H. pylori infection may contribute to allergic disease preven-
tion, and H. pylori-free individuals are more susceptible to
allergic disease. Additionally, a higher level of gastric Tregs
in H. pylori-positive individuals has been reported in
comparison to individuals without the organism (75,93).
Interestingly, circulating Tregs are also increased in number
in H. pylori-positive individuals (84). Furthermore, in mice
experimentally infected with H. pylori, the systemic Tregs
are elevated. Suppression of the immune responses by Tregs
facilitatesH. pylori colonization (68). The increased number
of Tregs may also have immunosuppressive effect in hu-
mans. Hence, H. pylori-positive subjects with lower Tregs
are more likely to develop peptic ulcer (75) and supposedly
have more severe gastritis. Mucosal Tregs may be more
elevated in CagAþ H. pylori colonization, and the immuno-
modulatory cytokines such as IL-10 at mucosal levels may
be more elevated than in CagA� colonization (76). If such
phenomenon applies to circulating Tregs, it could potentially
explain the stronger, negative association with childhood
asthma of CagAþ strains (94,95). Cross-sectional studies
have documented that the two phenomena are inversely
correlated, with H. pylori carriers having a decreased risk
of developing childhood or early-onset allergic asthma,
rhinitis and atopic dermatitis than the non-infected
population (94,96). However, for more verification of the
hypothesis, further studies are recommended.
Conclusion

Recent data obtained from animal and human studies are
indicative of an important contribution of regulatory T-cells
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to H. pylori infection and associated complications. A pre-
dominant Th1/Th17 immune response against H. pylori
infection suggests a relatively mild chronic inflammation
that contributes to the lifelong persistence of bacteria.
The role of Treg in dampening H. pylori-induced inflamma-
tion at the site of infection and maintaining chronicity of
the infection has already been confirmed in several studies
of both mouse models and humans. Thus, it can be hypoth-
esized that, in peptic ulcer, Treg suppresses the epithelial
cell-initiated inflammatory response, which leads to bacte-
rial overgrowth and ulcers. For gastric cancer, accumulation
of Treg in H. pylori-induced gastritis may prevent carcino-
genesis but may contribute tumor progression and metas-
tasis in already established tumors. Interventional studies
to target Treg in animal models of H. pylori-associated
peptic ulcers and gastric cancer could remarkably enhance
knowledge of specific therapies for fighting H. pylori infec-
tion and associated diseases. The events described above
are summarized in Figure 2.
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