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Abstract Human gonadotropin hormone receptor, a G-
protein coupled receptor, is the target of many medications
used in fertility disorders. Obtaining more structural informa-
tion about the receptor could be useful in many studies related
to drug design. In this study, the structure of human gonado-
tropin receptor was subjected to homology modeling studies
and molecular dynamic simulation within a DPPC lipid bilay-
er for 100 ns. Several frames were thereafter extracted from
simulation trajectories representing the receptor at different
states. In order to find a proper model of the receptor at the
antagonist state, all frames were subjected to cross-docking
studies of some antagonists with known experimental values
(Ki). Frame 194 revealed a reasonable correlation between
docking calculated energy scores and experimental activity
values (|r| = 0.91). The obtained correlation was validated by
means of SSLR and showed the presence of no chance corre-
lation for the obtained model. Different structural features re-
ported for the receptor, such as two disulfide bridges and ionic

lock between GLU90 and LYS 121 were also investigated in
the final model.

Keywords Cross-docking simulation . G-protein coupled
receptors .Humangonadotropin receptor .Molecular dynamic
simulation

Introduction

Gonadotropin releasing hormone (GnRh) is a decapeptide
produced from hypothalamus neurons in the perioptic area
of the anterior and arcuate nucleus of the mediobasal section
[1]. Binding of this hormone to GnRH receptors (GnRHR)
can modulate human reproductive behavior through release
of follicle stimulating hormone (FSH) and luteinizing hor-
mone (LH) [2, 3].

GnRHRs are considered as members of the G-protein
coupled receptors family, which are among transmembrane
proteins with seven helix bundles [4]. GPCRs respond to the
extracellular signals by activation of different pathways inside
the cell [5]. For instance, in case of GnRHRs, the biological
response is transferred via initiation of inositol phosphate cas-
cade [6]. GnRH analogs have been widely used in the treat-
ment of many diseases, including precocious puberty,
leiomyoma, cancer, endometriosis, and other gynecological
abnormalities [7, 8]. The two types of GnRH receptors found
in mammals possess different pharmacological effects. Since
GnRHR type 2 is absent in humans, its role is being played by
GnRHR-1 [9, 10]. Based on previous research on the struc-
tures of agonists and antagonists for GnRHR, it can be con-
cluded that a great demand to find more potent ligands for this
target has emerged [11–13].

Due to the lack of a proper 3D structure for this receptor,
most studies in this field were limited to ligand based drug
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design (LBDD) [14]. A set of small GnRH antagonists was
reported by Lanier et al. and their quantitative structure activ-
ity relationship (QSAR) was revealed by computational ap-
proaches [15]. In another study, QSAR investigation of 128
non-peptide antagonists was performed [16]. Obtaining 3D
conformations of GnRHR at different agonist and antagonist
states can be helpful for structure based drug design studies
[17, 18]. For this purpose, in this study a model of the receptor
was suggested using templates with known 3D structure.
Homology modeling studies of GPCRs have been remarkably
reported as a computational tool to predict the structure of
these transmembrane proteins [19–21]. In the next step, mo-
lecular dynamics (MD) simulation studies were performed to
yield different conformations of the receptor. The simulation
was performed within a lipid bilayer to study the receptor in
physiological conditions. There are some conserved motifs of
GnRHR in primates, such as a disulfide bridge at the location
of CYS14-CYS200, which is essential for trafficking the re-
ceptor trough plasma membrane. Moreover, it was seen that
GLY90 and LYS121 mutation triggers ionic lock distraction,
which disables receptor signaling [22]. Thus, some experi-
mental based structural features of the receptor, such as disul-
fide and salt bridges were considered and studied during sim-
ulation. Finally, cross-docking studies of the extracted frames
with some known structures with available experimental ac-
tivity (Ki) were performed. The frame with the most correla-
tion between experimental and computational data was pro-
posed to be used in structure based drug design studies
(SBDD) [14]. A further validation method based on sum of
the sum of log rank (SSLR) has also revealed that the current
modeling approach was not found by chance correlations.

Materials and methods

A 24 core computational server running on Linux Ubuntu
12.04.3 LTS was used during MD and docking simulation
studies. Preparation and visualization of the structures was
done using a corei7 laptop running on windows 8 operating
system. Bash scripting was used to run different experiments
of this study. All scripts are provided in Supplementary
information.

Homology modeling

Sequence of humanGonadotropin releasing hormone receptor
(GnRH, ID code p30968) was adopted from the UniProt da-
tabase (http://www.uniprot.org) as FASTA format [23]. The
sequence was submitted to the I-TASSER (Iterative
Threading ASSEmbly Refinement, http://zhanglab.ccmb.
med.umich.edu/I-TASSER) server to identify acquired
templates based on threading approach from the protein data
bank. A restraint file to assign disulfide contacts between the

residues CYS114-CYS196 and CYS14-CYS200 was pre-
pared. Other parameters of modeling were remained as
default.

The values of C-score as implemented in the I-TASSER
server were used to select the best PDB structure for molecular
dynamics simulation [24]. The model with the highest C-score
value was thereafter submitted to the Procheck server for cal-
culation of Ramachandran plot [25].

To orient the model based on the correct topology inside
lipid bilayer, multiple servers were engaged for prediction of
transmembrane helices.

The methods comprised TOPCONS (http://topcons.cbr.su.
se) [26], HMMTOP (http://www.enzim.hu/hmmtop) [27],
DAS (http://www.enzim.hu/DAS/DAS.html) [28], SOSUI
(http://harrier.nagahama-i-bio.ac.jp/sosui) [29], TMHMM
(http://www.enzim.hu/hmmtop) [30], TMpred (http://www.
ch.embnet.org/software/TMPRED_form.html) [31], predict
protein (https://www.predictprotein.org) [32], PolyPhobius
(http: / /phobius.sbc.su.se/poly.html) [33], APSSP
(http://imtech.res.in/raghava/apssp) [34], and ExPASY
(https://www.expasy.org) [23].

Molecular dynamics simulation

GROMOS96 53A6 force field, as implemented in
Gromacs4.5.5, was extended in such a way to include
Berger lipid parameters [35]. Rotation and orientation of the
receptor within a 128 DPPC bilayer was done using editconf
and VMD softwares, respectively [36]. Translation of the re-
ceptor inside lipid bilayer was done based on the data obtained
from transmembrane prediction servers.

InflateGro method was applied as an algorithm to embed
the protein in the bilayer membrane. This method works by
expanding the whole system in such a way to remove extra
lipid residues and accommodate the protein [37]. Afterward,
the system was subjected to iterative runs of shrinking and
minimization to provide the favorable area per lipid for
DPPC systems (62.9-64.2 Å) [38].

GridMAT-MD_v2.0 perl script was used for the calculation
of area per lipid density during all steps of shrinking and
minimization [39]. In the next step, water and ions were added
to the system. The solvation procedure was done in a way to
prevent penetration of water molecules inside hydrophobic
parts of the lipid membrane. For this purpose, van der Waals
radius of carbon atomwas set to 0.3 Å. In the ionization step, a
total concentration of 0.15 M NaCl was added to simulate the
system at physiological concentrations. Subsequently, the sys-
tem was subjected to a minimization step using steepest de-
cent followed by two runs of NVT and NPT. During both
equilibration experiments, protein backbone was restrained.
In the case of NVT v-scale, a modified Berendsen was used,
while in NPT, the Nose-Hover algorithm was used as an ac-
curate thermostat. The Parinello-Rahman barostat was used in
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the case of NPT simulation. The main run of simulation was
done in periodic boundary condition (PBC) using particle
mesh Ewald (PME) long range electrostatics. In order to allow
enough time for conformational changes inside the receptor, a
100 ns MD simulation was performed on the whole system.
Heat map analysis of all residues was done based on Cα
fluctuations during simulation [36].

Receptor sampling

TCL scripting as implemented in VMDwas used for sampling
different conformations of the receptor. Accordingly, 250
PDB structures were uniformly extracted from the output file
of MD trajectories covering all simulation time. The resulted
PDB files were converted to pdbqt by assigning Gasteiger
partial charges using MGLTOOLs 1.5.6 [40].

Ligands preparation

A set of 34 small molecule ligands with known experimental
antagonist activity against GnRHR were retrieved from the
CHEMBL database as SMILES strings [41]. The structures
were subsequently converted to 3D mol2 using open babel
2.3.2. Meanwhile, the corresponding values of Ki for the com-
pounds were converted into PKi (-logki) and was saved as a
separate text file. The addition of Gasteiger partial charges and
merging non-polar hydrogen atoms were done in the case of
all structures using MGLTOOLS 1.5.6 to yield 34 pdbqt files.

Binding site prediction

The sequence of GnRHR was subjected to RaptorX
(http://raptorx.uchicago.edu) for prediction of binding site
based on a fold recognition approach [42]. In another
experiment, the resulted model of I-TASSER was submitted
to the CASTp (http://sts.bioe.uic.edu/castp; computed atlas of
surface topography of proteins) server with a probe radius set
to 1.4 Å in order to predict the possible cavities in the receptor
[43].

Docking simulation

Coordinates of Cα for LYS121 were considered as the center
of the grid box based on the results of the previous experi-
ments and literature review. Calculation of grid box size was
according to the equation below:

Size x; y; zð Þ ¼ 2* LAD ¼ 30 ) ð1Þ

Where LAD denotes the largest atomic distance in all data
set. In the next step, 250*34 = 8500 cross docking simulations
were done using the Vina 1.1.2 software [44]. Exhaustiveness
value in Vina was set to 100 to perform effective docking

simulations for all structures. Finally, the lowest energy scores
of Vina were extracted as a matrix keeping receptor frames in
columns and ligand structures as rows. The resulted matrix of
data is supported in Supplementary information.

Analysis of docking results was done by calculating
Pearson correlation coefficient between each column and the
vector of pKi values. The frame with the best correlation co-
efficient was entered to an in-house application implemented
in .NET in order to calculate SSLR [45]. VMD and pose view
applications were used for the visualization and prediction of
binding mode, respectively [36, 46]. Pattern for the interaction
of all compounds with receptor was obtained by protein ligand
interaction profiler (PLIP) (https://projects.biotec.tu-dresden.
de/plip-web/plip/)[47].

Results and discussion

The alignment file used in the modeling procedure is
displayed in Fig. 1. As seen, seven templates based on ten
different threading methods were used in the modeling of
the receptor. The used templates were 4n6h_A (structure of
human delta opioid 1.8 Å), 2RH1_A (human beta 2 adrener-
gic receptor 2.4 Å), 1GZM_A (bovine rhodopsin 2.65 Å),
4IAR_A (chimeric protein of 5-HT1BRIL in complex with
ergotamine 2.7 Å), 4PHU_A (human GPR40 2.33 Å),
4DJH_A (human kappa opioid receptor 2.9 Å), and
4GRV_A (the crystal structure of neurotensin receptor NTS1
in complex with neurotensin 2.8 Å). The highest identity
among the used templates was attributed to 4DJH_A,
4GRV_A, and 4IAR_A (23 %).

The results of five top I-TASSERmodels based on their C-
score values are displayed in Table 1. Higher values of C-
score represent a model with more confidence. As seen in
Table 1, model 1 revealed the highest C-score value.
Meanwhile, TM-score of model 1 is more than 0.5, indicating
its correct topology to be selected for further validation stud-
ies. In order to verify that the obtained model is similar to
native proteins, a Ramachandran plot was calculated using
the Procheck server [25]. As seen in Fig. 2, more than 90 %
of the residues were located in the most favored regions of the
plot. This shows that the conformational characteristics of the
modeled receptor are similar to the native proteins.

Since topology of membrane proteins inside the lipid bi-
layer is very important prior to simulation studies, TM regions
of GnRHR were predicted by different methods. As seen in
Table 2, all methods shows similar results to Uniprot data in
terms of predicting TM domains of the receptor. The next
important step was to predict the binding of the receptor
wherein two different methods were used for this purpose.
One approach was based on spatial probes to find regions with
the capability of accommodating small molecules as imple-
mented in CASTp server and the other was based on
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conserved residues as implemented in RaptorX [43, 48]. The
residues selected by Raptorx were ASP98, LUE117, LYS121,
LEU122, MET125, CYS196, THR198, TYR211, ASN212,
THR215, LEU219, TRP280, TYR283, TYR284, GLY287,
ASN305, PHE309, and PHE313. Similar residues were also
calculated based on CASTp server.

Being satisfied with the 3D model of the receptor and its
topology, the next step was to perform molecular dynamic
simulation in order to sample different conformations of the
receptor in physiological conditions. A 100 ns MD simulation
was performed on the whole system to reach an equilibrate
state for the receptor based on RMSD variation of Cα and
energy plot. As seen in Fig. 3, the system reached a steady
state after 80 ns from the beginning of the simulation.
Meanwhile the energy diagram of the system is showing that
it is well equilibrated during simulation. In order to observe
which parts of the receptor revealed more fluctuations during
simulation, a heat map plot was calculated using the VMD
software [36]. Figure 4 shows the fluctuation of Cα for each
residue during MD. Based on the heat map study, the first
extracellular domain of the receptor (1-21) showed a signifi-
cant fluctuation after 10 ns from the beginning of the simula-
tion. The residues 141-151, which are located in the cytoplas-
mic domain of the receptor have also revealed a large

conformational change during simulation. The most signifi-
cant fluctuation was however attributed to residues 181-191 in
the second extracellular domain of the receptor. In order to
obtain different conformations of the receptor for further
docking studies, sampling of different frames were done based
on 400 ps intervals. The obtained frames were subjected to
cross docking simulation studies with known antagonists in
order to investigate the frame with the most correlation toward
experimental activity. Cα of the central residue LYS121 based
on the two described methods (CASTp and RaptorX) and the
literature was selected as the center of the grid box for docking
studies. Pearson correlation of all docking frames with PKi
values are depicted in Fig. 5. As seen, the most correlation

Fig. 1 Final alignment used for homology modeling of GnHR

Fig. 2 Ramachandran plot of human GnRHR structure

Table 1 C-score values
of five top I-TASSER
models

Model C-score TM-score

1 0.34 +0.76

2 −2.58 –

3 −2.20 –

4 −2.42 –

5 −2.58 –
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was observed in the case of frame 194 (|r| = 0.91). This result
shows the most agreement between computational studies and
experimental values for this frame. To ensure that this corre-
lation was not obtained by chance, SSLR study was per-
formed for the docking results of frame 194. SSLR is a non-
parametric statistic method for evaluating the used scoring
function in comparison with randomly ordered scores. Based
on this method, the vector of random ranks is ordered by their
inhibitory constants. Ordering of the scores was done in such a
way that r1 was the most active compound and rn was the least
active one. SSLR value was finally calculated according to the
below equation (Eq. 2).

SSLR ¼ n log r1ð Þ þ n‐1ð Þ log r2ð Þ þ … þ log rnð Þ ð2Þ

Where n is the number of compounds (n = 34). The
obtained value of SSLR in this study was 691.60. This

procedure was repeated for 1000 times with permuted
values, and a p-value of 0.04 was calculated. It was
therefore showing that a reasonable scoring function
was used in this study. The final step was to obtain
an overview for the binding mode of the structures in
the cavity of GnRH receptor. For this purpose, the in-
teraction maps of the receptor for all compounds were
studied. The pattern for the interaction of all structures
within the receptor are summarized in Table 3 and their
corresponding pictures are provided in Supplementary
information. Hydrophobic interaction with the residues
TYR290 and TRP101, as reported in the literature, are
seen for many structures of this study [10, 49].
Hydrophobic interaction with LEU117 and PHE308
were also seen in most structures. ASN212 was a key
residue in hydrogen bonding interaction with many
structures as in accordance with the literature [10, 49].

Fig. 3 RMSD of Cα during 100 ns MD simulation (left), energy plot of MD simulation (right)

Table 2 Transmembrane helices
prediction of human
gonadotropin releasing hormone
receptor

Method TM1 TM2 TM3 TM4 TM5 TM6 TM7

Uniprot 39 – 58 78 - 97 116 - 137 165 - 184 213 - 232 282 - 300 307 - 326

HMMTOP 39 – 58 83 - 101 116 - 135 160 - 178 209 – 229 269 – 288 307 - 326

TMHMM 39 – 58 79 - 101 116 - 138 159 - 181 209 - 231 270 - 292 307 - 326

TOPCONS 37 – 58 79 - 100 120 - 141 158 - 179 213 – 234 268 - 289 307 - 328

SOSUI 39 – 61 – 120 - 142 160 - 182 215 - 237 268 - 290 304 - 326

TMpred 37 – 58 82 - 106 116 - 137 155 - 178 209 - 232 268 - 286 303 - 326

DAS 37 – 54 83 - 95 117 - 137 162 - 171 213 - 236 277 – 286 307 - 326

Predictpr 39 – 61 78 - 99 118 - 139 156 - 176 211 - 233 269 - 291 303 - 326

Philius 37 – 58 78 - 100 122 - 141 158 - 178 211 - 232 268 - 288 306 - 326

SCAMPI 38 – 58 78 - 98 122 - 142 159 - 179 210 - 230 272 - 292 –

polyphobious 37 – 58 78 - 97 117 - 137 158 - 178 211 - 234 269 - 292 304 - 326

J Mol Model (2016) 22: 225 Page 5 of 11 225



It was also found that TRP291, PHE308, TYR211, and
HIS199 are the residues involved in π-π interaction
with many ligands.

For instance, the binding site of the frame 194 with the
most active compound, CHEMBL179691, is depicted in

Fig. 6. CHEMBL179691 is a known antagonist (ki =
0.56 nM) and docking observation has also confirmed its
suitable energy (-12.2 kcal mol−1) [50]. It was seen that
residues TYR291, LEU117, HIS199, and VAl304 were
critical residues in the ligand receptor conjunction. In

Fig. 4 Heat map analysis of
protein backbone during 100 ns
MD simulation

Fig. 5 Pearson correlation of all docking frames with experimental PKi values
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order to ensure that the obtained frame (frame 194) is in
accordance with all the structural features reported in the
literature, visualization of the structure was done by means
of the VMD software. As seen in Fig. 7a, based on or-
thographic views of the molecule, two conserved disulfide
bridges are present in the final structure (CYS14-200 and
CYS114-196). At least, one conserved disulfide bridge has
been reported for most studies related to GPCRs family
[51–54]. Specific recognition of the salt bridges locations
is essential for correct folding of the third protein structure
[55]. The two specific residues that make the bridge need
to be as close as the extent of one water molecule to form
an ionic lock. In this study, a known ionic lock is also
present between GLU90 and LYS 121. This ionic lock is
necessary for correct folding of the receptor within the
lipid membrane [22]. In a previuos study, comparative
modeling of GnRH receptor based on the structure of
rhodopsin and its 35 ns simulation within DPPC mem-
brane has been reported. Frame 194 of the present exper-
iment, describing the receptor at antagonist state, was su-
perposed with the aforementioned model at TM regions.
As depicted in Fig. 7b, the two models were similar in
TM1 and TM2 regions (RMSD = 1.2 Å and 1.05 Å, re-
spectively). On the other hand relatively higher differences
were observed in the case of TM7 and TM6 regions
(RMSD = 3.07 Å and 2.51 Å, respectively) [13].

Mobility of the binding site residues was also studied
by plotting the RMSD values of the related residues
during simulation. As seen in Fig. 8 (left) fluctuations
of binding cavity was stabilized during the final steps of
simulation with an RMSD average of 2 Å. A more
detailed study was done in the case of those frames
with more than 0.5 correlation toward experimental ac-
tivity vector. As seen in Fig. 8 (right), frame 196 wasT
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Fig. 6 Binding site interaction of CHMBL179691 by GnRHR receptor
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more similar to frame 194 in terms of the binding cav-
ity residues (RMSD = 0.88 Å). The largest distance was
seen in frame 25 representing the receptor at the early
stage of simulation (RMSD = 1.88 Å).

Based on the aforementioned experiments and valida-
tions, the described model of the receptor can be a
promising target for future studies related to drug design
for human GnRH receptor. The pdb format of frame
194 is provided in Supplementary information.

Conclusions

A 3D structure for GnRH human receptor at the antagonist
state was introduced applying in silico methods.
Ramachandran plot confirmed that the threading based model
was in accordance with the native proteins. Conserved disul-
fide bridges were particularly introduced in the model.
Different samples of the receptor were extracted based on
molecular dynamic simulation and the binding site state was

Fig. 7 aOrthographic view of frame 194, presence of ionic lock (GLU90-LYS121) and two disulfide bridges (CYS114-200 and CYS114-196) in frame
194 of human GnRH receptor b Comparison of the obtained model (frame 194, blue) with another model reported in literature (red)

Fig. 8 Mobility of binding site residues during simulation
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assessed using a cross docking method of known antagonists.
One frame was approved based on Pearson correlation and
SSLR studies and verified that our computational method
could perfectly emulate the GnRHR at the antagonist state.
The presented model would play a pivotal role in the future
drug design studies to discover new ligands. The strategy used
in this study was sampling different frames of a G-protein
coupled receptor at different states of simulation and
performing cross-docking simulations on the extracted frames
with known inhibitors. This strategy of calibrating computa-
tional analysis with experimental data can be used in the case
of other membrane receptors to yield reliable models for struc-
ture based drug design studies.
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