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Abstract It has been well established that the physical

performance of nanodevices might be affected by the

microstructure. Herein, a two-degree-of-freedom model

base on the modified couple stress theory is developed to

incorporate the impact of microstructure in the torsion/

bending coupled instability of rotational nanoscanner.

Effect of microstructure dependency on the instability

parameters is determined as a function of the microstruc-

ture parameter, bending/torsion coupling ratio, van der

Waals force parameter and geometrical dimensions. It is

found that the bending/torsion coupling substantially

affects the stable behavior of the scanners especially those

with long rotational beam elements. Impact of

microstructure on instability voltage of the nanoscanner

depends on coupling ratio and the conquering bending

mode over torsion mode. This effect is more highlighted

for higher values of coupling ratio. Depending on the

geometry and material characteristics, the presented model

is able to simulate both hardening behavior (due to

microstructure) and softening behavior (due to torsion/

bending coupling) of the nanoscanners.

1 Introduction

Ultra-small electrostatic torsional scanners due to the high

sensitivity, high quality factor, low actuation voltage and

small possibility of stiction have wide applications in the

nanoelectromechanical systems (NEMS) and micro-opto-

electro-mechanical systems (MOEMS), such as tunable

torsional capacitors, digital light processing chips and

torsional radio frequency switches used in microsatellites,

communication instruments and radar systems [1–5].

Among these systems, torsional NEMS scanners are being

considered as potential ultra-small devices with promising

applications in fabrication of smart structures such as

confocal microscopy, wireless communications, optical

telecommunication, bar code reading, laser printing and

endoscopic bio-imaging, integrated circuits, switching

devices, nanorobots. Therefore, many researchers have

focused on the numerical, theoretical and experimental

analysis of such systems through different assumptions and

methods [6–14]. Figure 1 shows the schematic of a typical

rotational micro-/nanoscanner that is constructed from a

movable mirror suspended above fixed conductive ground

electrode. The movable component is a main plate (mirror)

attached to two supporting rotational beams. The fixed

component is a conductive exciting electrode which is

fixed above a substrate. By imposing a DC voltage dif-

ferential between the components, the main plane deflects

and rotates, simultaneously. At a critical voltage, i.e., the

pull-in voltage, the Coulomb torque/force exceeds the

elastic resistance and the mirror adheres the fixed plane.

Predicting the pull-in threshold is crucial for design and

fabrication of the torsional scanners. In this regard, many

investigators have focused on modeling the instability and

determining the pull-in parameters of rotational systems

[15–17]. Previous researchers have developed one-degree-
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of-freedom (1-DOF) models to capture the instability

behavior of rotational mirrors [18–20]. The 1-DOF model

has incorporated only the torsional instability mode and

thus is reliable only if the deflection of the mirror is neg-

ligible. However, when the torsional-induced displacement

and vertical deflection of the mirror are of the same order,

the pull-in parameters could not be accurately computed

via 1-DOF models. In this case, bending of the supporting

beams should be taken into account as well as torsion. In

this regard, other investigators have employed 2-DOF

models to calculate the coupling between the bending and

torsion instability of the rotational system [21–25]. This

coupling can be considered in the coupled displacements or

angles in total [26].

The scale dependency of material properties at small

scale is an important phenomenon that might be crucial in

ultra-small systems. If the characteristic dimension of

metallic components be of the order of the intrinsic

material length scale, a hardening trend in the mechanical

characteristics of the components appears. Fleck et al. [27]

have been observed the microstructure-dependent response

of some materials in torsional loading. Therefore, the

microstructure is considered as an important phenomenon

that might affect the stable behavior of rotational scanners.

This microstructure dependency of material characteristics

of nanobeams can be modeled using size-dependent theo-

ries such as modified couple stress theory (MCST). This

theory has been used by previous investigators in modeling

the mechanical performance of microstructures [28–30]. In

recent years, MCST has been employed for modeling the

microstructure-dependent stability of electromechanically

actuated beams and plates [31].

To the best knowledge of the authors, none of the previous

researchers has incorporated the influenceofmicrostructure in

2-DOF models used for simulating the rotational nano-/mi-

croscanners. Therefore, the authors present a new

microstructure-dependent two-degree-of-freedom (2-DOF)

model to incorporate the size phenomena in the torsion/

bending coupled instability of rotational NEMS scanner.

Since the van der Waals (vdW) force can highly affect the

stability threshold of rotational systems [24, 32, 33], the vdW

force is incorporated in the governing equation.

2 Fundamentals of MCST

Using the MCST, the strain energy U in region X is shown

[34]

U ¼ 1

2

Z
X

rijeij þ mijvij

� �
dV ð1Þ

where the stress tensor rij, strain tensor eij, deviatoric part

of the couple stress tensor mij and symmetric curvature

tensor vij are defined by

rij ¼ ktr eij
� �

I þ 2leij ð2aÞ

eij ¼
1

2
ruð Þiþ ruð ÞTi

� �
ð2bÞ

mij ¼ 2l2lvij ð2cÞ

Fig. 1 Schematic diagram of rotational nanoscanner
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vij ¼
1

2
rhð Þiþ rhð ÞTi

� �
ð2dÞ

hi ¼
1

2
curl uð Þð Þi ð2eÞ

where l, k, l, r and h are shear modulus, Lame constant,

length scale parameter, displacement vector and rotation

vector, respectively.

3 Governing equations

As shown in Fig. 1, the scanner is modeled by a moveable

main plate suspended by two nanobeams over a fixed

substrate electrode. In order to derive the equilibrium

equations, it is required to compute the electrical and vdW

forces (Felec and FvdW) and moments (Melec and MvdW)

acting on the main plate.

3.1 Calculating of electrical force and moment

The electrical force of a differential element of the main

plate can be written as [24]

dFelec ¼
ebV2

2 D� d� r sin hð Þð Þ2
dr ð3Þ

where h and d are the rotation and deflection of main plate.

Using (3), the total electrical force is obtained as:

Felec ¼
Z a2

a1

dFelec

¼ eV2b

2sinðhÞ
1

D� d� a2sinðhÞ
� 1

D� d� a1sinðhÞ

� �

ð4Þ

By applying sin hð Þ � h; hmax ¼ D
a
; D ¼ d

D
; H ¼ h

hmax
; a ¼

a1
a
and b ¼ a2

a
in Eq. (4), the electrical force can be sim-

plified as:

Felec ¼
eV2b

4hmaxHD

1

1� D� bH
� 1

1� D� aH

� 	
ð5Þ

By using Eq. (3) the electric moment (dMelec) can be

explained as:

dMelec ¼
ebV2

2 D� d� rsin hð Þð Þ2
rcosðhÞdr ð6Þ

Hence, the total electric moment is defined as:

Melec ¼
Z a2

a1

dMelec ¼
eV2bcosðhÞ

2sin2h

D� d
D� d� a2sinh

�

� D� d
D� d� a1 sinh

þ ln
D� d� a2 sinh
D� d� a1 sinh

� �	
ð7Þ

Using dimensionless parameters and assuming sin(h) & h
and cos(h) & 1 Eq. (7) can be rewritten as

Melec ¼
ebV2

2H2h2max

1�D
1�D�bH

� 1�D
1�D� aH

þ ln
1�D�bH
1�D� aH


 �� 	

ð8Þ

3.2 Calculating of vdW force and moment

The vdW force of a differential element of the main plate

can be written as [24]

dFL
vdW ¼ Ab

6p D� d� r sin hð Þð Þ3
dr ð9aÞ

dFR
vdW ¼ Ab

6p D� dþ r sin hð Þð Þ3
dr ð9bÞ

By integrating Eq. (9), the total vdW force applied on

main plate is obtained as:

FvdW ¼
Z a

0

ðdFL
vdW þ dFR

vdWÞ

¼ Aab

3p
D� d

ðD� d� a sinðhÞÞ2ðD� dþ a sinðhÞÞ2
ð10Þ

Using dimensionless parameters, Eq. (10) can be

rewritten as

FvdW ¼ Aab

3pD3

1� D

ð1� D�HÞ2ð1� DþHÞ2
ð11Þ

By using Eq. (9), the vdW moment acting on a differential

element (dMvdW) can be obtained as:

dML
vdW ¼ Ab

6p D� d� r sin hð Þð Þ3
r cosðhÞdr ð12Þ

dMR
vdW ¼ Ab

6p D� dþ r sin hð Þð Þ3
r cosðhÞdr ð13Þ

Using (12) and (13), the total vdW moment is obtained as:

MvdW ¼
Z a

0

ðdML
vdW � dMR

vdWÞ

¼ Aba3 sinh cosðhÞ
3pðD� d� a sinhÞ2ðD� dþ a sinhÞ2

ð14Þ

Using dimensionless parameters and assuming sin(h) & h
and cos(h) & 1 Eq. (14) can be rewritten as

MvdW ¼ AbH

3pDh2maxð1� D�HÞ2ð1� DþHÞ2
ð15Þ

It should be noted that the beam have torsion and

deflection simultaneously. In the following, the superpo-

sition principal is applied to derive the torsion and bending

equilibrium of the rotational scanner.
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3.3 Torsion equilibrium of the beam

Considering the same geometry for nanobeams, one can

obtain the following equation for each nanobeam:

1

2
ðMelec þMvdWÞ �Melas ¼ 0 ð16Þ

In above relation, Melas is the torsional elastic resistance

moment of each nanobeam.

In order to calculate the elastic moment Melas of the

nanobeambased on couple stress theory, one can start with the

Saint-Venant’s approach. The elasticmoment of the beamcan

be determined (see ‘‘Appendix 1’’) as the following:

Melas ¼
lh
L

J þ Jcð Þ ð17Þ

where J is the cross-section polar moment of inertia and Jc is

the microstructure-dependent polar moment of inertia [35]:

J ¼

pt4

2
Circular

tw3

3
1� 192w

p5t

X1
n¼1

1

2n� 1ð Þ5
tanh

2n� 1ð Þpt
2w


 �" #
Rectangular

8>>><
>>>:

ð18Þ

Jc ¼
3Al2 Circular

3Al2þ twðw2þ t2Þ
12

þ
Z Z

A

X
oU
oY

�Y
oU
oX

� �
dXdY Rectangular

8<
:

ð19Þ

In the above relation, A, t and w are the area, thickness

and width of the beam cross section, respectively. Fur-

thermore, U is the warping function which is determined

numerically (see ‘‘Appendix 1’’). It should be noted that Jc
is microstructure dependent, i.e., it is a function of the

length scale parameter (l). For two typical cross-section

geometries e.g., square and circular, the non-dimensional

parameter Jc/J is plotted versus l/t in Fig. 2.

Now by substituting Eqs. (8), (15) and (17) into (16), we

have:

2HhmaxlJ 1þ Jc
J

� �
L

� ebV2

2H2h2max

1� D
1� D� bH

� 1� D
1� D� aH

�

þ ln
1� D� bH
1� D� aH


 �	

� AbH

3pDh2maxð1� D�HÞ2ð1� DþHÞ2
¼ 0

ð20Þ

Equation (20) expresses the torsion equilibrium of the

nanobeams and relates rotation and deflection of the main

plate to the external voltage as well as the microstructure

parameter and vdW force.

3.4 Bending equilibrium of the beam

To find the bending equilibrium governing equation of the

main plate, one can use an energy approach. By imposing

the minimum energy for equilibrium, we obtain relations

(21) for nanobeam (see ‘‘Appendix 2’’):

1

2
Felec þ

1

2
FvdW � 12:403ðEI þ lAl2Þ

L3
d ¼ 0 ð21Þ

Now by substituting Eqs. (5), (11) into (21) and using

non-dimensional parameter, we have:

eV2b

4hmaxHD

1

1� D� bH
� 1

1� D� aH

� 	

þ Ab

6pD2hmax

1� D

ð1� D�HÞ2ð1� DþHÞ2

� 12:403ðEI þ lAl2ÞD
L3

D ¼ 0

ð22Þ

Equation (22) expresses the bending equilibrium of the

nanobeams and relates the rotation and deflection of the

main plate to the applied voltage, microstructure parameter

and vdW attraction.

3.5 Solving the equilibrium equations

To determine the instability parameters of the scanner,

Eqs. (20) and (22) can be rearranged in the new following

forms:

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Jc/J

/tl

t

t

Fig. 2 Variation of Jc/J as a function of microstructure parameter (l/

t) for different cross sections
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N1 H;Dð Þ ¼ V ¼
1þ Jc

J

� �
H4 � nH3

ð1�D�HÞ2ð1�DþHÞ2

Hð1�DÞ
1�D�bH � Hð1�DÞ

1�D�aH þH ln 1�D�bH
1�D�aH

� �
8<
:

9=
;

1
2

ð23Þ

N2 H;Dð Þ ¼N1 H;Dð Þ

�
K2 1þ 6

1þt
l
t

� �2� �
DH2� nHð1�DÞ

ð1�D�HÞ2ð1�DþHÞ2

H
1�D�bH� H

1�D�aH

8<
:

9=
;

1
2

¼ 0

ð24Þ

where

n ¼ AbL

6pDh3maxlJ
ð25aÞ

V
2 ¼ eV2bL

4lJh3max

ð25bÞ

K ¼ D

hmaxL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:403EI

lJ

s
ð25cÞ

The parameter K shows the ratio of bending stiffness to

torsion stiffness of the nanobeam. The torsion mode is

dominant in the case of large K, while the bending mode is

dominant for low K values.

Equations (23) and (24) are solved to determine the

rotation (H) and deflection (D) of the scanner for any

applied voltage difference ( �V). According to the implicit

function theorem [6], the pull-in point should be satisfied

the following condition:

oN1

oH
HPI;DPIð Þ oN1

oD
HPI;DPIð Þ

o N2

oH
HPI;DPIð Þ o N2

oD
HPI;DPIð Þ




¼ 0;

N2 HPI;DPIð Þ ¼ 0

ð26Þ

From relation (26), the instability parameters of the

scanner which are defined as H, D at the pull-in point (HPI

and DPI) are determined as a function of the geometrical

parameters (a and b), coupling parameter (K) and the

length scale parameters (l). Finally, by substituting the

obtained HPI and DPI in Eq. (23), �V at the pull-in point

( �VPI) is determined.

4 Result and discussion

4.1 Bending/torsion coupled instability

Influence of coupling ratio (K) geometrical parameter (b)
on the pull-in behavior of typical microscanner is shown in

Figs. 3, 4 and 5. As seen, the pull-in behavior depends on

the value of the coupling parameter (K). For systems with

K C 15, the instability angle is close to the results of pure

torsion model (K = ?). Interestingly, if both bending and

torsion stiffness are considerable, an increase–decrease

trend can be observed in HPI–b curves. It is due to the

conquering of the bending pull-in mode over the torsion

mode. Moreover, the instability voltage determined by the

2-DOF model is lower than that of the 1-DOF model value.

Figure 6 shows the influence of the aspect ratio (L/t) on

the pull-in angle and pull-in deflection. This figure reveals

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2
α=0; K=2
α=0.2; K=2
α=0; K=4
α=0.2; K=4
α=0; K=15
α=0.2; K=15
α=0; Torsion model
α=0.2; Torsion model

ΘPI

β

Fig. 3 Impact of geometry parameter (b) and coupling ration (K) on

the pull-in angle

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

α=0; K=2
α=0.2; K=2
α=0; K=4
α=0.2; K=4
α=0; K=15
α=0.2; K=15

ΔPI

β

Fig. 4 Impact of geometry parameter (b) and coupling ration (K) on

the pull-in displacement
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that by increasing the aspect ratio, the pull-in deflection

increases while the pull-in angle decreases. It is clear from

Fig. 6 that for L/t\ 20 the pull-in deflection is less than

0.03 % and the difference between the 2-DOF and 1-DOF

model is less than 7 %, but for L/t[ 20 the difference

between 1-DOF and 2-DOF modes is dominant.

4.2 Microstructure effect

Figures 7, 8 and 9 illustrate the impact of length scale

parameter on the instability behavior of the typical scanner.

As seen, microstructure effect enhances the instability

threshold of the nanoscanner. The microstructure depen-

dency increases the pull-in voltage and pull-in deflection of

the scanners and reduces the pull-in angle. The pull-in

voltage calculated by the microstructure-dependent model

is higher than that determined by the classical theory. In

addition, this stiffening trend is more important for larger l/

t values. Figures 7, 8 and 9 reveal that when the thickness

of the torsional beam is in the order of the material length

scale parameter, classic models might not be precise

enough for determining the pull-in parameters of miniature

scanners fabricated from microstructure-dependent

materials.

The effects of microstructure as well as vdW force on

the instability of a typical scanner are demonstrated in

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5
α=0; K=2
α=0.2; K=2
α=0; K=4
α=0.2; K=4
α=0; K=15
α=0.2; K=15
α=0; Torsion model
α=0.2; Torsion model

VPI

β

Fig. 5 Impact of geometry parameter (b) and coupling ration (K) on

the pull-in voltage

100 200 300 400 500
0 0

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

ΘPI
ΔPI

L/t

ΔPI

ΘPI

Fig. 6 Impact of ratio (L/t) on the pull-in parameters

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.31

0.32

0.33

0.34

0.35

ξ=0
ξ=0.01
ξ=0.005
ξ=0.002

l/t

ΘPI

Fig. 7 Influence of microstructure and vdW force on the pull-in

angle (a = 0.06 and b = 0.84 and K = 5)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.12

0.13

0.14

0.15

0.16

ξ=0
ξ=0.01
ξ=0.005
ξ=0.002

l/t

ΔPI

Fig. 8 Influence of microstructure and vdW force on the pull-in

displacement (l/t) (a = 0.06 and b = 0.84 and K = 5)
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Figs. 10, 11 and 12 where the variation of the instability

parameters is presented versus the coupling ratio (K). As

seen, the vdW force has a softening effect and reduces the

pull-in voltage. While microstructure effect increases the

stability of the system, vdW force reduces the instability

threshold of the system.

4.3 Validation

Figure 13 compares the pull-in voltage predicted by the

presented model with those obtained experimentally by

Zhan et al. [21]. As seen, while the classical model (l = 0)

cannot predict the pull-in voltage accurately, the results of

presented size-dependent model are very close to experi-

mental data.

Table 1 compares the pull-in parameters depict by pre-

sented model and the experimental results obtained by

Huang et al. [22]. This table implies that the instability

parameters determined by the proposed model are in good

agreement with those of experimental. In particular, the

pull-in parameters determined by the present model are

closer to the experimental values than the 1-DOF torsion

model. Figure 6 and Table 1 demonstrate that the pre-

sented model is in better agreement with experiments in

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.8

1

1.2

1.4

1.6

ξ=0
ξ=0.01
ξ=0.005
ξ=0.002

l/t

VPI

Fig. 9 Influence of microstructure and vdW force on the pull-in

voltage (a = 0.06 and b = 0.84 and K = 5)

10-1 100 101 102

0.1

0.2

0.3

0.4

0.5

0.6
Without vdW force and Size effect
With vdW force and without Size effect
With vSize effect and without vdW force
With vdW force and Size effect

K

ΘPI

Fig. 10 Variation of pull-in angle versus K parameter: impact of

microstructure and vdW force (a = 0.06 and b = 0.84)

10-1 100 101 102
0

0.1

0.2

0.3

0.4
Without vdW force and Size effect
With vdW force and without Size effect
With vSize effect and without vdW force
With vdW force and Size effect

K

ΔPI

Fig. 11 Variation of pull-in displacement versus K parameter: impact

of microstructure and vdW force (a = 0.06 and b = 0.84)

10-1 100 101 102
0

0.5

1

1.5

2

2.5
Without vdW force and Size effect
With vdW force and without Size effect
With vSize effect and without vdW force
With vdW force and Size effect

K

VPI

Fig. 12 Variation of pull-in voltage versus K parameter: impact of

microstructure and vdW force (a = 0.06 and b = 0.84)
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comparison with the 1-DOF torsional and classical 2-DOF

models. Indeed, both of these models present uniform

trends, i.e., softening (for 2-DOF model) or hardening (for

1-DOF models). However, the presented model is able to

predict both hardening and softening behavior depending

on the geometry and constitutive material.

5 Conclusions

A microstructure-dependent model has been presented to

investigate the coupled torsion/bending pull-in instability

of nanoscanner in the presence of vdW attraction. It is

found that the pull-in voltage decreases with decreasing

coupling ratio. It is found that neglecting the microstruc-

ture effect may cause major error in simulation of the

system. Increasing the microstructure effect causes a

hardening effect, i.e., decreases the instability voltage.

Impact of microstructure on instability voltage of the

nanoscanner depends on coupling ratio and the conquering

bending mode over torsion mode. This effect is more

highlighted for higher values of coupling ratio.

Appendix 1

In order to calculate the elastic moment Melas of the

nanobeam based on MCST, one can start with the Saint-

Venant’s approach and assume the displacement field as

[36]:

u1 ¼ �XYZ

u2 ¼ �XXZ

u3 ¼ XUðX; YÞ
ð27Þ

where u1, u2 and u3 are the displacement along the X, Y and

Z direction, respectively. Furthermore, X is the angle of

twist per unit length along the beam, and the function U(X,
Y) is the warping function depending on X and Y only. For

more details about warping effect, see [37, 38].

The governing equation of the torsional bar based on

MCST can be obtained as (see [35, 39] for details):

l2

4

o4U
oX4

þ l2

4

o4U
oY4

þ l2

2

o4U
oX2oY2

� o2U
oX2

� o2U
oY2

¼ 0 ð28Þ

with the boundary conditions of:

oU
on

� l2

4

o3U
on3

� l2

2

o3U
onos2

þ l2

2

o

os

1

q
oU
os

� �
� nXY þ nYX ¼ 0

o2U
on2

� o2U
os2

� 2

q
oU
on

¼ 0

ð29Þ

In the above relations, q, n(nx,ny) and s(-ny,nx) are the

curvature, the unit vector normal to the boundary and the

unit tangent to the boundary, respectively [35, 39].

Appendix 2

It should be noted that for thick and short beam (i.e., L/

t\ 20) the Timoshenko beam model should be used [26].

However, the difference between the 1-DOF and 2-DOF

results is negligible for L/t\ 20, and simple 1-DOF model

can be used (see Fig. 6). Hence, the Euler–Bernoulli beam

theory is employed in this work. Based on the Euler–Ber-

noulli beam theory, components of the displacement vector

for bending beam are expressed as [36]

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4
Experiment (Zhan et al. 2001)
Classical Torsional Model (l=0)
Classical Coupled Model (l=0)
Presented model (l=450 nm)

VPI

β

Fig. 13 Comparison the pull-in voltage calculate by theoretical

models with experimental results

Table 1 Comparison between

the pull-in parameters obtained

by the experiment and those of

different theories (K = 3.243,

Ā = 4 9 10-19 J)

Model VPI (V) Error* (%) HPI Error* (%) DPI Error* (%)

Experiment [21] 17.4 – 0.4198 – 0.0778 –

1-DOF torsion model [21] 20.1 15.5 0.5236 24.7 – –

Presented model (l = 150 nm) 18.17 4.4 0.4270 1.7 0.0752 3.34

Presented model (l = 0) 17.68 1.6 0.4270 0.9 0.0778 0

* Relative error with experiment
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u1 Zð Þ ¼ 0

u2 Zð Þ ¼ vðZÞ

u3 Zð Þ ¼ �Y
ovðZÞ
oZ

ð30Þ

where u1, u2 and u3 are the displacement along the X, Y and

Z direction, respectively.

By substituting this displacement field in Eq. (2) and

substituting the results in Eq. (1), the bending elastic

energy, Ub, can be determined as:

Ub ¼
1

2

ZL

0

EI þ lAl2
� � d2v

dZ2

� �2

dz ð31Þ

The work by the external forces can be obtained as:

we

Z v¼mðLÞ

0

1

2
½FvdW þ Felec�

� �
dw ð32Þ

As a trial solution for deflection of the nanobeam, the first

mode shape which satisfies the boundary conditions can be

selected as:

VðZÞ ¼ d
1:588

½coshð2:365ZÞ � cosð2:365ZÞ
� V0:9825ðsinhð2:365ZÞ � sinð2:365ZÞÞ ð33Þ

By substituting Eq. (33) in Eq. (31), the total energy of

system, G, can be written as:

P ¼ P ¼ Ub �We

¼ 6:2015ðEIþ lAl2Þ
L3

d2 � 1

2

Z d

0

FvdW þ Felecð Þdv ð34Þ

By imposing the minimum energy for equilibrium, i.e.,
oP
od ¼ 0, we obtain relations (24) for nanobeam.
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28. B. Akgöz, Ö. Civalek, Curr. Appl. Phys. 11, 1133–1138 (2011)

29. B. Akgoz, O. Civalek, Int. J. Eng. Sci. 49(11), 1268 (2011)

30. J. Abdi, A. Koochi, A.S. Kazemi, M. Abadyan, Smart Mater.

Struct. 20(5), 055011 (2011)

31. Y. Tadi Beni, A. Koochi, M. Abadyan, Physica E 43, 979 (2011)

32. J.G. Guo, Y.P. Zhao, Int. J. Solids Struct. 43, 675 (2006)

33. Y. Tadi Beni, M. Abadyan, Int. J. Mod. Phys. B 27(18), 1350083
(2013)

34. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids

Struct. 39(10), 2731 (2002)

35. P. Tong, F. Yang, D.C.C. Lam, J. Wang, Key Eng. Mater.

261–263, 11–22 (2004)

36. C.L. Dym, I.H. Shames, Solid Mechanics: A Variational

Approach (Railway Publishing House, Beijing, 1984)

37. N.H. Nguyen, B.D. Lim, D.Y. Lee, Int. J. Precision Eng. Man-

ufact. 16(4), 749–754 (2015)

38. N.H. Nguyen, B.D. Lim, D.Y. Lee, Struct. Eng. Mech. 54(1),
189–198 (2015)

39. G.C. Tsiatas, J.T. Katsikadelis, Eur. J. Mech. A-Solid 30,
741–747 (2011)

A 2-DOF microstructure-dependent model for the coupled torsion/bending instability of… Page 9 of 9 927

123


	A 2-DOF microstructure-dependent model for the coupled torsion/bending instability of rotational nanoscanner
	Abstract
	Introduction
	Fundamentals of MCST
	Governing equations
	Calculating of electrical force and moment
	Calculating of vdW force and moment
	Torsion equilibrium of the beam
	Bending equilibrium of the beam
	Solving the equilibrium equations

	Result and discussion
	Bending/torsion coupled instability
	Microstructure effect
	Validation

	Conclusions
	Appendix 1
	Appendix 2
	References




