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1 Introduction

With the recent development in the nanotechnology, ultra-
small beam-type structures are applied extensively in man-
ufacturing of nano-electromechanical systems (NEMS) 
such as sensors, probes, actuators, etc. [1–3]. A nano-bridge 
is one of the essential elements that is highly potential for 
developing new resonators [4], switches [5], memories 
[6], and sensors [7]. Figure 1 shows an example of a nano-
bridge which comprises a double-clamped flexible elec-
trode over a fixed plate. The length, width and thickness 
of moveable element are L, b and h, respectively. Applying 
an electric potential set-up between components causes the 
movable beam to bend downward to the ground. At a cer-
tain voltage, the nano-bridge loses its stability and pulls-in 
onto the ground electrode. The behavior of nano-structures 
with wide elements has been examined extensively by pre-
vious researches [8–11]. However, few investigators have 
focused on the instability of narrow-width beam-type sys-
tems [12]. For narrow-width nano-bridge, considering suit-
able force distribution is essential as well as simulating the 
size dependency and the surface effect.

The nano-scale structural effects, i.e., size depend-
ency should be taken into account in narrow beam-type 
nano-bridge modeling. A hardening trend is detected in 
the mechanical behavior of metallic structures when their 
characteristic dimensions are reduced to sub-micron [13–
15]. Also, this trend has been observed in some polymers 
[16]. The experimental observations report the length scale 
parameter of Cu-Ag Brass between 0.2 and 20 μm [17]. 
This parameter is examined to be 4 and 5 μm for copper 
and nickel, respectively [18]. The abovementioned experi-
ments emphasize that when the characteristic length of the 
nano-structure is comparable with the internal material 
length scale, the size dependency is inevitable. The classical 
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elasticity is not capable for simulating the scale depend-
ency. This phenomenon can be simulated using non-classic 
theories (e.g., nonlocal elasticity [19], couple stress theory 
[20], strain gradient theory (SGT) [14], modified couple 
stress theory (MCST) [21, 22], etc. Previous investigators 
have examined the mechanical behavior of miniature struc-
tures in the context of SGT [23–25]). This theory is more 
general than the MCST [22] and introduces three material 
length scale parameters. Indeed, the MCST is a special case 
of the SGT. In other words, by neglecting the additional 
higher-order stress components; SGT is degenerated into 
the MCST. Kong et al. used this size dependent continuum 
theory to simulate the behavior of an Euler–Bernoulli beam 
[26]. A new formulation for Timoshenko micro-beams was 
proposed by Wang et al. [27] based on the SGT.

Besides the scale dependency, the difference between 
the mechanical performance of surface layer and mate-
rial might affect the behavior of nano-bridge. Gurtin and 
Murdoch [28, 29] proposed a continuum theory for incor-
porating the influence of surface atoms on the mechani-
cal properties of thin solids. The impacts of surface layer 
on the buckling [30], static bending [31] and oscillation 
[32] of nano-beams have been examined using Gurtin–
Murdoch theory. Liu and Rajapakse have modeled the 
impacts of surface layer on the mechanical behavior of 
nano-beams with different cross sections [33]. Recently, 
Gurtin–Murdoch theory has been engage to estimate the 
influence of surface energy on the instability parameters 
of NEMS systems such as nano-bridge [34], cantilever 
nano-switches [35–37], graphite NEMS [38] and micro-
plates [39].

The aim of the present work is to establish a modified 
continuum beam model for simulating the pull-in behavior 
of narrow-width nano-bridge. For the simultaneous effects 

of surface energy and scale dependency, the SGT is associ-
ated with Gurtin–Murdoch elasticity (GME). Moreover, the 
modified force distribution (i.e., electrical force, Casimir 
interaction and van der Waals (vdW) force) is used in the 
simulation. Analytical Rayleigh–Ritz method (RRM) is 
used to solve the nonlinear constitutive equation.

2  Theory

2.1  Details of SGT

The stored strain energy density in the context of the SGT 
can be explained as [14]:

where εij, σij, γi, ρi, ηijk
(1), τijk

(1), χij
S, mij

S, indicate the strain ten-
sor, the classical stress tensor, the dilatation gradient vector, 
work conjugate to the dilatation gradient vector, the stretch 
gradient tensor, work conjugate to the stretch gradient ten-
sor, the rotation gradient tensor, work conjugate to the rota-
tion gradient tensor, respectively. These parameters are 
identified as [14]:

where ν is Poisson’s ratio and μ is shear modulus. Also, 
l0, l1 and l2 are additional material length scale parameters 
which appear in the constitutive equations.
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Fig. 1  Schematic view of a nano-bridge
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2.2  Details of GME

The strain energy in surface layer based on GME (US) is 
written [40]:

The surface constitutive equations are explained as [41]:

where tα is the traction vector on the surface, καβ is the sur-
face curvature tensor, ni is the outward unit normal to the 
surface, and ταβ are the in-plane components of the surface 
stress. The latest is given by:

where μ0 and λ0 are the surface elastic constants, and τ0 is 
the residual surface stress. The out-of-plane elements of the 
surface stress tensor are given by [37].

2.3  Nonlinear constitutive equation

The displacement field of an Euler–Bernoulli beam is 
explained as [42]:

where w is the centerline deflection of the beam in the Z 
direction.

2.3.1  Size‑dependent strain energy of the bulk

Substituting Eq. (14) in Eqs. (2–9), the nonzero compo-
nents are determined as:
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Substituting relations (15) in (1), the strain energy can 
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where I is the second moment of area around Y axis and A 
is the cross-sectional area.

The axial forces results in the stretching energy which is 
obtained as:

2.3.2  Strain energy in the surface layer

By substituting relation (14) in Eqs. (12, 13), one obtains

where E0 = λ0 + 2μ0 is the surface elastic modulus. By 
substituting Eq. (19) in Eq. (10), one obtains the surface 
energy:

2.3.3  Work of lateral loads

The work done by lateral loads is gained as:

where Fext is the summation of lateral loads, i.e., coulomb 
and dispersion force.

2.3.4  Kinetic energy and damping loss

The nano-beam is under the influence of a kinetic energy as:
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In addition, the damping work (Wd) is evinced:

where cd is the damping coefficient.

2.4  External forces

The parallel plates assumption is commonly used to sim-
ulate the electrical and dispersion forces. However, in the 
current study the impacts of finite dimension on the exter-
nal force distribution are considered. Considering finite 
dimension correction, the coulomb is acquired as [43]:

where ε0 = 8.854 × 10−12 c2 N−1 m−2 is the vacuum per-
mittivity and εr is the relative permittivity of dielectric.

The dispersion forces are classified into the Casimir 
force for large separation and the vdW force for small sepa-
ration [44–46]. Considering the finite girth the corrected 
Casimir force is gained as [47]:

where ħ = 1.055 × 10−34Js is the modified Planck’s con-
stant and c = 2.998 × 108 m/s is the light speed.

The vdW force can evaluate by using Lennard-Jones 
potential [48]. Employing this method the corrected vdW 
force is determined as:

In the above equation, Ā is the Hamaker constant.

2.5  Dimensionless energy of system

The total energy is defined as:
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Now, by substituting Eqs. (23–25) in Eq. (26) the non-
dimensional total energy is obtained as:
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Fig. 2  Impact of surface layer on the pull-in voltage (γ = 0.25, 
η = 0.25, βn = 1)

(27)

Π̄ =
1

2

1
�

0

ρA

�

∂ŵ
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�3

−
1

�

1− ŵ+
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In which the dimensionless parameters are defined as:
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For rectangular section I0 and S0 are obtained as:

3  Solution method

To study the instability behavior the Rayleigh–Ritz method 
(RRM) is introduced. In the RRM the beam deflection is 
assumed as
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We use the classical mode shapes of the Euler–Bernoulli 
clamped–clamped beam in the RRM procedure:

where ωi is the ith root of characteristic equation of the 
classical clamped beams. For minimize the total energy we 
must have:

Substituting (27) and (30) into (32), after some math-
ematical elaborations the following system of ordinary dif-
ferential equations is achieved:
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where N is the number of assumed terms in the RRM. 
Finally, the obtained system of differential equation is 
solved numerically.

4  Results and discussion

In this section the impacts of size dependency, surface 
layer and dispersion forces on pull-in behavior of nano-
bridge are studied. The size parameters are considered as 
l0 = l1 = l2.

Figure (2) illustrates the impacts of surface layer and 
dispersion forces on the static and dynamic instability volt-
age of nano-bridge. In this figure the size effect is neglected 
and γ = η = 0.25. Figure 2 reveals that an augment in the 
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q̈i + ĉq̇i +

�

1+
µs

15

�

30

�

l0

l2

�2

+ 8

�

l1

l2

�2

+ 15+ e0

��

ω4
i qi

−
µs

30
�

L
�

h
�2

�

5

�

l0

l2

�2

+ 2

�

l1

l2

�2
� 1
�

0

φi
∂6

∂x6





N
�

j=1

qjφj





−

� 1

0

φi











t0 + 6

�

γ

η

�2







1
�

0





N
�

j=1

qj
dφj

dx





2

dx







N
�

j=1

qj
d2φj

dx2











dx

−

� 1

0

F̄extφidx +
µs

30
�

L
�

h
�2

�

5

�

l0

l2

�2

+ 2

�

l1

l2

�2
�

∂3

∂X3





N
�

j=1

qjφj





d2φi

dX2

�

�

�

�

�

�

x=1

−
µs

30
�

L
�

h
�2

�

5

�

l0

l2

�2

+ 2

�

l1

l2

�2
�

∂3

∂X3





N
�

j=1

qjφj





d2φi

dX2

�

�

�

�

�

�

x=0

= 0 i = 1, 2, ..,N

where

(34)

F̄exr =
α2

�

1−
N
�

j=1

qjφj

�2






1+ (0.2+ 0.6η0.24)γ 0.76



1−

N
�

j=1

qjφj





0.76






+































































β3















1
�

1−
N
�

j=1

qjφj

�3
−

1
�

1−
N
�

j=1

qjφj +
η
γ

�3















vdW effect

β4
�

1−
N
�

j=1

qjφj

�4



1+ 0.1272γ



1−

N
�

j=1

qjφj







 Casimir effect

surface residual stress parameter, t0, results in enhancing 
the pull-in voltage. Figure 2 also demonstrates that surface 
stress may cause softening or hardening effect depends 
on its sign. For materials with negative surface stress this 
effect induces a softening effect, i.e., detracts the instabil-
ity voltage. In contrast, for materials with positive surface 
stress this effect induces a hardening effect,. i.e., increases 
the instability voltage. In addition, Fig. 2 shows that incor-
porating the Casimir and vdW forces enhances the instabil-
ity voltage.

The impacts of the scale dependency on the static and 
dynamic instability voltage of nano-beam are shown in 
Fig. 3. This figure demonstrates that the scale parameter 
(l2/h) results in increasing the pull-in voltage. It is worth 
to noting that an increase in l2/h is responsible for size 
effect enhancement. This means the scale dependency leads 
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a hardening effect which grows the elastic resistance and 
consequently enhances the pull-in voltage. Figure 3 reveals 
that an increase in the beam thickness reduces the size 
effect.

Figure 4 shows the dynamic response of nano-bridge. In 
this figure the damping is assumed to be 0.5, i.e., ĉ = 0.5 . 
This figure demonstrates that the nano-bridge vibrations 
converge to the focus point by considering the damping. 
Figure 4 reveals that the second equilibrium point is unsta-
ble saddle point. When the applied voltage achieves the 
pull-in voltage, the trajectories diverge and the nano-bridge 
becomes unstable.

Wang and Wang [49] studied the influence of surface 
layer on the behavior of a nano-bridge. Table 1 shows the 
geometrical parameter and material properties of their case 
study. In Ref. [49] the linear fringing field for electrical 
force is assumed and the influence of dispersion forces and 
size dependency were ignored. Figure 5 shows the varia-
tion of mid-point bending of the nano-bridge for various 
external voltages from zero to pull-in voltage. This figure 
illustrates that, by ignoring the size effect for both classi-
cal theory and surface elasticity the results of the presented 
model are in very close to the results of Ref. [49]. How-
ever, by considering the size effect the beam deflections are 
decreased and pull-in voltage is increased significantly.

5  Conclusion

In this paper, the electromechanical instability of nano-
bridge was simulated based on the SGE and GME. Also, 
the effect of limited dimension correction on the electri-
cal field, vdW attraction and Casimir force was consid-
ered. The presented nonlinear model is able to simulate 
the influences of both surface effect and size dependency 
on the behavior of nano-bridges. It was found that for posi-
tive surface stress, the impact of surface layer enhances the 
pull-in voltage. However, for materials with negative sur-
face stress, the surface effect reduces the pull-in voltage. 
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Fig. 3  Impact of size dependency on the static pull-in voltage 
(neglecting surface effects); a vdW, b Casimir (γ = 0.25, η = 0.25, 
βn = 1)
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Fig. 4  Impact of damping parameter on the dynamic behavior of nano-bridge (l/h = 0.1; t0 = 0.1, e0 = 0.1, βn = 1) a time history, vdW; b phase 
plane, vdW; c time history, Casimir; d phase plane, Casimir

Table 1  Geometrical parameters and material properties of nano-bridge studied by Wang and Wang [49]

Material properties Geometrical parameters

Young’s modulus (E) Poisson’s ratio (ν) Surface elasticity 
(E0)

Surface residual 
stress (τ0)

Length (L) Thickness (h) Width (b) Initial gap (g)

76 Gpa 0.3 1.22 N/m 0.89 N/m 1 μm 50 nm 5 h 50 nm
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The size effect always increases the instability voltage of 
nano-bridge while dispersion forces decreases the instabil-
ity voltage. The dynamic instability voltage of nano-bridge 
is lower than its static pull-in voltage as the result of inertia 
forces.
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