
Arch Trauma Res. 2015 September; 4(3): e22602.                                                                                                            DOI: 10.5812/atr.22602 

Published online 2015 September 23. Research Article

Theoretical Analysis of the Relative Impact of Obesity on Hemodynamic 
Stability During Acute Hemorrhagic Shock

Sarah A. Sterling 1; Alan E. Jones 1; Thomas G. Coleman 1; Richard L. Summers 1,*

1Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
*Corresponding author: Richard L. Summers, Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA. Tel: +1601-8158245; 
+1601-9845583, E-mail: rsummers@umc.edu

 Received: August 7, 2014; Revised: March 16, 2015; Accepted: June 16, 2015

Background: Evidence suggests that morbid obesity may be an independent risk factor for adverse outcomes in patients with traumatic 
injuries.
Objectives: In this study, a theoretic analysis using a derivation of the Guyton model of cardiovascular physiology examines the expected 
impact of obesity on hemodynamic changes in Mean Arterial Pressure (MAP) and Cardiac Output (CO) during Hemorrhagic Shock (HS).
Patients and Methods: Computer simulation studies were used to predict the relative impact of increasing Body Mass Index (BMI) on 
global hemodynamic parameters during HS. The analytic procedure involved recreating physiologic conditions associated with changing 
BMI for a virtual subject in an In Silico environment. The model was validated for the known effect of a BMI of 30 on iliofemoral venous 
pressures. Then, the relative effect of changing BMI on the outcome of target cardiovascular parameters was examined during simulated 
acute loss of blood volume in class II hemorrhage. The percent changes in these parameters were compared between the virtual nonobese 
and obese subjects. Model parameter values are derived from known population distributions, producing simulation outputs that can be 
used in a deductive systems analysis assessment rather than traditional frequentist statistical methodologies.
Results: In hemorrhage simulation, moderate increases in BMI were found to produce greater decreases in MAP and CO compared to the 
normal subject. During HS, the virtual obese subject had 42% and 44% greater falls in CO and MAP, respectively, compared to the nonobese 
subject. Systems analysis of the model revealed that an increase in resistance to venous return due to changes in intra-abdominal pressure 
resulting from obesity was the critical mechanism responsible for the differences.
Conclusions: This study suggests that obese patients in HS may have a higher risk of hemodynamic instability compared to their 
nonobese counterparts primarily due to obesity-induced increases in intra-abdominal pressure resulting in reduced venous return.
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1. Background
According to recent national estimates, over 78 million 

adults and 12.5 million children and adolescents in the 
United States are obese (1). Despite the remarkable prev-
alence of obesity in the U.S. and the many known detri-
mental health effects caused by obesity, there are still a 
number of mysteries surrounding the effects of obesity 
on both therapeutic and diagnostic care, particularly in 
the area of trauma. Previous research has suggested that 
obese patients may be at greater risk for increased mor-
bidity and mortality, though these findings have not been 
entirely consistent (2-5). There have been many proposed 
etiologies for the differences in outcomes in obese trau-
ma patients. A recent, retrospective study by Nelson and 
colleagues found that obese patients were at increased 
risk for early hypovolemic shock and higher subsequent 
mortality (6). They did note, however, that when correct-
ing for Body Mass Index (BMI), obese patients received 
significantly smaller fluid volumes during the initial 
resuscitation period, creating an obvious potential con-
founder (6). Similarly though, animal studies have dem-

onstrated that obese rats have impaired hemorrhage tol-
erance compared to their nonobese counterparts (7, 8).

Noting this compelling, though limited evidence, we 
sought to further examine the effects of obesity in hem-
orrhagic shock using a systems analysis approach. Com-
putational modeling is a validated methodology for the 
evaluation and analysis of clinically relevant questions 
that might be feasibly difficult to answer (9-11). In trauma 
patients, particularly those with significant hemorrhage, 
therapeutic treatments are time sensitive, and fully eval-
uating all potential effects of obesity on cardiovascular 
physiology could be difficult and potentially compli-
cate resuscitations without preliminary data. Addition-
ally, the modeling and systems analytic approach allows 
for a more thorough examination of the mechanisms 
responsible for the observed phenomena. The Guyton 
model of cardiovascular physiology is a well-studied and 
previously published means for evaluating circulatory 
functioning, and the anticipated effects of changes on 
the cardiovascular system (12-15). Continued expansion 
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of the model to over 5000 individual physiological vari-
ables also includes integrated functioning of neuroendo-
crine and metabolic systems in circulatory control. Re-
cent analysis has found that the extended version of the 
Guyton model is able to accurately predict physiologic 
responses to hemorrhage (16, 17).

2. Objectives
The objective of this study was to perform a theoretic 

analysis using a derivation of the Guyton model of car-
diovascular physiology to evaluate the impact of obesity 
on expected hemodynamic changes in Mean Arterial 
Pressure (MAP) and Cardiac Output (CO) during the very 
early stages (the golden hour of trauma) of acute Hemor-
rhagic Shock (HS) and examine the possible physiologic 
mechanisms responsible for these changes.

3. Patients and Methods
The methods used in this study were those required for 

a theoretic analysis of the effects of increasing BMI on the 
global hemodynamics changes during hemorrhage. The 
analytic procedure involved recreating the physiologic 
conditions associated with changing BMI for a virtual 
subject created with the use of a mathematical model of 
human physiology. In keeping with the national heart, 
lung, and blood institute’s terminology, we considered 
a BMI of 20 - 24.9 mg/kg2 as normal weight and a BMI 
of ≥ 30 mg/kg2 as Grade I obesity (18). First, the model 
was validated for the known effect of a BMI of 30 on il-
iofemoral venous pressures. Then, the relative effect of 
changing BMI on the outcomes of target cardiovascular 
parameters (cardiac output and mean arterial   between 
the virtual normal weight and obese subjects. Given that 
no human or animal subjects were involved in this study, 
an institutional review was not required.

3.1. Computational Platform and Systems Analysis 
Protocol

The computational methodology used in the systems 
analysis employs a well-established computer model of 
human physiology (Guyton/Coleman/Summers model). 
This model has been developed over the past 30 years and 
describes the integrative cardiovascular physiologic func-
tioning of a virtual subject (10, 12, 13, 15). The mathematical 
package used in the current analysis was a homegrown 
product developed by one of the authors (Coleman) us-
ing C++ as the programming language. This model and 
methodology, which previously have been used in numer-
ous studies, are intended to provide a more detailed un-
derstanding of the physiologic mechanisms involved in 
common clinical conditions (11, 13-15, 19, 20). Further, sev-
eral versions of this model have been previously demon-
strated to accurately predict hemodynamic changes seen 
during hypotensive states (11, 17, 20). The model has been 
specifically validated previously for hemorrhagic states 

in a published study in which humans were placed in a 
simulated shock state by a standard lower body negative 
pressure technique (17). In this paper the model is further 
validated for the state of obesity as described below. While 
it is not expected that there will be absolute agreement be-
tween the model output and experimental findings, there 
should be definite measurable criteria by which to judge 
the validity of the model (9, 17). Specific methods and crite-
ria previously described in the literature were used in the 
validation process of the computational platform and are 
presented and referenced in our previous papers (9, 17). 
The overall dynamic performance of the model was quan-
tified by determination of the median performance error 
(MDPE = median [PE] over all data points as % of measured 
where PE = difference between measured and predicted 
values). MDPE has been considered as the measure of the 
bias and inaccuracy between the model’s predictions and 
the corresponding experimental observations. This mea-
sure has been employed in the validation of algorithms 
used in insulin pumps and drug delivery systems in which 
precision is of the utmost of clinical importance (17). A 
commonly considered error margin of 5% was chosen a 
priori for this study.

This evaluation suggests that the model can be used as a 
platform for the theoretical analysis of such shock states. 
The model contains numerous parameters that describe 
the detailed interactions of systemic, organ, and tissue 
cellular physiology and metabolism using basic physi-
cal principles and established biologic relationships. The 
model’s structure not only incorporates the cardiovascular 
and neurogenic physiologic responses to changes in pres-
sures, flows, and hydraulics within the circulatory system, 
but also incorporates the utilization and mass balance fluc-
tuations of metabolic substrates. The details of this model 
structure are beyond the scope of the current paper though 
they have been described in previous publications (12, 13).

The systems analytic procedure using the computa-
tional platform involves recreating the clinical scenar-
io for virtual obese and nonobese subjects within an 
In Silico environment (17,18). We performed a series of 
simulation studies in which the states of truncal obe-
sity and nonobesity were instantiated within the model 
parameter sets with their concomitant impacts on vas-
cular, metabolic, and endocrine components. Two of 
the major physiologic elements included in this state 
change were a shift in the insulin/glucagon axis second-
ary to changes in receptor sensitivities and an increase 
in the intraabdominal pressures from a normal range 
of 5 mmHg in the nonobese to a level of 15 mmHg in the 
obese (21-26). Both of these pathophysiologic changes 
have been documented in clinical studies in human 
subjects. The computer simulation was allowed to run 
until the model system blood pressure reached a steady 
state. The determined values for the cardiac outputs and 
mean arterial pressures, as driving hemodynamic com-
ponents of shock, were then compared for the virtual 
obese and nonobese individuals.



Sterling SA et al.

3Arch Trauma Res. 2015;4(3):e22602

A clearer understanding of the basic model functioning 
and dynamics can be obtained using a graphical analysis 
of cardiac output control as was developed by Dr. Arthur 
C. Guyton, one of the progenitors of the current model 
(Figure 1). The cascade of hemodynamic and physiologic 
regulatory responses seen during an acute hemorrhagic 
event can be succinctly illustrated from an analysis of a 
classic Guyton diagram of the control of cardiac output 
and venous return. The hemodynamics of blood flow in 
the circulation can be considered dynamically as an in-
tersection between the curves for cardiac output as de-
termined by the Starling functional relationship to atrial 
pressures and cardiac filling and the impact of those 
same factors for influencing venous return. The equilib-
rium intersection of those curves (point A) determines 
the blood flow. With hemorrhage, the loss of volume in 
the circulation immediately results in a concurrent re-
duction in the Mean Circulatory Filling Pressure (MCFP) 
which results in a loss of drive for venous return and car-
diac filling. This is depicted by a shift in the venous return 
curve to the left (#1) and a new equilibrium (point B). The 
reduction in venous return and subsequent diminished 
cardiac output elicits a counter regulatory acute response 
of increase neurohormonal output including sympathet-
ic drive, norepinephrine, epinephrine, renin-angiotensin 
activation, and vasopressin release. Short-term and long-
term arterial pressure control mechanisms are also in 
play within the model including vascular autoregulation 
and stress-relaxation responses. These are all demon-
strated by a shift in the venous return curve to the right 
(#2) with a new equilibrium maintaining flow under 
stressed conditions (point C). If cardiac functions begin 
to diminished under a sustained stressed without timely 
blood volume resuscitation (#3), then flow will also begin 
to deteriorate especially if the hemorrhage is ongoing 
and there is further loss in venous return (Points D to E). 
A vicious cycle can ensue with further suppression of car-
diac function, diminished flow and eventual irreversible 
circulatory collapse. These physiological dynamics are all 
central to the functioning of the model.
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Figure 1. Graphical Analysis of Cardiac Output as Determined by the In-
tersection Between the Starling and the Venous Return Curves

The equilibrium point (A) defines the steady state cardi-
ac output at a specific atrial pressure. The venous return 
(and cardiac output) becomes zero when the atrial pres-
sure equals the MCFP. With the initial hemorrhage the 
MCFP is reduced and the venous return curve shifts to the 
left (1) to form a new equilibrium point (B) with reduced 
cardiac output. Neurohormonal responses attempt to 
bring the curve back to the right (2) to achieve a stable 
equilibrium point (C). If the hemorrhaged state persists 
without resuscitation then a depression of the cardiac 
starling curve can ensue (3) and lower cardiac output 
again. If the hemorrhage progresses a vicious cycle can 
result in a shock state with a low cardiac output and low 
atrial pressure (E).

3.2. Model Validation for Obesity
While there has been extensive validation and docu-

mentation of the basic computational model used in this 
study, to assure credibility in this context, the relevant 
elements of the model predictions for the obese patient 
were compared to experimental data from the literature. 
Although it is unrealistic to expect a generalized compu-
tational model to exactly reproduce the experimental re-
sults of select study participants, the observed results of 
these baseline simulations should accurately reflect the 
direction and degree of expected physiologic changes as 
set by standard methods used for validations of similar 
analyses (9-11). The target simulation experiment used in 
this validation differentiated the obese from nonobese 
subject while tracking the changes in venous pressures 
distal to the vena cava bifurcation.

1. According to literature sources, the distal inferior 
vena cava pressure increases by about 125% of baseline 
values when the abdominal pressure of a normal indi-
vidual is increased through abdominal cuff compression 
methods to 20 mmHg (25). In the simulation, the venous 
pressure increases by 108% with the same increase in ex-
ternal abdominal pressure which is a 17% difference.

2. Experimental evidence indicates that morbidly 
obese individuals with estimated intra-abdominal pres-
sures of about 14 mmHg were found to have femoral 
venous pressures of about 15 mmHg (26). In the simula-
tion, the pressure rises to 14 mmHg with the same in-
crease in abdominal pressure, which represents only a 
1% difference.

4. Results
During hemorrhage simulation, a moderate increase in 

the BMI was noted to affect both CO and MAP. The virtual 
obese subject had a 31% decrease in CO and a 23% decrease 
in MAP during the class II hemorrhage simulation, while 
the normal weight patient had only a 22% and 16% de-
crease in CO and MAP, respectively. The virtual obese sub-
ject had a 42% greater fall in CO than the normal weight 
virtual patient, and a 44% greater fall in MAP than the nor-
mal weight virtual patient (Figures 2 and 3).
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Figure 2. Change in Cardiac Output During Class II Hemorrhage
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Figure 3. Change in Mean Arterial Pressure During Class II Hemorrhage

To evaluate the etiology of these effects, a systems analy-
sis of the model was performed. This revealed that the 
critical dominant mechanism for these hemodynamic 
differences was an increase in the resistance to venous re-
turn resulting from an increase in intra-abdominal pres-
sure due to obesity.

5. Discussion
In this study of the theoretical effects of obesity in 

hemorrhagic shock, we found that obese patients are at 
higher risk for hemodynamic instability with decreased 
tolerance to volume loss in trauma. These findings could 
have important clinical practice implications for the 
management of these patients. As previously mentioned, 
many studies have found that obese patients are at in-
creased risk for higher morbidity and mortality (2-4, 27). 

Additionally, recent research has suggested that obese 
patients may be at higher risk for early hypovolemic 
shock, but noted that this could be due to relative under-
resuscitation when correcting for BMI (6).

Our results expand these findings and suggest a physi-
ological source for impaired hemorrhage tolerance in 
obese individuals due to increased intra-abdominal 
pressures which in turn increased resistances to venous 
return. This finding is significant not only in identifying 
potentially high risk patients, but also by identifying po-
tential avenues for treatment interventions, which could 
be effective in preventing sustained shock and conse-
quently decreasing morbidity and mortality. For example, 
in trauma resuscitations in pregnant patients, a left later-
al tilt is recommended to improve cardiac output, due to 
the increased pressure on the venocaval system from the 
gravid uterus (28, 29). Extrapolating from trauma in preg-
nancy, perhaps simple repositioning of the obese patient 
could decrease intraabdominal pressures and increase 
venous return, thereby improving cardiac output. How-
ever, unlike our previous study that examined the impact 
of a uniformly growing gravid uterus on hemorrhagic 
shock states, a condition of obesity is less homogenous 
and the influence on the intra-abdominal pressure less 
readily tracked with changes in size or weight (11). There-
fore, a single weight point signifying the lower end of the 
definition of obesity (BMI 30) was chosen for the current 
analysis. Likewise, in the pregnancy study we were able 
to clearly examine the effects of initiating a tilt and gravi-
tational unloading of the gravid uterus on venous return 
because of its consistent location and influence of a spe-
cific area of the vena cava. A larger finite element model 
would be required to truly examine the impact of the 
broader regional changes in adipose tissues and organs 
such as the liver on the abdominal vasculature which is 
currently beyond the scope of our model.

There is some evidence suggesting that obese patients 
are at high risk for hypovolemic shock simply due to 
relative under-resuscitation may also be reflective of this 
physiologic derangement (6). Some insight into the rea-
sons for this increased risk in the obese trauma patient 
may be found in the results of our systems analysis. Ve-
nous return is a function of the MCFP and resistance to 
venous return (12). If the resistance is increased this will 
necessitate an increase in the MCFP to normalize the ve-
nous return and cardiac output. This might inform our 
treatment strategy. A relatively more aggressive fluid 
resuscitation may be required in the obese as compared 
to normal weight subjects in order to increase the MCFP 
and overcome the increased resistance to venous return.

While the focus of this investigation was on the basic 
plumbing of the hemodynamics in the very early stages 
of hemorrhagic shock (the golden hour), the model is 
also capable of exploring metabolic and hormonal re-
sponses. The impact of the shifting insulin/glucagon axis 
on blood pressure is thought to be due to its impacts on 
renal functioning, sodium balance, and vascular reactiv-
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ity. The possible quantitative role of this axis in arterial 
pressure control was described through use of a math-
ematical model in an earlier publication (30). These fac-
tors are inherent in the current model and are a part of 
the 5000 interacting variables. In the acute period (gold-
en hour of trauma) these factors play less of a dominant 
role as compared to the basic physics of the circulatory 
hemodynamics and are more relevant during the more 
protracted timeframes of this type of shock. Heart rate 
is one of the variables that could have been very easily 
included in this analysis, but in these early stages it may 
be less informative due to fluctuating stress related influ-
ences that are difficult to model. Therefore there was con-
cern that any simulation driven conclusions about heart 
rate changes might be misleading.

Further, we found that a modest increase in BMI im-
parted notable effects on CO and MAP. We compared a 
virtual normal weight and obese patient in this analysis, 
with the obese patient defined as a BMI of 30 mg/kg2. The 
effects of grade II or III obesity (a BMI of 35 - 39.9 mg/kg2 
and ≥ 40 mg/kg2, respectively) could potentially impart 
even more significant deleterious effects on CO and MAP 
(18). In this study, however, we used a more conservative 
cutoff to determine if even moderate increases in BMI 
could potentially impact physiological response.

The limitations of a computational, theoretical method 
are evident and involve the inherent assumptions of the 
mathematical model from both a physiologic and an ana-
tomic position. However, the validation comparisons are 
considered within the reasonable range of error for this 
type of biologic modeling (31, 32). Further, although more 
accurate results are possible through manipulation of 
the mathematics of the model’s parameters and struc-
ture, this process would not be true to the experimen-
tal literature upon which the model was constructed, 
potentially leading to conclusion with tenuous founda-
tions. The current model has limitations in its degree of 
anatomic compartmentalization beyond the level of the 
major organ systems. While this probably does not have 
a major differential impact on the hydraulics and hemo-
dynamic of acute shock, it may impact the some of the 
time constants for metabolic exchanges such as oxygen 
and glucose in this timeframe. However, the limitations 
of such variables are not evident in the outcomes as com-
pared to the validation measures (17). There are also limi-
tations in the immunologic responses embedded in this 
model but those factors probably have less impact on our 
central hypothesis that examines the acute phase. The 
hormonal and neurologic responses are considerably 
robust in this model and while there is always room for 
additional detail, we believe the current features are ad-
equate for the question at hand.

While our simulations suggest that there are substan-
tial differences in the responses of obese and nonobese 
hemorrhaged patients, there are no statistical determi-
nations to establish the significance of these differences. 
Unlike clinical studies, in which each point describes a 

mean outcome for the populations with an associated 
standard deviation, In Silico studies use methods that are 
deterministic and characterize the outcomes for a single 
individual who is representative of the whole popula-
tion. This approach is considered valid, however, because 
the separate components of the model’s physiology are 
constructed from population means (11). It may be pos-
sible to incorporate the specifics of an individual’s physi-
ology into the model so that it can be used for real-time 
clinical predictions. 

The simulations are for only one simple case and do not 
cover the dynamic spectrum of and ranges of possible 
obesity and hemorrhage. This approach might be con-
sidered to limit the usefulness of the results. We wanted 
to evaluate the idea at the lowest level of what is clini-
cally identified as obesity and at a modest level of hem-
orrhage. It was thought that morbid obesity and severe 
hemorrhage would amplify the results and be mislead-
ing. In addition, the occurrence of those conditions com-
bined (morbid obesity and severe hemorrhage) are much 
less common and therefore would have limited practical 
clinical relevance. 

In simulated Class II hemorrhagic shock, we found 
that obese subjects had greater decreases in CO and MAP 
compared to their normal weight counterparts, placing 
them at higher risk for hemodynamic instability and 
shock. In this analysis, the primary mechanism for this 
difference was an increase in intra-abdominal pressure 
due to obesity, which resulted in increased resistances 
to venous return. After establishing the theoretical con-
sistency of this primary hypothesis of the impact of obe-
sity on shock in hemorrhage and identifying a probable 
mechanism through the systems analysis approach, we 
would hope that future investigations might examine 
some specifics of time dependent dynamics, derange-
ments of metabolism, treatment schemes and even 
outcomes in both computer simulations and actual live 
clinical studies. 
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