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Introduction 

 

Vegetation has considerable impacts on almost all land surface energy exchange 

processes, acting as an interface between land and atmosphere (Tong et al., 2016). 

Vegetation not only forms essential habitats for plant and animal species but is also 

a prerequisite for ecosystem function. Habitat type is the collective land area where 

one plant association occupies, or potentially will occupy in the absence of 

disturbance (Daubenmire, 1952). The habitat classification system was initially 

developed by Daubenmire and Daubenmire (1968) and later modified and adopted 

as a model for habitat classification in other areas, including the Mammoth Cave 

National Park.  

Aspect and slope are alternatives for the spatial and temporal distribution of 

factors such as solar radiation, moisture and temperature that affect species 

composition and productivity (Stage and Salas, 2007). Differences in insolation 

period and intensity change with aspect, thereby forming a range of microclimates 

in multifaceted landscapes (Holland and Steyn, 1975).  In general, aspect can have 

important influences on climate as well as the distribution of vegetation types. In 

the northern hemisphere, the north side of slopes often have more shaded area than 

the south side, which receives less solar radiation. South-facing slopes tend to be 

more xeric (dry) due to high levels of evapotranspiration than a north-facing slope. 

For example, there is a significant contrast between vegetation types on the north-

facing and south-facing slopes observed in Villány Mountains (Hungary) (Khan et 

al., 2011; Nazarian et al., 2004; Erdős et al., 2012). The north-facing slopes bear 

shrubby vegetation, whereas forests occurs on the south-facing hillsides (Armesto 

and Martínez, 1978; Khan et al., 2011). This suggests that variations in aspect may 

have a great influence on the floristic and life-form composition of the vegetation 

(Armesto and Martίnez, 1978).  



The steepness of a slope can also affect the growth of plants through 

receiving different solar radiation. In addition, the gradient of slope influences the 

availability of water to the vegetation. The steeper the slope, the more likely that 

rain will run off rather than infiltrate. Therefore, steep slope tends to hold less water 

and the soil will be more xeric. 

For a given climate, bedrock geology largely determines soil types, and 

whether surface or subsurface (karst) drainage prevail. Due to the tendency for 

subsurface drainage to develop in calcareous bedrock such as limestone, these sites 

will be more xeric than an equivalent situation underlain by sandstone or shale. The 

magnitude of this general difference appears to be minimized on the steepest 

exposures due to rapid surface drainage. 

There have been several attempts to map the vegetation and habitats at the 

Mammoth Cave National Park in the last decades with limited success due to lack 

of access in parts of the park and lack of high resolution remotely sensed data. In 

2010, the Park acquired high resolution Lidar data for detailed mapping. The Park 

is now in the process of updating their Fire Management Plan that calls for an 

updated habitat map to facilitate the designation of fuel types. The primary goal of 

this research is to classify physical attributes (bedrock geology, slope, aspect) of 

plant habitats to create a predictive digital habitat model for the Mammoth Cave 

National Park (MCNP). The resultant vegetation habitat map is valuable for fire 

management and wildlife habitat and biodiversity conservation analysis.  

Study Area  

 

Mammoth Cave National Park (Figure 1) is located at latitude 37.2° North and 

longitude 86.1° West in south central Kentucky. Mammoth Cave National Park has 

the world’s largest network of natural caves and underground passageways, which 

are characteristics of limestone formations. Established in 1941, Mammoth Cave 



National Park is also a World Heritage Site. The park and its underground network 

of more than 560 surveyed-km of passageways are home to a varied flora and fauna, 

including a number of endangered species.  The park's 52,830 acres (21,380 ha) are 

located primarily in Edmonson County, Kentucky, with small areas extending 

eastward into Hart County and Barren County. 

 

 

 

 

 

 

 

 

 Fig.1: A) The geographic location of the Mammoth Cave National Park  

         B) The geographic features of Mammoth Cave National Park 

 

Kentucky has a moderate climate, characterized by warm, yet moist 

conditions. Summers can average in the mid-90s (F) (32℃), while winters average 

in the low 40s (F) (9℃). Much of the park’s average annual 52 inches (132cm) of 

precipitation falls in the spring. Storms occur year-round, though most occur 

March-September. Year-round, the cave temperature in interior passages fluctuates 

from around 54º (F) (12℃) to 60º (F) (15℃). Winter temperatures, however, can be 

below freezing at the cave entrances.  

 



Data Sources 

 

Airborne Light Detection and Ranging (LiDAR) dataset was provided by the 

Mammoth Cave National Park. The LiDAR dataset was acquired between Oct 13th 

and 17th, 2010, with derived digital elevation model (DEM) of 1 m pixel resolution.   

We also obtained bedrock geology dataset from the Park. The geology 

categories were Alluvium, Calcareous, Calcareous Sub-Xeric, and Acid. “Alluvium” 

referred to river lain sediment. “Calcareous” referred to carbonate bedrock, which 

resulted in more alkaline soil. “Acid” referred to non-carbonate bedrock, which 

resulted in acid soil. Xeric referred to dry area.  

Model Configuration 

 

Discussions with the Park staff and field trip to the Park provided the knowledge 

and scheme for habitat classification. Table 1 lists the full array of habitat types 

based upon physical attributes of bedrock type, slope, and aspect. Figure 2 and 3 

show how the combination of moderate and steep slopes with limestone or 

sandstone bedrock are assigned to habitat classes based on aspect. The 360 degrees 

of aspect are grouped into 16 wedges of 22.5 degrees each. For different levels of 

slopes, the corresponding aspect ranges determined how xeric or mesic the habitat 

type are. Supra-Mesic conditions were on the moist end of the Mesic, but not 

saturated or hydric. Mesic conditions were moderately moist. Sub-Mesic conditions 

had less moisture when compared to Mesic. Sub-Xeric conditions were 

intermediate between Xeric and Mesic. 

  



 

Table 1. Habitat physical attribute classification 

1. Calcareous Xeric 

a. Southeast to West 

Compass bearings 

180-247 

 2. Calcareous Sub-Xeric 

a. Flat 

b. Moderate Southeast 

c. Moderate Southwest 

d. Steep Southeast  

e. Steep Southwest 

 

− 

112-180 

247-292 

90-180 

247-315 

3. Calcareous Mesic 

a. Moderate Northwest to Southeast 

b. Steep Northeast  

 

292-112 

045-90 

4. Calcareous Supra-Mesic 

a. Steep Northwest to Northeast 

 

315-045 

5. Acid Xeric 

a. Steep Southeast to Southwest 

 

157-247 

6. Acid Sub-Xeric 

a. Moderate Southeast to West 

b. Steep Southeast 

c. Steep Southwest  

 

135-270 

135-157 

247-270 

7. Acid Mesic 

a. Flat (+ Hydro-Mesic vernal Pords) 

b. Moderate West to Northwest 

c. Moderate Northeast to Southeast 

d. Steep West to Northwest 

e. Steep Northeast to Southeast 

 

− 

270-315 

045-135 

270-315 

045-135 

8. Acid Supra-Mesic  

a. Moderate Northwest to Northeast 

 

315-045 

 
9. Floodplain Alluvium − 



Calcareous Habitats on moderate slopes 

2. Calcareous Sub-Xeric 

 
3. Calcareous Mesic 

 
4. Calcareous Supra-Mesic 

1. Calcareous Xeric 

 

 

 

 

 

 

 

 

  

                                                                                          

 

 

 

 

 

 

 

 

 

Fig. 2: Limestone assigned to Calcareous habitat based on slope and aspect  

Calcareous Habitats on steep slopes 



7. Acid Sub-Xeric 

8. Acid Mesic 

9. Acid Supra-Mesic 

6. Acid Xeric 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                     

 

 

 

 

 

 

 

 

 

Fig. 3: Sandstone assigned to Acid Habitat based on slope and aspect 

Acidic Habitats on moderate slopes 

Acidic Habitats on steep slopes 



Data Preparation 

 

We calculated aspect and slope from LiDAR-derived DEM data and reclassified 

them. The categories of slope were divided into flat (0-4.9 degrees), Moderate (5-

22.9 degrees), Steep (23-90 degrees), as suggested by Park management based on 

their field observation and experience. The 360 degrees of aspect were grouped into 

16 wedges of 22.5 degrees each.  

The geology dataset was simplified into broader categories: Alluvium, 

Calcareous, Acid, and Calcareous Sub-Mesic. Calcareous sediments mostly contain 

a large portion of calcium carbonate while Acid are mainly formed by sandstone 

caprock. Calcareous Sub-Mesic rocks are caprock limestone where limestone units 

are found on top of insoluble sandstone that create moist conditions on the surface 

of upland areas. 

 

GIS Overlay and classification 

 

GIS overlay function was applied to determine habitat types by integrating aspect, 

slope and bedrock geology. Given the bedrock geology types, certain slope 

combined with certain aspect can determine the habitat types (Table 1). For 

example, moderate Calcareous with an aspect of 135° will be Calcareous Sub-Xeric 

habitat type.  

 

Results 

 

The LiDAR-Derived DEM shows that the highest elevation is 287 m and the lowest 

107 m (Figure 4). Lower elevation values are near streams and the Green River 

while higher elevation areas are in northwest and southeast portions of the Park.  



Figure. 5 shows the resultant map of slope reclassification. Most areas at 

lower elevation (except water areas) had moderate to steep slopes, indicating that 

gullies or depressions existed in those regions. Therefore, these shaded regions 

tended to be more mesic (moisture-laden) than sun-exposed areas. In contrast, areas 

at higher elevation with steep slopes tend to divert water away fast, which caused 

more xeric (dry) conditions.  

The amount of solar radiation on the landscape changes during a day and 

seasonally, according to the aspect that the slope is facing. Aspect values fell 

between 90° and 270° would be regarded as south-facing slopes and values fell 

between 270° and 90° would be counted as north-facing slopes (Figure 6). 

Typically, south-facing slopes are exposed to much more sunlight compared to 

north-facing slopes in the northern hemisphere. Thus, south-facing areas were more 

xeric while north-facing slopes regions were more mesic.  

The geology reclassification map (Figure 7) shows the distribution of 

Calcareous, Acid and Calcareous Sub-Mesic bedrock types. Lower elevation areas 

are mostly Calcareous bedrock, which is the dominant bedrock south of the Green 

River in the Park. Acid bedrock, on top of Calcareous bedrock, spreads throughout 

the park. Higher elevation areas are mainly Calcareous Sub-Mesic bedrock, which 

is the very top caprock limestone over insoluble sandstone. 

Figure 8 is the habitat resultant map considering bedrock geology, aspect, 

and slope. The two major habitat types were largely determined by bedrock geology 

(Table 2). The various habitat types formed are due to the variation of slope and 

aspect. Most of Calcareous-Xeric and Calcareous habitat areas are in southeastern 

part while Calcareous Sub-Mesic habitat spread across the Park. The Acid Xeric 

and Acid Sub-Xeric habitat mostly were in northwestern part while moderate 

elevation regions in southeast formed Acid mesic habitat.  

  



 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4: Derived Digital Elevation Model of LiDAR Dataset 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Slope Reclassification of Mammoth Cave National Park 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6: Aspect Reclassification based on Digital Elevation Model 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 7: Bedrock Geology Raster Reclassification Dataset 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Habitat physical attributes map based on geology, slope, and aspect 



 

Table 2. Habitat type area in hectares and the corresponding percentages by the 

Park in 2017 

Habitat types in regular typeface are capable of carrying fire during the 

spring and fall fire seasons. These habitat types account for approximately three-

fourths of the park (Olson and Noble, 2005). Habitat in bold in Table 2, which 

account for approximately one-fourth of the park, do not support fire independent 

or –tolerant plant communities (Olson and Noble, 2005). Based on the table, it can 

be inferred that Acid and Calcareous are the two dominant habitats within the park, 

which accounted for 46.24% and 49.74% of the total park area respectively (Table 

2). Acid Mesic had the largest areas of a single category followed by Calcareous 

Sub-Mesic, which accounted for 29.26% and 21.03% respectively. Calcareous 

Supra-Mesic and Acid Xeric accounted for less than 1%. Calcareous Mesic, 

Calcareous Sub-Xeric and Acid Sub-Xeric habitat types occupy about the same 

area in the Park (11-12%). The remaining three habitat types are less than 5% each. 

 

  

Habitat Type Acreage Percentage of the Park (%) 

Calcareous Supra-Mesic 440.41 0.87 

Calcareous Mesic 5,667.45 11.18 

Calcareous Sub-Mesic 10,662.63 21.03 

Calcareous Sub-Xeric 5,995.60 11.83 

Calcareous Xeric 2,448.75 4.83 

Alluvium 2,036.59 4.02 

Acid Supra-Mesic 2,180.86 4.30 

Acid Mesic 14,832.60 29.26 

Acid Sub-Xeric 5,962.35 11.76 

Acid Xeric 466.28 0.92 



Conclusion 

Habitat types are controlled by a combination of bedrock geology, aspect, and slope. 

The underlying rationale is that bedrock geology largely determines soil types and 

drainage, while aspect and slope determine the amount of light and moisture. Based 

on recently acquired Lidar dataset and bedrock geology, we modeled the habitats 

inside the Mammoth Cave National Park. Our results show that Acid and 

Calcareous are the two dominant habitats. Calcareous habitats are found throughout 

the park over limestone bedrock. Acid Xeric and Acid Sub-Xeric habitats mostly 

are in the northwest part while the moderate elevation region in southeast formed 

mostly Acid mesic habitat. Calcareous Sub-Mesic habitats formed where limestone 

overlays on top of sandstone and does not drain very well.  

Vegetation habitat types provide baseline data set for the development of 

successional plant community classification for Mammoth Cave National Park 

(Cooper et al., 1991). Habitat also provides a natural plant stratification within the 

Park area (Cooper et al., 1991). Furthermore, it acts as a means of predicting both 

site quality and response following disturbance (Cooper et al., 1991). The fire-

vulnerable habitat types account for one-fourth of the total Park area and the rest 

are fire-resistant habitat types. The location of the fire-vulnerable habitat types can 

provide critical information for the Park’s fire management, for classification of 

fuel types and for delineation of fire management units. 
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