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ABSTRACT

REGULARIZED SOLUTIONS FOR TERMINAL PROBLEMS OF
PARABOLIC EQUATIONS

Sujeewa Indika Hapuarachchi

July 20, 2017

The heat equation with a terminal condition problem is not well-posed in
the sense of Hadamard so regularization is needed. In general, partial differential
equations (PDE) with terminal conditions are those in which the solution depends
uniquely but not continuously on the given condition. In this dissertation, we ex-
plore how to find an approximation problem for a nonlinear heat equation which is
well-posed. By using a small parameter, we construct an approximation problem
and use a modified quasi-boundary value method to regularize a time dependent
thermal conductivity heat equation and a quasi-boundary value method to regu-
larize a space dependent thermal conductivity heat equation. Finally we prove, in
both cases, the approximation solution converges to the original solution whenever

the parameter goes to zero.
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CHAPTER 1
INTRODUCTION

A homogenous heat equation with an initial condition/boundary condition

is defined as
w(z,t) = kg, (x,t) z € (0,1),t>0

u(z,0) = g(z) =€ (0,1) (1.1)
u satisfies certain BC’s
The most common boundary conditions for the heat equation are
e Dirichlet condition, i.e. u(0,t) = u(l,t) =0

e Neumann condition, i.e. u;(0,t) = u,({,) =0

DEFINITION 1.1. We say a PDFE problem is well-posed if it satisfies the following

properties:
e A solution exists,
e The solution is unique,
e The solution continuously depends on initial conditions.

If such a problem is not well-posed, we say it is ill-posed. In general, a heat equation
with an initial condition is well-posed. We can define the concrete version of (1.1)

as follows:
ug(z,t) + kAu(z,t) =0 x € (0,1),t >0

w(z,0) = g(z) z € (0,0 (1.2)

u satisfies certain BC’s



where A is an unbounded self-adjoint and positive operator on a Hilbert space. This
equation is called a parabolic equation with an initial condition.

Consider again the heat equation:

ur(z,t) = kg (x,t) € (0,1),0<t<T
w(z,T) = g(z) z € (0,1), (1.3)

u satisfies certain BC’s

We call such a problem a heat equation with a terminal condition or a backward
heat equation. Similarly, we can define a solid version of the parabolic equation

with a terminal condition as follows:

u(z,t) + kAu(z,t) = f(x,t,u) =€ (0,0),0<t<T
w(z, T) = g(z) z € (0,1) (1.4)

u satisfies certain BC’s

where A is an unbounded self-adjoint and positive operator on a Hilbert space.

In this thesis we introduce a better approximation problem to regularize (1.4). In
chapter 3 and 4, we consider the heat equation with time and space dependent
thermal conductivity, that is k = a(t) and k = a(z) and source function f. For the
homogenous parabolic equation with a terminal condition case, i.e f = 0 see in [1-6]
A heat equation with a terminal condition plays a significant role in the fields of
physics and engineering, especially with time and space dependent thermal conduc-
tivity. Thermal conductivity is important in material science, electronics, and other

related fields. Thermal conductivity depends on time, space or both.

Thermal conductivity can be defined as the amount of heat transmitted through
a material which is highly dependent on the material specific property. Therefore,
materials with high thermal conductivity, such as diamond, silver, or copper, trans-
fer heats at a higher rate across the material whereas materials with lower thermal

conductivity, such as wood, transfer heat at a lower rate.



Since a nonlinear heat equation with a terminal condition is not well-posed, no solu-
tion which satisfies the heat conduction equation with final data and the boundary
conditions exists. Even if a solution exists, it will not be continuously dependent on
the final data and consequently calculation in numerical simulations will be very dif-
ficult. Therefore, some special regularization methods are required. The Tikhonov
regularization method is one of the most commonly used methods for linear ill-posed
problems. The quasi reversibility method, quasi boundary value method, and mod-
ified quasi boundary value method are other commonly used methods to regularize
nonlinear ill-posed problems. Given an ill-posed problem, it is often convenient to
define an approximate problem that is well-posed. Generally, we seek to ensure
that a solution to the original problem, if it exists, will be appropriately close to

the solution to the approximate problem.



CHAPTER 2
PRELIMINARIES

All preliminary results used in this thesis can be found in references [22, 23]

and [24] and some of them will be highlighted in this section.

2.1 Hilbert Spaces

DEFINITION 2.1 (Domain of an Unbounded Operator). Let By and By be Banach
spaces. An unbounded linear operator from By into Bs is a linear map A : D(A) C

By — Bsy. The linear subspace D(A) is called the domain of A.
The operator A is bounded if D(A) = By and if there is a ¢ > 0 such that
|Au|| < c|lul]| V ue B

The norm of a bounded operator A is defined by

[Au]

[l

HAHE(B1,B2) = sup
u#0

EXAMPLE 2.1. Let By = By = L*(R) (Define later). Now consider one dimension

Laplace operator, i.e. Au= —ug,. Then A is an unbounded operator on L*(R).

EXAMPLE 2.2. Let By = By = L?(0,1). Consider the derivative operator defined
by D(A) = C*(0,1) and Au = Lu for all u € C*(0,1), where C*(0,1) is the col-
lection of continuously differentiable functions over (0,1). Then A is an unbounded

linear operator on L*(0,1).



DEFINITION 2.2 (Adjoint of A). Let By and By be Banach Spaces and A : D(A) C

By — Bj be a densely defined unbounded operator. We define
A*: D(A") C By — B}
Where, the domain of A* is defined as:
D(AY) :={ve B; | Jc>0s.t|(v,Av)| <clul]] Yue D(A)}.

Then the unbounded operator A* : D(A*) C B — B} is called the adjoint of A.

Mathematically, we say

(u, AU>B;,BQ = (A", U)BI,B;
for allv € D(A) and u € D(A*).

DEFINITION 2.3. Let H be a Hilbert space. An unbounded operator A : D(A) C

H — H s said to be monotone, if
(Av,v) >0

for all v € D(A) and is called mazimum monotone if R(I + A) = H, that is, there

is exists u € D(A) such that u+ Au= f for all f € H.

Remark 1: If A is a maximal monotone, then for all a > 0, A is also a

maximal monotone operator.

DEFINITION 2.4. Let A be a maximal monotone operator. For every o > 0, set
1 1
Jo=T+aA)™ and Ay, =—(1—J,)
a
Jo is called the resolvent of A and A, is called reqularization of A.

DEFINITION 2.5. o Symmetric Operator

A is symmetric in H if (Au,v) = (u, Av) for u,v € D(A).



e Self-adjoint Operator
A densely defined symmetric operator A on H is called self-adjoint if D(A) =
D(A*) and A = A*.

e Positive Operator

A is positive if A is self-adjoint and (Au,u) > 0 for u € D(A).
THEOREM 2.1. Let A be a positive operator, then eigenvalues of A are positive.
Proof. If X is an eigenvalue of A, then there is a u € D(A) such that
Au = du
Since A is positive, we have 0 < (Au, u), then
0 < (Au,u) = O, u) = Mu,u) = \|ul|?
so A >0 o

Following result is an very important for later to prove uniqueness of parabolic

problems. The theorem was proven in [11].
THEOREM 2.2. We assume that 0 <'T' < oo. Let u satisfy
we C(0,T); H) N L0, T; D(A))

u +vAu € H for a.e. t,
|ug + vAu| < n||lul| for a.e. t,

where v is complex number such that ®(v) > 0 and
n € L0, 1)

If u(T) =0, then u(t) =0 for 0 <t <T.
Note: The notation uw € L*(0,T; D(A)) means that for a.e. t, u € D(A) and
Au e L*(0,T; H).



2.2 LP? Spaces

Let Q@ € R™ and let p be a positive real number. We denote by LP(2) the

class of all measurable functions f, for which

[ 1P < o
Q

The norm of LP(2) space is, that is || - || 1»(q), denoted by

ooy = ( / rf|pdu)”

[fllzee = ess supl f]

for 1 < p < .

is the norm of L>(£2).
The case p = 2 is very special because it is the L?*(2) space. The norm of the L?({2)

makes inner product space defined by

(1.9) = | fodu

Q

Also L*(9) is a Hilbert space.

THEOREM 2.3 (Gronwall’s Inequalities). It has following two forms

1. Differential Form

Let u € C*([a,0)) and a € Cla, 00)) be such that

u'(t) < at)u(t), forall t>a

Then

u(t) < u(a)eftf a(s)ds

2. Integral Form
Let B,u € C(|a,0)), a is a function on [0,00), and o~ (t) = max{—a(t),0} €

Lize([a, 00)).



(a) If 8> 0, and u(t —i—f s)ds, then
t t
u(t) < aft) +/ a(s)B(s)els P ds for all t>a
(b) If B >0, « is increasing and u(t )+ f s)ds, then
u(t) < a(t)efcf BEs for all t> a

In particular, if B >0 and o = 0, then u(t) <0 for allt > a.

THEOREM 2.4 (Plancherel equality). If f € L2(R"), then f € L2*(R") and

| fllL2mny = HfHLz(Rn), where f is the fourier transform of f defined by

= x)e T dx
T L S

2.3 Sobolev Spaces

These spaces are defined over an arbitrary domain 2 C R™ and are vector
sub spaces of various spaces LP(£2).

Let © C R™ and vector sub space LP(2). Define for any u € W™P(Q)
WmP(Q) ={ue LP(Q) : D*u e LP(Q) for 0 < |a| < m}

where D%u is the weak or distributional partial derivative of u. That is for all «

with 0 < |a| < m, there exists g, € LP(£2) such that

Jupro= (1 [ g0

for all ¢ € C°(R2). Here «a is standard multi-index notation. That is, If o =

(v, g - - - ay) with for all i, a; > 0 and

N
al=_ai
i=1



and

Do — ala|¢

N 80‘11’180‘21}2 s 80‘1\’1']\[ ’

We set Du = g,.

DEFINITION 2.6. If u € W™P(Q), we define its morn to be

lallwosey = {32 D%l | (0<p<o0)

0<|a|<m
and

[ullwm.ee@) = Z esssupqg|D%u|  (p = o0)

0<|a|<m
DEFINITION 2.7. We denote by W"P(Q2) the closure of C2°(2) in W™P(Q).
o If p=2 we write W™2(Q) = H™(Q) for k=0,1,2,---.
o Also we write WJ"*(Q) = Hy"(Q)

We can easily prove that H*(Y) is a Hilbert space and H°(Q2) = L*(Q).

We consider an elliptic operator having the divergence from
n

Lu=— Z (aijuxi)gc_

J

ij=1
where a7 € C*(Q) and 4,7 = 1,2,--- ,n. Suppose usual uniform ellipticity condi-
tion to hold, and usual suppose

av=d" i,j=1,2,---,n

Also suppose L is symmetric and associated bilinear form satisfies Blu, v] = Blv, u]

for u,v € Hy(Q).
THEOREM 2.5. eigenvalues of symmetric elliptic operator

1. Each eigenvalue of L is real.



2. If we repeat each eigenvalue according to its (finite) multiplicity, we have

Z = {Ak}iil

where

0< M <A<\

IN

and

A — 00 as k— o0

THEOREM 2.6. —A is a self-adjoint, positive and unbounded operator in L*(S)

and H*(Q).

DEFINITION 2.8. The space

LP(0,T : B)

where B is a real Banach space, consists of all measurable function u : [0,T] — B

with

o forl <p< oo,

=

T P
||U||LP(O,T,B) = (/ ||U<t)‘|%dt> < 00
0

o Ifp=o0,

|| oo (0,7, B) := €sssupg<s<r||u(t)|| B < 00

10



CHAPTER 3
NONLINEAR PARABOLIC EQUATIONS I

3.1 Introduction

Consider the parabolic equation defined on a domain €2 C R™ and unknown
function w is defined in © x [0, T]. In order to find a solution, existence and unique-
ness, we need initial /terminal and boundary conditions. The example of nonlinear

parabolic equations with constant coefficients is the heat equation, i.e
ut(a:?t) - Au(wa t) = f(wv t,U)

where, f is a source function. We consider this problem with an initial or a terminal
condition, then we say, the problem is a forward or a backward heat equation
respectively. In this section we consider a backward heat equation and a better
approximation problem to regularize it. One of the main assumptions of the source
function is it satisfies either the global Lipschitz continuity or the local Lipschitz

continuity with respect to the variable u. That is
Hf<w7t7 u) - f(xvta U)H < k”u - UH

for some constant k. The global Lipschitz continuity is the most common assump-

tion for the source function, see in [7-10, 14, 16-18].

11



3.2 Nonlinear Parabolic Equation

Consider the concrete version of a nonlinear parabolic equation with a ter-
minal condition. Let H be a Hilbert space. We consider the nonlinear parabolic
equation with a terminal condition problem of finding an unknown function u :

[0,T] — H such that

w(t) + Au(t) = f(t,u) 0<t<T
uT) = g

where f is a source function, g € H and A is a self-adjoint, unbounded operator on

(3.1)

dense space D(A) of H. Then the integral form of equation (3.1) (if it exists) can

represent as

o0

ult) = (e“‘% (9, 6n) — / e (5 (), ¢n>ds) G

n=1
We can see that instability due to the fast growth of e =92 and e(s=9*» as n — oo.
Hence, regularization methods are necessary to make numerical computation pos-
sible.

That is, We need to replace the terms e’ =9*» and e(*=9*» by better terms. For given
€ > 0, we need to replace eT = and e~ by L(e, T, t, \,) and S(e, t, s, \,) such
that |L(e, T,t,\,)| < D, |S(e,t, s, )| < D. and lim_,o+ L(e, T, t,\,) = T DA,
lime_,+ S(e,t, 5, \p) = 57D,

There are many different kinds of regularization methods for a linear heat equation
with a terminal condition. One method is called quasi reversibility. It was intro-

duced by Lattes and Lions [1] for the solution of non well-posed problems. They

approximated homogeneous backward heat problem by the equation,

ug(t) — Auc(t) — eA* Auc(t) 0 0<t<T
u(z,T) = g(x)
where A is a positive, self-adjoint operator, and A* is adjoint of operator A. This

method gives the stability magnitude is of order e®/¢. Here stability magnitude is

12



so large for small e. In [2] Miller introduced a method is called stabilized quasi

reversibility and he approximated the problem with

w(t) — f(Au(t) = 0 0<t<T
wz,T) = g(z)
He showed that the stability magnitude of the method was of order ¢/e. This sta-
bility magnitude is smaller than stability magnitude of method of quasi reversibility

for small e. In [3], Showalter approximated homogenous case of 3.1 with

ug(t) — eAus(t) + Au(t) = 0 0<t<T
u(z,T) = g()
Also Showalter [4] introduced a more general problem in a different way. He ap-

proximated the problem

u(t) + Auy(t) — Bu(t) = 0 0<t<T
u(r,0) = g(x)

with
us(t) + Au(t) — Bau(t) = 0 0<t<T

u(z,0) + eu(z,T) = g(x)
Here A and B denote self-adjoint, non-negative, unbounded operators on a Hilbert
space and their resolvents are commute and B, is the Yosida approximation of
B. He calls this the quasi-boundary value method. Also he shows it gives a better
approximation than many other quasi reversibility type methods. Later, G.W. Clark
and S.F. Oppenheimer [5] applied this quasi-boundary value method for backward

heat equation approximated with
w(t) —Au(t) = 0 0<t<T
eu(z,0) +u(z,T) = g(x)
This method has a huge advantage. The foremost advantage of this method is we

do not need to consider a forward case. More importantly, the error introduced by

13



small changes in the final value g is not exponential, but of the order 1/e. Later in

[6] M. Denche, K. Bessila applied quasi-boundary value method approximated with
ug(t) —Au(t) = 0 0<t<T
—EUE(.T,O) +U€(.T,T) = g(l‘)

The mix boundary condition in [5] and [6] are very important boundary conditions
to solve the nonlinear parabolic equation with a terminal condition.

It H=L%0,1) for I >0, A= —A, and f(t,u) = ullu|2(, problem (3.1) is given
by:

w(z,t) — Au(x,t) = u(m,t)||u(-,t)||%2(07l), (x,t) € (0,1) x (0,1)
w(0,8) =u(l,t) = 0, te(0,1) (3.2)
u(z,1) = g(x), z€(0,])

We call (3.2) a semilinear heat equation with cubic type nonlinearity. It has many
applications in computational neuroscience and occurs in neurophysiological mod-
eling of large nerve cell systems in mathematical biology in [19].

The source function f(t,u) = u||u||%2(0 ) satisfies the following properties:

i For each p > 0, there exists a constant K, > such that f : Rx H — H

satisfies a local Lipschitz condition

1 (tu) = f(t,0)]] < Kpllu =
for every u,v € H such that |ul|, ||v] < p.

i1 There exists a constant L > 0 such that
<f(t7u) - f(t,v),u - U> + LHU - U||2 2 0

ili f(t,0) =0 for t € [0,1]

14



The last two properties are additional conditions for the source function. N. H.
Tuan, D. D. Trong in [13], they have assumed the above properties satisfy the
source function f in (3.1).

Let A admit an orthogonal eigenbasis {¢r} on H and corresponding eigenvalues

{A\c} of A. Consider the approximation problem for (3.1) is

uf(t) + Acu(t) = f(tue) 0<t<1

u(l) = g

(3.3)

For u € H having the expansion

n

k=1

as defined
Zln (m) (u, Or) Dx

where In* () = max{In(x),0}. Then the solution of (3.3) converges to the solution
of (3.1), see [13]

The disadvantage of the above problem is the source function needed to satisfy the
above three conditions, but not all source functions satisfy these three conditions.
For example f(u) = au — bu®(b > 0) of the Ginzburg-Landau equation. Because
of that in [15], D.D.Trong, B.T. Duy, M.N. Minh, they have introduced another

condition for f that satisfies as follows, i.e. assume Kj; < oo, where

f CB,t7U f(:l:,t,v)
u—"7v

Ky ::sup{' lul,|v] < M, u#wv, (:l:,t)E]R”X[O,T]}
It is clear that K, is a non-decreasing function of M and

1 f (2t u) = (2, t,0)|| < Knllu =

for every M > 0, |ul,|v] < M and (z,t) € R" x [0,7]. So f is a local Lipschitz

with respect to the variable u. Suppose limy;_o Ky = oo. To construct the

15



regularization for (3.3), they approximate the function f such that

flx, t, M) for u> M
Ju(@,t,u) = flx, t,u) for —M <wu(x,t) <M (3.4)
flz,t,—M) for u<-—-M

for M > 0.
see also [12, 20] for the local Lipschitz continuous source functions. In [8], Trong,
Quan consider a backward heat equation with time-dependent thermal conductivity
and 1-dimension space.
Here we consider the time dependent thermal conductivity in the n-dimension space
and H = L*(R").
Let T be a positive number and f : R” x [0,7] x R — R be a Lipschitz continuous
function such that f(z,t,0) = 0 and f(x,0,u) = 0. Now consider the following

parabolic equation:

w(w,t) —a(t)Au(x,t) = f(@,tu(z,t) 0<t<T, zeR" 55
uz,T) = g(x) zeR"

where 0 < ¢ < a(t) € C([0,T],R), § is a constant, is an increasing function, and is
called thermal conductivity and g € L*(R™). We need to find the solution u(zx,t)
such that u : R" x [0,7] — R. The solution representation of (3.5) gives by the

n—dimension Fourier transform form;

T
ﬁ(C,t) — el¢l (A(T)*A(t))g@) _ / el¢l (>\(S)*>\(t))fu<c7 s)ds (3.6)
t
where
1 .
(¢, t) = / u(zx, t)e “®dx

(V2m)™ Jrn

and

16



Here we define @ = (21,29, ,2,) € R, ¢ = ((1,(2,- "+ ,(n) € R", @ -y is the
scalar product of @ and y and f(x,t,u(x,t)) = f.(x,t). This problem is called
the backward heat equation with a time dependent variable coefficient and such a
problem is not well-posed because of Hadamard. That is, there is no solution or
even it has a unique solution on [0, 7] it does not depend continuously on the final

value of g.

EXAMPLE 3.1. Suppose n = 1. If u is the solution of (3.5) with u(z,T) = g(z),

where g € L*(R) such that f(z,t,u) = (et —1). Clearly f(x,t,0) = 0 and

1—?11.2
f(x,0,u) = 0. Also f is a Lipschitz continuous function, because, for any u,v €

L2(R)

st = et = @ =) (- )

14+u2 1402

oy (o)

= (e~ 1) <((f+_52))((11_+ﬁ)>>

1 UV

= (' = 1)(u—v) ((1 +u?)(1+0?)  (T+u?)(1 +"02)))

then
. 1 UV 2
|f(x,t,u) - f(x,t,v)|2 = (6 - 1)2|u - U|2 (1 +u2)(1 +1)2) B (1 +u2)(1 —{—U2)
2

|2 1 UV

A+ (I+0%)  (A+ud)(l+07)

< (=1} u—w

L+ @)1+ ?)

< (e = 1) u—v)* |1+

N2
< (e" = 1)2|lu—v|? (1 + Zl)

25
= (e = 1Pl of
25

= (e = P — o

17



That is,

Gt w) = FO L)@ < Flluls ) = ol D@

where k = %(GT —1). Hence [ is a Lipschitz continuous function.

Now we regularize the following approximation problem with (3.5). Here we
use a modified quasi-boundary value method to regularize. A quasi boundary value
method is the most common method to regularize nonlinear parabolic equations,

see in [8,9, 10, 15,16,17].

3.3 Approximation Problem

Since system (3.5) imposes us to consider regularization, we need to develop
a better approximation problem for (3.5). Now, we consider the following approxi-

mation problem:

u; —a(t)Au¢ = H(x,t,u®) 0<t<T
—a(t) (.0 .

—eug(0) +u(T) = g(=)

where
. e~ ICIPA®) R
H,e (Ca t) = AD/NT) + o~ ICPA®) fue(C7 t)

and

) . T C 2 0 .
9°(¢) = g(¢) — /0 GA(S)/;(L“)‘f(eleIQA(s) Jue (€, 8)ds

Then the solution representation of system (3.7) is given by:

) R0 ) T IR0 .
u (C;t) = €|C|2a(0) T 6—|C|2>\(T)g(<-) _/t EA(S)/A(T) + €—|C\2/\(s) fu€(<7 S)dS (38)

or

€ ia¢ e~ ISP .
u (w,t) = /n e €|C|2a(0) + 6_K|2)\(T)g<4)

T e~ ICIPA®) (3_9)
- /t M)/ AT)  e—ICIPA(s) fue(C,8)ds | d¢

18



Now we have the approximation problem and its solution representation. Our main
goal is to show this approximation problem is well-posed and its solution converges
to the solution of (3.5) whenever e approaches zero. Before that we want to prove
(3.8) is a solution representation of the system (3.7). To prove this, first consider

(3.7) and differentiate it with respect to . Then we have

¢ a(t)e PO T ¢ Pa(t)e1ePA®
~€l¢]2a(0) + o d©) / /AT 4 e—ICPX

€_|C‘2/\(t) R
+ Sonm o amm e (6

ug(¢,t) = 5 fue (€, 5)ds

(3.10)
Now consider u$(¢,t) + a(t)|¢|?a(¢, t), then we have

—I¢IPA()
. . e -
ug(C,t) + a(t)|C|2u(C, t) = AO/NT) - o—ICPAD) fue (€, 1)

and
us(C,t) + a(t)|¢Pa(¢, t) = H(C 1)

Now take the inverse Fourier transform and get uf — a(t)Au® = H(x,t,u). Also

consider the quasi-boundary condition, equation (3.10) gives

N B ]C|2a(t)e_‘g|2)‘(0) K T |q2a<0)€_|¢\2x(0)
Ut(C7O) N _€|C‘2a(0) —+ e_|C‘2>\(T)g C + 0 EA(s)/A(T) i e_|<|2)\(s) qu<Ca S)dS
e~ 1¢I2A(0) R
+ eN0)/NT) + 6_|C|2>\(0) fue(Ca 0)
since
t
A(t) = [ a(s)ds
0

implies A(0) = 0. Also f(a,0,u) = fu(¢,0) = 0 implies

[¢Pa(t) [¢[*a(0)

T
H(C.0) = ~ e e il€) + | e e e s

and by (3.8) gives
o—ICI2AT)

wET) = @) + e

9(¢) (3.11)
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then

B¢ T) — eaif(C,0) = ¢ Pa(t)

ACPa(0) + e 1) + ooy 3 ok

T 2
€|¢[?a(0) .
i /0 ANS)/NT) - e—ICPA(s) fue (¢, 5)ds

that is

T € 2
(G T) = edf(0) = 3(6)+ [ s e fe (€5

= 9°(¢)
Now taking the inverse Fourier transform, we have —eu$(0) +u(7") = ¢g°(x). Hence
equation (3.8) is a solution representation of the system (3.7).
Next we need to show the system (3.7) has the solution representation as equation

(3.8) or (3.9). To show this, take the Fourier transform for equation (3.7), then we

have
due 2,7 ]
+a(t)|Clfuc = H((, t,bu®) 0<t<T
i +atle (€t oo
—eug(0) +u(T) = g°(C)
The above equation we rewrite as
d . elCPA(s) o= IC1PA(s) 1

— ()l =

ds SOAm 1 o imm (69 = Senm - oame e (609)

Integrating both sides, we have

; ICEAT)=A(®)), T o~ ICIPA®) X
U (t) =e U (T) B /t AE/ANT) 1 o~ ICPA() fue(c’ S)ds

To find the u¢(T) we can apply the given condition

T 2
—ei0) = —elePa(0)eDir(r) - [ A0 as

then

~

ue(T) = e (0) = ae(T) + el¢[*a(0)eSADie(T)

us(T
€|¢|*a(0) -
/ eAS/AT) 4 e~I612A(s) Jur (€, 5)ds

/\

= uf (T) ICI2A( T)( |C|2 ( )—|—@_|C\2)\(T))
€|¢[*a(0)
/ A)/MT) 4 o—ICPA(s) fue(c s)ds
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since

T 2
¢ € — (€ A €|C‘ Cl(()) A
(T) = €if(0) = 40) = 50) ~ | e o e €. )
implies
(T eICI2A(T)g(C)
) = JePato) T -k
therefore,
zif(t) _ €_|C\2>\(t)g(c) - T R SRY0) fl(c s
€[¢[2a(0) + e KPAT) [, AGAT) 4 oA /S

This is the solution representation of (3.7) and taking the inverse Fourier transform

we have (3.9).

3.4 Existence, Uniqueness and Stability of the Problem

In this section, we discuss the uniqueness and stability of the approximation
problem (3.7). First, we discuss the existence and uniqueness results of solution
of (3.7). The existence and uniqueness of the problem (3.5) gives the following

theorem.

THEOREM 3.1. If a(t) > § > 0 for all t € [0,T], where 0 is constant, and
g € L*(R") and f : R™ x [0,T] x R be a Lipschitz continuous function, then system

(3.5) has, at most, one solution
w e C(0,T]; IA(R™) 0 LX(0,T; HA(R™) 1 C1((0, T); I2(R™).
Proof. Suppose system (3.5) has two solutions u and v such that

u(x,t) — a(t)Au(x,t) = f(x,t,u(z,t) 0<t<T
uz, T) = g(x)

and
vz, t) —a(t)Av(x,t) = f(x,t,v(x,t)) 0<t<T




Define w(x,t) = u(x,t) — v(x,t), then wy(x,t) = uy(x,t) — v (2, t) and Aw(x,t) =
Au(zx,t) — Av(x,t). Also w(x,T) = 0. Now we have
wi(x,t) —a(t) Aw(x,t) = f(x,t,u(z,t)) — f(z,t,v(x,t) 0<t<T
w(x,T) = 0
Then
|wt(ma t) - a(t)Aw(ac,t)| = |f(a:a t,U(CU, t)) - f(m>t7 U(ZB,t))|
< ]{]‘U(ib,t) - 'U(SC,t)’
= kfw(z,1)]
By theorem 1.1 in [11], we have w(x,t) = 0 and system (3.5) has a unique solution.

Now we assume (3.5) has a unique solution in L*(R") with given condition g €

L*(R™). m

THEOREM 3.2. Put
i€ o ICPA)

1
B t d
( )(CL' ) (\/_ n E|C|2&< )+€ \C|2)\(T)g<C) C
(3.13)
zmce CPA®
[ [ el s)dsdg
27‘(‘ R» Jt >\(T) + e~ ICI2A(s)
Then for u,v € C’([O,T];LQ(R”)) and n > 1 we have
n n k o (T — t)nCn
IB°(0).0) - B < (£) T ol 319
where C' = max{T,1}, and ||| - ||| is the sup norm in C([0,T]; L*(R™). Also this

uniqueness of the solution representation implies that the solution of system (3.7)

has a unique solution in C([0,T]; R™).

Proof. We can prove this result by Induction method. Since B(u)(z,t) as (3.13),

then the Fourier transform of (3.13) gives

- R0 A
B(u )(C? t) = €|C|2a(0) + €_|C|2>\(T)g(<')dc

T e~ I¢IPA) .
- / NG fu€(<> S)deC
t + e I¢€PA(s)

GA(T

(3.15)
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and we know
IB(u)(-, ) = B) (-, )72 gamy = 1B (- t) = B, )| @n

then for n = 1, we have

1B t) = B ) (s Ol 2y = [ Bu) () = B )|,

P
- [ 1] = fi (€, 5)ds
R |Jt XY 4 e—ICI2A(s)
T kP ?
/ A(s) fue (Cv S)ds
t exT) + e—ICIPA(s)

R”

T ke
L ) s
R™ t eNT) + e—I¢I2A(s)

/ fCo8) — finle, s>>2ds) ic

t

dg

2

T —ICPAW ) .
/t (i (Co8) = frl(C. 8))ds

D) )
EXT) 4 e—I¢IA(s)

<

12 A(t)
Since (e)— < %, we have

NT) 4e—1¢12A(s)

B0 = Bl < [ ([ s [ Gl = fulgopas) e

/Rn ( / (fur(rs) = f;e(g,s))ms) d¢

(T / (fue (€, 8) = fue(C, 8))?dsdC
R Jt
il / / (for (€. 8) — for(C,8))2dCds
T —
:< t / | foeer8) = foc - 8)[Bands

/ [ fue (- 8) = fue (s 8) [ T2rmy ds

By the Lipschitz continuity of f we have a constant k such that

1ur o) = for G )zqamy < Rl () = 0%, )] o
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Therefore,

B0 = By < BT [ C5) = ) s

(' -1t
2
Now suppose (3.14) holds for any n > 1. Next we need to prove (3.14) holds for

= Ck?

lu = o [®

n + 1, that is
1B (w) (1) = B (0) (- )72

= 1B () £) = B (0) () 2y

T IR0 ?
S () e
n\ Jt eNT) + e—ICIPA(s)

T—t [T

< k'2€—; 1B () (-, 5) = B™(v) (-, 8)l|72 @y ds

T—t [T /N (T = s)"C"
<52 / (—) T8O o2
t

€ n!

R\ (T —s)
<o (B -t [ T
o

. k 2(n+1) (T . t)(nJrl)
<o (BT - i
€ (n+ 1)n!

< CntD E 2(n+1) (T — t)(’n+1)
- (n+1)!

- 2
: Il =l

This is the proof of equation (3.14).

Now consider




Then the series ) ., a, converges by the ratio test because,

. Ap+1
lim

n—oo

=0<1.

Qn

Since the series converges, there exists ng € N such that a, < 1 for all n > ny.
Hence, the Banach fixed point theorem implies there exists an unique solution

u® € C([0, T];R™), such that B™(u¢) = u*. Then
B(B™(uf)) = B(u‘) = B™*(u) = B(u) = B"™(B(u*)) = B(uf)

Then B™ has a another fixed point, but uniqueness implies B(u¢) = uf. This implies
the existence of solution representation (3.13). Also this representation implies the
solution of system (3.7) is unique. If u and v are two solutions of (3.7), then (3.7)

has solution representations

(¢, 1) e P ©- [ Y e
uc ,t - g _/ s u¢ ) §)aS
€[¢|2a(0) + e~ ISPAD) b 4 e lCPA®)
and
“(¢.) O 10— [ fucs
'Ue ,t == g _/ s ve 78 §
€|¢[2a(0) 4 e~ IEPAT) b 4 e—lEPA®)
then
) o eeme ) i
i — 0P = | [ (for(Co8) — foe(C5))ds
t exT) 4 e—ICI2A(s)
T am_ x4 - 2
< (T—t)/ eNT) ~N(T) fue(c,s)—fve(c,s)‘ ds
t
since
”d6<7t) _1;€<'7t)||%2(]1{”) = R |d€<C7t) —’UAE(C,t)|2dC
and

~

||uA€<7t) - Ue(’?ﬂ“%ﬁ(R") = Hue(at) - UE('7t>H%2(R")
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T A(t) ~
(-, £) = (-, ) |32y s(T—ﬂ/Rn/t SR | foe (€, ) - fv«(as)rdsdc

Fur (@) = FulCos)| s

T 3@ A6 «
(=0 [ YL 9) = fo 9 s

~

< k(T — t)/ XY AT |ue (-, 8) — Ug(wS)H%?(Rn)dS
t

Then, we have

~

_A®) “ ~c 2 2 g — X e € 2
€ D Hu (7t) —v ('7t)HL2(R") <k (T - t) € A Hu ('7 8) —v (‘7 S)HLQ(R")dS
t
Gronwall’s Identity implies
€N (-, 1) — V()1 Fany < 0= lus(,t) = v5(, ) |22y = 0

that is,
||u6(7t) - UE('vt)||%2(Rn) - 0 = Ue(t) = Ue(t)

for all z € R"™. Therefore, system (3.7) has a unique solution in C'([0,7];R"). O

Next we need to discuss the stability of the problem. That is, the solution

of system (3.7) continuously depends on the given condition.

THEOREM 3.3. Suppose u(x,t) and v¢(x,t) are two solutions of (3.7) with given

conditions 0(x) and ¢(x) respectively. Then

1 8) = v (Ol ey < KillFo(,1) = Gol )2 gany

where

(©),  Gol¢,) = [¢PGTH (¢

e
N—
[N
—
Ets
N
2
—_
S—
D>

and
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Proof. Consider u¢(¢,t) — ve(¢,t)

) ) o~ ICPA®) ; T KPA® ]
€ t) — ve t) = - uc\S>
u (Cu ) (Y <C7 ) €|C|2a(0) n e—ICPA(T) (C) /t 6;\(;) N G—ICPA(S)f (C 5) S

o I¢2A)

0+ [
€[¢[?a(0) + e~ [SPAT L AT g ek

then

R0 ) .

G0~ HCOP = | e () — 9()

T e )
" / - (Fu(C.5) = (. 5))ds
t ex? 4 e—1¢12A(s)

since (a + b)? < 2a? + 2b%, we have

e_|C|2>\(t) . R
€|¢[2a(0) + e~ ICPAT) (0(¢) — ¢(C))

T —KPAW ) )
/ O (fue(€,s) — fue(C, 8))ds
t o ex

T + e~ I€IPAGs)

uc(¢, 1) —ve(¢, ) < 2

+ 2

—ICPA®) o )
S 2 <€|C’2a(0) n €|C|2)‘(T)> |(0(C) - ¢(C))|2

T —ICPA®) S )
vz ( - ) (Foe(Co8) — for (€, )P
¢ €

MT) 4 e~ ICIPA(s)

therefore,

. . , R 2 o
() — 05, B) By < 2 /mn TePat) T e | 100 — e

2
=I¢IPA)
+2 / / =
L2(R™) EA(T) + e~ ICIPAGs)

X | (fue (€, 8) = fue (€, 8))|2dsdC

Note: For 0 <t < T, we have
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therefore, we have the following estimates

R0
€|¢[Pa(0) + e IKPAT

and

2
e—ICIPA®) ( As) > (35-1) A A(s)
€

A(s) 2
eNT) 4 e—ICIPA(s)

then, we have

i) = Oy <2

(0(C) = &(Q))IPd¢
+M$%Tew?/ (fu(C.8) — For(C5))PdCds
(
This implies

B it (-, 1) — 0 (-, 1) | Zagny < 26 (a (o>)2(w>‘1>/ [Fo(C.t) — Co(C. )¢
L2(R™)

A(t) T 9 A(s)

pRE ! gMﬂLqugg@—ﬁ«@WMw

t

— 2 2(a(0) 2 GE DBy, 8) = Gol ) |2
T _gAs) 5 2 2
+2 [ BB (for (8) = For (- 8)|[2a(ny s
t
since || {12 gy = [ £I|2 ), we have
IO ] - >3-
€A [l (-, 1) = (1) By < 262(@(0)) DD Fp(-,8) = G 1) 2y
T pAG) )
+2/ € A(T)H(fue(',s)—fw(‘a<‘5))|’L2(}R<n)d5
t
_ Al
< 2¢7(a(0)* 5T D Fy (-, £) = Gy, ) agan,

T A(s)
.+%a/ € 2N [|u (-, 5) — (-, 8)) |2 ey
t
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Gronwall’s Identity implies

>
I~

t)

v‘

_o M) _ _
€D u (-, 1) = 0 ) [Ty < 262 2(a(0))XT V|| (-, 1) — Go(, )72y

RYON _ A(
||u€(~,t) _Ue('7t)||%2(Rn) < 92 X(T) 262k2(T t)(a(()))Q(A(T) >||F6( ) G¢(.,t)||%2(Rn)

This completes the proof. O

3.5 Convergent Result of Approximation Problem

In this section we discuss convergent results of the approximation problem.

THEOREM 3.4. [fu‘(z,t) € L*(R") and P € L*(R"™), where P(¢) = [¢|2e/PAMg(¢).
Then u(x,T) — g(x) as € — 0.

Proof. Consider |u¢(¢,T) — §(¢)|

2
o ICEAT)

JCPa(0) + <P
| d¢Pao)
= | I¢Pa(0) + eI

¢[¢]*a(0) e
- (€|C|2a(0) + e—|C|2>\(T)> 19(C)]

us(¢.T) — ()" =

(0~ 4(0)

2

(©)

Nl

therefore
N i el¢[2a(0) L
HU (C7T> - g(C)“%Q(R") = /L2 En) (€|C|2 ( )‘I‘ 6—|C2)\(T)) |g(C)|2dC
<ea0? [ gt mig)Pag
L2(Rn)

<caof [ PP

hence

lu(@, T) = g(@) |72y < €al0)[| P(2)]|72 gny
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and u‘(x,T) — g(x) as € — 0. Therefore, the given condition of the approximation

problem (3.7) converges to g(x). O

THEOREM 3.5. [fq € LA(R") andp € L2(0, T; L*(R™)), where (¢, 1) = [¢*X[3(¢)|
and p(¢,t) = e'C‘Q’\(t”fu(C, t)].

Then for all0 <t <T

0

Hue(at) - u(7t>‘|%2(R") < K262>‘ )

where
Al 2
K2 = <3a(0)2>\(T) Hq<;t>”%2(R") + 3THpHL2(O,T;L2(R”))> e3k T
That is u¢ — u as € — 0.

Proof. Consider

€ o €|C|26L<0)6|C|2(>\(T)—)\(t)) )
u <C7t> - u(C7t) o €|C|2a<0) + 6_‘C|2)\(T) g ) — t

T €—|C|2>\(t) .
+/ A(s) fue(gs)ds
t eNT) 4 e—ICIPA(s)

A(s) 2
dc|2a(0)e|CIQ(A(T)—A(t)) X T X1y elCIF(A(s)=A®)
B 2 =1¢I2N(T) 9(¢) = 2(5) (¢, s)ds
€[¢|?a(0) + e t eMD) 4 e—l¢PA(s)
T e~ 1CIPA) R R
+/ 2s) (fue(c’ 3) - fu(C7 S))ds
t exT) + e—1¢I12A(s)
then
A(s) 5
€|¢[2a(0)elSPAM=A1) T 31 ISP A -A®)
u6C7t _UC7t < gC + s fuCaS ds
(6 9) (€2l €|C|2a(0>+6_|q2A(T) 4(0) t ei(% + e~ ICIPA(s) full5)

T —I¢I2A() - -

eNT) 4 e—|C‘2)\(s)

A) ) )

LA ) ORI
< S I¢[ T a(0) N0 [3(C)] + / M |1, (¢, 9)]ds
t

I~

~
>

T _ae) o ;

+ / DTN | fe(C,8) = fulC, 5)|ds

t

T

MO oA A A ;

— D) |C|2/\(T)a(0)>\(T) 19(¢)| + XD / e|C‘2A(5)|fu(C, s)|ds
t
a0 [T e - ;
t
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since

and

and we have

lu(,

t) —u(-,t

o0~ Ol = [ 60 —uic DG

M Z2 @)

(a+b+c)® < 3a® + 3b% + 3¢

A(t) T A 2
racith [ )( / e'<”<8>|fu<c,s>|ds> ac
L2(Rn t
2

QA T g s :
+ 3e7AM € D ’fuf (C7 S) - fu(47 8)‘d8 dC
L2(R7) \Jt

A(t) A(t)
< 3¢ Wa(O)Q“T)/ [T |5(¢)Pd¢
L2(R™)

)\(t T 2 A ?
racth [ (/ O (¢, >|ds) ac
L2(R"™)

g A _2 As) A 9
+ 3TN ) S| fue (¢, 8) = fulC8)PdsdC
L2(R"

gMBD 9AlD)

_ 5238 q(0)230P / oGP

37 / / 2PN £ (¢ 6)Psde
L2(R)

L 37 / 2 /L o o (69) = RGPl
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therefore,

(1) I72m)
3T / / 2O f (¢, 5)[2dCds
L2(Rn

o (T oo . 5
3T / €3 | for (- 8) = Fule, 8) Bz ds
t

D
= 3€2A(T)a(0) g )||2L2(Rn)

s [ 5(C.5)2
+ 3T 16(¢, s)|"d¢ds
¢ Jre@mn

_gAs)
+ 31—’452W € 2>‘(T) Hfu‘(a 5) - fu(a S)H%Q(R")ds

!

25D (- £) — (- )12 < 3a(0)330 |2 3TTA 2,
€ [u (-, t) = u(, Dl 72@ny < 3a(0) D |[q(-, )| 72@ny + i (s $)l72(rnyds

Gronwall’s

and

T A(s)
_oAs) 9
3 [ CBBUL9) = fulers) s
t
220 2 ’ 2
< 3a(0)"X® ||Q<'vt)||L2(R") + 3T . Ip(-, S)||L2(R”)d8
2 g . EACH R 2
+ 3k ¢ MT)HU ('75) _u('as)HLZ(R”)dS
t
QM 2
< 3a(0) XD g (-, D)l z2@ny + 3T |||l 207,12 (7))

T Als)
L3k / € B ||u (-, 5) =l 8) |2 ds
t

Identity implies

—o2 g A1)
0 () = ul, ) ey < (30005 lgC-, ) 2

+ 3T|p)l r2o.riz2eny)) €T

; 2 A1),
(-, ) = e Dl < (3a(0)3 |rq<-,t>||iz<m

2 ()
3k°T T

+ 3T \Ipll 21228 €

This implies the solution of problem (3.7) converges to the solution of problem (3.5)

when e approaches zero for all 0 <t < T. O]
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CHAPTER 4
NONLINEAR PARABOLIC EQUATION II

4.1 Second Order PDE Operator

In this section we discuss second order PDE problems, especially the space
dependent thermal conductivity heat equation with a terminal condition. Before
we discuss this problem, we consider the general form of parabolic equations.

Let 2 C R™ be opened and bounded, then for any fixed time 7" > 0, consider the

terminal value problem

w(x,t) + Lu(x,t) = f(x,t,u) x€Q and 0<t<T (1)

uw(x,T) = g(x) xe€Q
where f: Q x [0,7] — R and g : Q — R are given functions. wu is an unknown
function such that u : Q x [0,7] — R. The operator L is a second order partial

differential operator having two different forms as shown by the following definition

[22].

DEFINITION 4.1. Define L as a second order partial differential operator having

either the divergence form

Lu=— Xn: a%. (ai ) sz 8% + c(z, t)u (4.2)

. c(x, t)u (4.3)

where a™?,b" and ¢ are given constants fori,7 =1,2,--- n.
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DEFINITION 4.2. The operator L is elliptic (uniformly) if there exists a constant

6 > 0 such that

n

> a (@, )G > 0)¢

ij=1
for a.e x € Q) and all { € R™, where 2 C R" is opened and bounded.

DEFINITION 4.3. The partial differential operator % + L is parabolic, if there

exists a constant o« > 0 such that

n

> di(@, )i > ol

ij=1
for all (z,t) € O, € R”
y Loaf j=3 4
EXAMPLE 4.1. Choose a*?(x,t) = and b = ¢ = f = 0, then
0 of i#7
L = —A and equation (4.1) becomes the heat equation.
Suppose
g a(r) forv=7
PR
0 otherwise

and V' = ¢ =0, then L = —a(x)A. then equation (4.1) becomes

w(x,t) —a(x)Au(z,t) = [l tou, Uy, 3 Up,, Ugyzyy 5 Uzpe,) 0t <T

uwz, T) = g(z)
(4.4)

This is called the space dependent nonlinear heat equation. Especially the term

a(x) is called space dependent thermal conductivity of a heat equation.

4.2 Space Dependent Nonlinear Equation

Let T be a positive number. Suppose € = (x1,29---2,) € R" and f :

R" x [0,T] x R**! — R be a continuous function which satisfies
||f(7 t,u,v, w) - f(: t, u/7 U/, w/)||L2(R") < K”u(v t) - ul('v t)||H2(R") (45)
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where K is a constant, (z,t,u, v, w), (z,t,u, v/, w') € R" x [0, T] x R**1 such that
f = 0 whenever u = 0. Since L*(R") and H?(R"™) are Hilbert spaces, consider the

following inverse problem:

ur(x,t) — a(@)Au(x, t) = f(@, U Upyy oy Upyy Uy s Ugyz,) 0t <T

w(x, T) = g(x) x=eR"
(4.6)

where a(x) is given continuous function such that there exists ¢, > 0 satisfying
0<g<a(z)<r

AlSO (&, t, Uy Ugy s+ 5 Ugyy s Ugyzy s+ 5 Uge,) € R® X [0,T] x R*"T! and g € L*(R"™).
Here a(x) is called space dependent thermal conductivity of a heat equation. We
need to find a solution u € H?*(R™) such that v : R" x [0,7] — R. Suppose a(x)

has the following properties, see in [21]. That is

lim a(x) = ¢

@00
where ¢ is a constant, * — oo = x; — oo for each i = 1,2,--- ,n, and there is a
function b(x) such that
b(x) =a(x) —c
this implies
b(a)| < 2r

Using the above transformation, we rewrite equation (4.6) as follows:

u(x,t) — cAu(x,t) = F(x,t,u,up - Uy, Ugyzy ** Ugpz,) 0t <T

u(e,T) = glx&) xeR"
(4.7)

where F(wa ta Uy Ugy *** Ugyy Ugyaq * " ul‘nl‘n) = f(ma t> Uy Ugy * " Ugyyy Ugyzq * " ua?nxn) +

b(x)Au.
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The n—dimension Fourier transform form for given function w is

U ——1 w(zx, t)e % de
u((,t)—(m)n/w (2, )= da.

where C: (CDQQ'” 7gn) € R" and |C|2 :C12+C22++C72L
For convenience we use Fy(x,t) = F(@,t,u, Uy, Ug,,, Ugyzy * ** Uz, z,, )-

Then the solution representation of (4.7) is

T
¢ t) = T 05(0) — [P ¢ s)ds

t

or
= 1 cl¢lP(T—t) iCx gr 1 ! cl¢|?(s—t) £ iCx
u(x, t) WD /ne g(¢)e"*®d¢ WD /”/t e F.(¢, s)dse’>™d¢

The existence and uniqueness of the problem (4.7) gives by the theorem (3.1). Now

we assume (4.7) has a unique solution in H?(R™) with given condition g € L*(R").

DEFINITION 4.4. For u € H*(R"™), define

||U||§{2(Rn) = ’|U||2L2(Rn) + Z [ %2(]1@) + Z [

i=1 i=1

2
L2(R")

with the above definition, we have a very important result and given by the

following lemma,
LEMMA 4.1. For u € H*(R"), we have

Ol = [ (1 1P + €ONaC. G
where u 1is Fourier transform of u

Proof. Since ||u|| p2®ny = ||@|| L2(rny, We have

n n
el gy = @l + D NaillZoeny + Y i,
i=1 i=1

= ]| Z2gny + Z iCsa| 72 ey + Z | = GallZa@n)
=1 =1

2
L2(R™)
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| it |d<+2/ i |d<+2/|—<u )2d¢
Ja¢ |d<+2/ ¢lla(¢ |dc+2/ CHIa(C) P

[ atcpac+ [ (;w) OFdc+ [ (ZW) O)de

aOPdc+ [ ¢RIl de + / <1 a(0)2de
R" R"

I
\

R”‘

1+ ISP+ 1¢ID)Na(g, 1)]d¢

I
T

Since

n
Z [0 7

T2y < llullfregn
=1

Then by easy calculation, we can prove
|F (-t u,v,w) — F(- 0, 0", w') || p2@ey < Ellul(-,t) — /(- )| r2@n)
where k = /8r2n + 2K. For € > 0, consider the following approximation problem:

us(x,t) — cAu(x,t) = Sp(x,t) 0<t<T

(4.8)
cu(0) +u(x,T) = ¢(x) xzeR”
where Sye(x,t) = S(x, t, u JUG, UG UG “ug, L),

1 e_CIC‘Qt N .
. _ I € i¢-x
Sl ) (\/ﬁ)n /Rn €T 4 e—cl¢lPt (€, 1)Co, (C)e™™dC

and

@) = ! / §(6)Cs, (O)e=de

271' /n/ €T 4 e~ c\C|2s (C )CQ (C)ds eiCde

where C¢ : Q. C R” — R continuous and C* = 0 on ¢ such that C(x) — 1 as

e — 0 and 2. C R" is a closed, 0 € 2. and symmetric region about at = 0 such
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that Q. — R™ as € — 0. The integral form of (4.8) is given by

T 1 c||( € ei-m
(1) = N_/ SRT-0G(¢)Ch, (¢)e'SdC

e—cl¢l?t

/\

Fue(€,5)C5, (Q)ds e*d

R J¢ €T + e~ € + e—elcs

4.3 Approximation Results

As we showed in chapter three, here we need to show the solution of (4.7)
converges to the solution of (4.6) whenever the parameter goes to zero. First, we

have the following result.
COROLLARY 4.1. Ifu’(T) € L*(R"), then u*(T) — g whenever ¢ — (
Proof. Consider 4¢(¢,T) — g(¢), then
a(¢,T) = 9(¢) = 9(€)C6,. (€) — 9(C)

= 9(¢)(Cq,(€) — 1)

consider the absolute value for both sides, we have
ja(¢. T) — 9(¢)F° = 13(¢)C,. () — 9(Q)I?
= [9(Q)I?|(Ca,(¢) = D

now consider L? norm

i) = 5O ey = | 18(OPI(CR,(0) = DG
= [ 1P, € - viac+ [ laorac
< [ OPICR© ~ VP + [ a0
Now taking € — 0, the above inequality approaches zero. O

Consider the following example
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EXAMPLE 4.2. Considern = 1,0 < e <1 Q.= [-1,1] and C(z) = 1 — e

€l e

Clearly Q. — R and C°(x) — 1 as € — 0. then
6.7 = 30y < [ QI — e DPac + [ Jaco)Pac

_ / GO de + [ 15(0)1Rde
R Qe

<é [laPac+ [ latPac

¢)|?d¢ — 0, hence

when € — 0, then Q¢ becomes empty set, i.e. [q. |g(
<e [ laoPac
R
= EQHQH%Q(R)
this implies u(x,T) — g(x) whenever e — 0.

COROLLARY 4.2. Suppose u¢ € H*(R™) and v¢ € H*(R") are two solutions of

(4.8) with the terminal values ¢ and 1) respectively, then

€ € 2R (T—1)? 2c|ac|*(T— 7 n
Ju(-,t) —v ('>t)H§{2(R") < 2R e T g2elac (T t)W - W’%?(Rn)

where R, = max{1 + ||+ [¢|* : ¢ € Q} and a. € Q. such that €2 T=0 has the

mazximum at ¢ = a..

Proof. Let
e ePI06(C)C,, (¢)er dg
R™
T —c|C|2 6 .
n)y €T +e- e 1 p—clC?s Fue(¢,1)Cq,(C)ds e'*™d¢
and
UG( C|C‘ )C€ (C)e”cwdc
R
e—cl¢l?t ) e
e Jy €T 4 e el Fue(¢6)Cq (Q)ds e*™d¢
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[u(,t) = o*(,

and ||u||L2(R")

)iz eny = [0 (5 8) — v () L2 +ZIIU SB[

+Z|lu$w it _Uzz ( ) )”%Q(R")

= ||@]| 2(rn), we have

Ju(-t) — Ue(‘ﬁ)”?{?(ﬂxn) = [lac(-,t) — ||L2 roy T Z ||U )||L2 (R7)
+ Z ||um i Ti Ht) — U:r T4 ( ) )”%Q(R")
consider
o (z, t) — 0%z, 1) 2 = | T0C ()W (¢) — P(C))
T e 2
- [ S 0BG — Bl s
also
g, (. t) — 05, (,1)]* = ¢ [e<"T0Cg () ($(C) — (<))
T el ?
- [ S 0BG — FelC )i
> fag (z,t) — 05, (@, 1)[* = [¢]? [T () (C) — (<))
=1
T ¢t 2
| G OB Gt) — B¢t
and

n
=1

therefore

P T ()W (¢) —P(C))

T —C\Clzt
- / 0o (OB (€ 1) — B (C.1))ds

€T + e~ cl¢|?s

() = o C D) ey 2/ (L4 ICP + 1¢1) [T 0Cq, () (9(¢) = ¥(¢))

n

2

T ¢t
- [ QG — PG| de
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Let h(¢) =1+ |¢|* + [€[*, then

<2 / A() (<9 T0) (€93, (O)I(9(C) — D)

eelelt 2 ) )
£ _ 2
_t /Rn[ <ET + e~ cl¢|?s > CQG(C)KFUE(Cat) FUG(C;t))| deC

- / B(E)XIPTD() — (¢ Pde

eelelt \* .
_ o 2
- [ [ <+ C,Cz) Fe(¢,0) = Fue(, 0 Pdsd¢

since R, = max{h(¢),¢ € Q.} , and a, € Q, such that e2/<"(T=) has the maximum

at ¢ = a,, then
< 2R, / PT=010(¢) — (¢ 2dC
Qe
T
FORAT 1) [ [ OB (G0) = Fulg ) Pasdg
<2me 00 [ i)~ doPac

+2R.(T —t) / ' e2c|@el2<5—t> |Fue(C, 1) — Fue(C,1)]%dCds
t R™
= 2Ree*26‘“6|2t620‘a6|2T||¢ — wu%%w)
1 2R, e 2elacl*t /T 21| | e (-, 8) — el 3)”%2(Rn)d5
t
< 2R66_2c|a6|2t62cla6|2T||¢} _ ¢||%2(Rn)
+ 2k2R e 2clacl*t /T AP (- 5) = v (-, 8) 32 gy ds
t
therefore, we have
o8 = v ) aqny < 2Ree 22T — gy

T
L 9k2R, e 2eladt / 1|0 (- 5) — v (-, 8) |22 ey s

t

and
clac|? € € clac|? N N
AT u (-, 8) = v (- ) [z gny < 2RI T [10) — 72 gmy

T
+2k2R (T — 1) / 2P ut (- 5) — v (-, 8) |32 ds
t
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Gronwall’s Inequality implies

2P+ £) — (-, 1) Bpa ny < 2Rl TRy g2,

and

€ € 2R(T—1)2% 2clae|?(T— 7 7
[l (1) = v () Fpz ey < 2Ree™ BT 200y — )|,
O

This corollary implies that the approximation problem continuously depends

on the given initial value.

THEOREM 4.1. Define for u¢ € H*(R")

G(u(x, 1)) (PTG (¢)Cs, (¢)ei®de
e—cl¢l?t |
€r + eclcPs Fue(¢,1)Cq, (¢)ds e“®dg

Then for n € N we have

n( € n( € R?ManQnTnT_tn ne
167 (u (- ) = G (1) gy < (T=1" one,

n!

et = wf[I* (4.9)

where R, = max{h(¢{) : ¢ € Qc}, b = max|[C|? on Q, |C(C)| < M for all ¢ € €,
and |||.||| is the supremum norm in C([0,T], H*(R")).

Also there exists an u¢ € H*(R™) such that G(u(x,t)) = u(x,t)

Proof. Proof by induction. Suppose n = 1, then

1
(\/_)

Glus(, 1)) = / e T-04(0)Cs, () dC

e—cl¢l?t

Fye(¢,1)Cq, (C)ds ™ d¢

t ET + e~ C\C|28

n
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For any u¢,v¢ € H?(R") x [0, 7], consider ||G(u(-,t)) — G(v(-, ))||H2 Rn), then

— [ no

T —C|C‘2t ? ~ - 21 e |2
S (T—t)/ h(C)/t m |Fu5(C7S)_Fv€(C7‘S)| |CQJ d‘SdC

< RM(T - 1) / / 2P| £ (€, 5) — Fue(C, 5) PdCds

2

g

T et )
/t m(ﬂm(@s) — (€, 8))Cq, (€)ds

since b = max{|¢|? | ¢ € .}, then
< RM*(T —t) / / 2ebe (| Fe (€, 8) — Foe (€, 8)|2dCds
< R -0 [ [ 6.8) — g o) Pagas
R”L

t ‘ A

< R.M*(T — t)esz‘T/ [Fue (-, 8) = Fue (-, 8) || 22 (nyds
T

= REM2(T — t)e20b€T/ ||Fu€(7 8) - Fve('v S)”%z(R")dS
b

< RM?K*(T — t)eZCbET/ [uc (- 8) = v (-, 8) g2 my ds

¢

T
< RAMPEH(T — t)e*®T / [ (-, 8) = v°(-, )| 372 (gmy ds
t

< RMPE*T(T — t)e

€ UeH |2
This implies (4.9) is true for n = 1. Now suppose inequality (4.9) is true when
n = p, that is,

RPM2PE*TP(T — t)P
e
p!

€ Ue|||2

IGP (u(-, 1)) = GP (v () I ey <

We need to show (4.9) is true when n = p+1. Consider ||GP™ (u(-, t)) =GP (v(-, 1)) ||H2(Rn

then

= [G(G"(u (- 1)) = G(GP(v"(- 1)) [P H*(R")

= [ no

2

T dePt .
/t W(Fcp(ue)(c75)—FGP(ve)(CaS))CEE(C)dS d¢
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T e\

S (T_t)/g h(C)/t (M) |FG’p(ue)(C ) ng(v ( )| |CQ( >|2d8dc
6 T 2 A A

<M 1) [ 1O [ O ) (€5) ~ B (€9

T
< RM?k*(T — t)BQCbeT/ IGP(u)(-, 8) = GP(v) (-, 8) T2 myds
t
by the hypothesis, we have

T RPK#TP(T — s)P
€

S R6M2k2(T_t)e2cbeT/ ' e_ve|||2d8
t p:
R€+1M2(p+1)k,2(p+1)TTpe2(p+1)cbeT . . T
- . = oW | (7 = 5Pds
. t
_ RPHLMRH) 20t ) oL g2+ )b T I — o] 2 (T — t)pHt
R€+1M2(p+1)k.2(p+1)Tp+1 (T _ t)p—l—leZ(p—f—l)cbeT

€ €2
u —v n

therefore (4.9) is true for all n € N. That is, for all n € N we have

RM> k> T (T — {)"
(&

n!

IG™ (- 1)) = G" (v (. 1) 2y <

e_veHIQ

RM?K2T(T—t)Le

RnMan.QnTn T—t)"
Let s, = == (=" p2nebeT then

— where L, = e,

neN Sn = €

That is s, is convergent sequence. Then there exists ny € N such that s, < 1 for
all n > ng. The Banach fixed point theorem implies there exists a unique solution
u® € H?(R") such that G™ (u¢) = u¢ and this implies G(uf) = u°.

Now suppose u and v are two solutions of the approximation problem (4.5), then

1 e—cl¢lPt g ‘
wlm = (\/_ / cte Zlbc(|§T>CQ (¢)ee™d¢
_CIC‘Q
e e (6 )G, (C)ds el
”w%@>

vi(x,t) = Co. (C)ed¢

(\/_ wn € + e—clCPT
o—clcft
V2m)n / . / Fe(¢,1)Ch, (¢)ds €'<™d¢

eT + e~ C|C|2
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Consider |lu‘(-,t) — v°(+,t)|| m2(mn), then

— [ nio

T e—c|C|2t 2 R R
< (T —1) / h(C)/t <—> |Fue (¢ 1) = Fue (€, 1) PIC, (] dsdl

€ET + e cl¢]?s

T et \? )
< MA(T 1) / h(¢) / (—C) B (Cot) — B (C,8)PdsdC

€T + € cl¢|?

2

TPt .
| o (Bl = Fu¢0)Ch,(O)ds| d¢
t €T +e

< R.M*(T —t// eT T Fye(C,t) — Fue(C, ) |PdsdC

< RM*(T — )e%// -7
tT
e

| et [ 1Bt - Reicopacas

F (C: t) - Fve (C7 t)|2d8dc

Sl

< R.M*(T —t)e
T
< RAMZ(T — t)eT/t e (-, 8) — 1 8) 2 ds
that is
T
[ (-, 8) = 0 (-, )| 2y < ReMPE(T — t)e%/t e T lu(-, 5) = v°(-, 5) | Fr2gmy ds

Gronwall’s Inequality implies ||u(-,t) — v(-, t)||§{2(Rn) = 0 and u® = v¢, that is the

solution is unique. O

THEOREM 4.2. Suppose C(x) = 1 on = € Q.. Let G(C,t) = el +3)15(¢)|

such that G € L*(R™). Suppose

T
By= [ [ T i, g o) Pacds < o0
O n

If uf(x,t) and u(x,t) are solution representations of the approximation and original
problems respectively, then for p > 0

3k2T2 )

a8 = s )2y < D(t)e 0

where
() = 2|G 1) By + 2T — )5,

and ¢, € Q. such that 2l (T~ has the mazimum value at ¢=C..
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Proof. Let uf(x,t) and u(x,t) be solution representations of the approximation and

original problems respectively. Then

e 8) = Dy = [ (1 ICP + IEIa(¢,t) = (G PG

(L+ ¢+ I¢IDas(¢, 1) — (¢, t)*d¢

(1+1¢17 +[¢IMac(¢. ) — a(¢, t)[*d¢

_I_
m@\m&g\p\%

WO (. 1) — (¢, D2dC + / WO (€. 1) — a(C, 1)[2dC

¢

Let
= / R(ONE(C, 1) — A€, B)PdC
Qe
Iy = / ROV, 1) — (¢, HIPdC
Qe
Consider
I = / RO, 1) — (¢, HIPdC
Qe
then
0, TPt el
:/Q h(¢) |edlél = )—/t mﬁ’uﬁ(c,t)ds—e'd T94(¢)
T 2
+/ PO F (¢, s)ds| d¢
T T =Pt ?
/Q he /t (=0 fr (¢ ) s — /t ——m he (60|
2
¢l 2(s—t) ( £ _ I
</Qh /t ¢ (Fu(C,s) Fue((j,t)>ds d¢

(&L s) — Eue(¢ ) ’ dsd¢

<(r —t)/mh@/t (PP o)

We know that if [¢| > 1, then h(¢) < €*¢I"| then

T
0 / IS / 26l (1)
Qe t
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Let p > 0 and ¢, € Q. such that e2<I"(T~9 hag the maximum value at ¢ = ¢,. Also
h(¢) takes its maximum at ¢, on Q.. Therefore we rewrite the above inequality as

follows:
4 T 4 A A
< (T — e el emp(e,) / / LD (¢, ) — B (G, 1)|Pdsde
Qe

T
< (T —t)e >l In(¢,) / Al ) [ B (¢, 5) — e (€, 1) PdCds
t

Rn

T
— (T - t>620|ce4(t+p)h(ce>/ 626|Cs|4(s+p)HFu(.’ s) — Fue(',t)H%z(Rn)dS

t

T
< KT — t)e 26l (¢ ) / 2R APy (-, 5) — u (-, ) 3oy ds

t

Also, we have

b= [ ho

€

T
+/ eI (¢, 5)ds
¢

eiC‘C|2t

eI g(¢) — / T Fye (¢, t)ds — P 05(¢)

2

d¢

6% —+ 6_0|C‘23

2

T A
= [ 00 errrg0)+ [ et 0R ¢ syas| g
o

t

T
< / h(¢) <2eQC'<'2<T—t>|g<c>|2+2 / eI (¢, 5)ds
Q¢ t

2
)
< / h(¢) (26“'2”-“@(0?+2(T—t> / Te20'4‘2<5—f>|ﬁu<c, s>|2ds) d¢

t

_ / 2(C)ET0]g(¢) P + 2T — 1) /

Q

T
Q) [ Ol ¢ o) dsdg
¢ t
4 4 4 T 4 ~
< [ 9enelt el <Tt>|g(g)\2d<+2(T—t)/ 3¢l / (2D B (¢ ) [2dsdC
c t
< 9e-2dle () / (T e ) 5 ¢ 2
Qc
T
+2(T — t)e el / / ST | F (¢, 5)Pd¢ds
t ‘
< 9~ 2ICP(w+p) / T et 3) | 5 ) Pac
T -
+2(T — t)e >l ) / / T 2| F, (¢, )¢ ds
t n

= 20 P ED G 1) [faguny + 2T — e,
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Since [[u(+,t) = u(+ 1) ||32(gny = i + Iz, therefore,

T
< KT — t)@‘“ﬁ““*’”’l(@)/ PRSP (-, 5) = u (1) 2oy ds
t

4 2 2P| G (- 1) H%%Rn) +2(T — t)e—2c|cel2(t+p)3p
and

2 D)y (-, ¢) — u(e, )1z @ny < @+ KT —t)h(C,)

T
x/ 620|C€|4(S+p)|\u(~,8)—UE(‘J)HEI?(R”)CZS

t

where

o(t) = 2||G(, )l 72(@n) + 2T — 1)B,
Gronwall’s Inequality implies
cl¢ | € 2(7_4)2
e2elCel (t+p)||u (1) — u(.7t)||§12(w) < CD(t)ek (T—t)*h(¢.)
since all |[¢| > 1 we have h(¢) < 3|¢[|*, then

(-1 8) =, Doy < (H)eH T2l D)
= B(1) BTN g2l ()

3272 )
2

< (I)(t)e—2|46|4(ct+6p—

]

EXAMPLE 4.3. Suppose n = 1 case, choose € > 0 such that |In(2)| > 1 and
1 1
consider Q. = [— (In(1))*, (In(1))*]. It is clear that Q. — R whenever ¢ — 0.

1
Also, we have ¢, = (ln(%)) * and choose p > % then cp — @ > 0, therefore
22
[u(-,t) = ul, ) |3y < B(t)e2etter= ) ()

and

3k272
25)

(1) = e, ) ooy < D(E)EXHHP
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EXAMPLE 4.4. Choose n = 1 and 0 < ¢ < 1, consider Q, = [—ei,ei], then

¢ = et and

3k272 )e%

(- 8) = u(, ) ooy < D(E)e2HP—0
EXAMPLE 4.5. Choose n =1, and choose € > 0 such that |InIn(2)| > 1 consider
Q. = [~ (In(n 1))*, (In(n 1)) 3], then ¢, = (In(ln 1))

€ —2( ct+c —M In(ln 1
Ja (1) = e, D) qmy < B(t)e2(HHP 57 ()

22
_ syt )
B(t) (n * G
= o(t) Hg

P(¢)
3k272

(ln l)2<ct+cp7 . )

€

The above examples show that the approximation solution converges to the

original solution whenever ¢ — 0.
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CHAPTER 5
CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion

We consider a quasi- boundary value method and a modified quasi-boundary
value method to regularize time and space dependent thermal conductivity heat
equation with a terminal condition.

We use a modified quasi-boundary value method to regularize time dependent ther-
mal conductivity heat equation with a terminal condition. In many earlier works
on the nonlinear problems at any fixed time ¢ > 0, an explicit error estimate at
t = 0 is still difficult. Our calculation also implies we cannot prove main results
when ¢t = 0. But all results are valid for 0 < ¢ < T.

In contrast, we prove that the explicit error estimates are valid for all ¢ € [0,T]
when we use a quasi-boundary value method to regularize the space dependent
thermal conductivity heat equation with a terminal condition. But we do not have
a direct integral form to see the solution representation of the original problem. So
it is necessary to use a transformation method to convert this problem to either the

time or constant dependent thermal conductivity heat equation.

5.2 Future Research

Backward Heat equation is one of the ill-posed problems in partial differential

equations. There are many ill-posed problems in PDE such as Cauchy problem

20



for elliptic equation, parabolic equation with a terminal condition etc., requiring
regularization. There are many applications in Physics, Engineering, Neuroscience
etc, especially, the parabolic equation with a terminal condition,

For my future research, I would like to continue this research area and would like

to consider the following problems.

e For given T > 0 and €2 C R", for n > 1 is an open bounded domain with a
smooth boundary I'. Set @ = Q2 x (0,7) and ¥ =T x (0,7); ¥ is called the
lateral boundary of the cylinder (). Now we consider the question of finding
the function u(x,t) € £ x [0, 7], satisfying the problem (3.5) and (4.4) with

u =0 on X.

e Regularization of parabolic equations with a locally Lipschitz continuous source

function.

In my future research, I plan to explore regularization mechanisms for these prob-

lems.
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