
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2017

Extending difference of votes rules on three voting models. Extending difference of votes rules on three voting models.

Sarah Schulz King
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Models and Methods Commons, Other Applied Mathematics Commons, Other

Mathematics Commons, and the Political Economy Commons

Recommended Citation Recommended Citation
King, Sarah Schulz, "Extending difference of votes rules on three voting models." (2017). Electronic
Theses and Dissertations. Paper 2793.
https://doi.org/10.18297/etd/2793

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Louisville

https://core.ac.uk/display/143836297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/390?utm_source=ir.library.louisville.edu%2Fetd%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=ir.library.louisville.edu%2Fetd%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=ir.library.louisville.edu%2Fetd%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=ir.library.louisville.edu%2Fetd%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/352?utm_source=ir.library.louisville.edu%2Fetd%2F2793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2793
mailto:thinkir@louisville.edu

EXTENDING DIFFERENCE OF VOTES RULES ON THREE VOTING MODELS

By

Sarah Schulz King
B.S. University of Evansville, 2010
B.A. University of Evansville, 2010

M.S. Eastern Kentucky University, 2013

A Dissertation
Submitted to the Faculty of the

College of Arts and Sciences of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy
in

Applied and Industrial Mathematics

Department of Mathematics
University of Louisville

Louisville, KY

August 2017

EXTENDING DIFFERENCE OF VOTES RULES ON THREE VOTING MODELS

Submitted by

Sarah Schulz King

A Dissertation Approved on

June 16, 2017

by the Following Dissertation Committee:

Dr. Robert Powers,
Dissertation Director

Dr. Fred McMorris

Dr. Ryan Gill

Dr. Jason Gainous

ii

DEDICATION

Dedicated to my daughter, Kameron Morgan King, who has taught me more

about myself in three years than I could ever have learned without her.

iii

ACKNOWLEDGEMENTS

I would like to thank my parents and grandparents, who have always believed

in me, and my husband, for supporting me throughout this process. I would also

like to especially thank Dr. Jeffrey Neugebauer, who helped me believe that I could

do this, Dr. Robert Powers, who helped guide me through this process, Dr. Thomas

Riedel and Dr. Ryan Gill, for allowing me the opportunity to pursue this degree. I

would like to thank Dr. Wesley Milner, for his influence in making me a problem

solver and self directed learner and Dr. Talitha Washington, for introducing me

to the joy of mathematical research! Additionally, I would like to thank Ravindra

Agrawal, Chris Pierce, and Krista Baumgart for their help with C# coding. Last,

but not least, I would like the thank the Lord my God for giving me the mind to

understand and interpret mathematics on this level.

iv

ABSTRACT

EXTENDING DIFFERENCE OF VOTES RULES ON THREE VOTING MODELS

Sarah Schulz King

June 16, 2017

In a voting situation where there are only two competing alternatives, simple

majority rule outputs the alternatives with the most votes or declares a tie if both

alternatives receive the same number of votes. For any nonnegative integer k,

the difference of votes rule Mk outputs the alternative that beats the competing

alternative by more than k votes. Llamazares (2006) gives a characterization of the

difference of votes rules in terms of five axioms. In this thesis, we extend Llamazares’

result by completely describing the class of voting rules that satisfy only two out

of his five axioms. In addition, we state and prove Llamazares’ theorem in voting

models where either there is an infinite number of votes or each voter is allowed

to express an intensity level for one alternative over the other. Finally, we will

use a computer simulation to compare different voting methods to simple majority

rule, in order to analyze the probability that the voting rules would output different

results.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF TABLES . vii

LIST OF FIGURES . viii

1. INTRODUCTION . 1

2. VOTING MODELS . 5

3. DIFFERENCE OF VOTES RULES ON A FINITE VOTING MODEL 17

4. DIFFERENCE OF VOTES RULES ON AN INFINITE VOTING

MODEL . 42

5. DIFFERENCE OF VOTES RULES ON THE FUZZY VOTING MODEL 71

6. SIMULATING DIFFERENCE OF VOTES RULES AND OTHER

VOTING RULES . 80

7. REMARKS AND CONCLUSION . 94

REFERENCES . 97

APPENDIX . 99

CURRICULUM VITAE . 122

vi

LIST OF TABLES

Table 4.1. Case 2 . 57

Table 4.2. Case 3i . 57

Table 4.3. Case 3ii . 58

vii

LIST OF FIGURES

Figure 6.1. For N = 211 and k = 10, the Mk v. (SMR). 82

Figure 6.2. For N = 1000 and k = 10, the Mk v. (SMR). 82

Figure 6.3. For N = 1750 and k = 10, the Mk v. (SMR). 83

Figure 6.4. For N = 2000 and k = 10, the Mk v. (SMR). 84

Figure 6.5. For N = 2000 and k = 10, the Mk v. (SMR). 84

Figure 6.6. For N = 5000 and k = 10, the Mk v. (SMR). 85

Figure 6.7. For N = 8500 and k = 10, the Mk v. (SMR). 85

Figure 6.8. For N = 9500 and k = 10, the Mk v. (SMR). 86

Figure 6.9. For N = 9300 and k = 10, the Mk v. (SMR). 86

Figure 6.10. For N = 300,000,000 the Constant Function 1 v. (SMR). 89

Figure 6.11. Statistical Values Used for Calculations and Conclusions 91

Figure 6.12. For N = 2000 the Electoral College v. (SMR). 92

Figure 6.13. For N = 300,000,000 the Electoral College v. (SMR). 92

Figure 6.14. For N = 300,000,000 the Electoral College v. (SMR). 93

viii

CHAPTER 1

INTRODUCTION

In 1952 Kenneth May characterized simple majority rule (SMR) in terms of

three axioms [12]. This characterization of (SMR) is known as May’s Theorem and

it is considered a fundamental result in the area of social choice theory. In fact, one

goal of social choice theory is to help provide an in-depth understanding of how var-

ious voting functions work. While (SMR) is a popular voting method, often times,

(SMR) does not allow for the proper threshold of support before winning, since an

alternative only has to win by one vote. More classes of majority rule functions have

been introduced in the literature by Fishburn [6], Asan and Sanver [2], Llamazares

[7] and Houy [10], and most have been characterized axiomatically. One class of

majority rules introduced by Bonifacio Llamazares was coined the “difference of

votes” rules [11]. These rules require the difference between the number of votes in

favor of any alternative and the number of votes in favor of the other alternative

to be greater than some fixed integer k in order to choose that alternative. The

axiomatic characterization provided by Llamazares included five axioms. The first

goal of this dissertation is to extend the difference of votes rules, by reducing the

number of axioms in Llamazares’ characterization. After that, we will further ex-

tend the difference of votes rules, by characterizing the same rules as Llamazares

in an infinite model based on a countably infinite set of voters. Moreover, we will

extend some of our results from the finite model to the infinite model. We will

then examine a third model, known as the fuzzy voting model, or fuzzy aggrega-

tion model. Llamazares and Garcia-Lapresta extended Llamazares’ results to this

1

model [8] in 2010. Our goal will be to redefine these rules more intuitively and to

characterize these rules through the use of two new lemmas. Lastly, we will analyze

a computer simulation of voting rules that was developed to compare various voting

rules on different population sizes. This simulation will compare some of the voting

methods discussed in this paper, as well as popular voting methods in the political

world.

When extending Llamazares’ difference of votes rules in the finite domain, the

first idea was to remove neutrality. The axiom of neutrality captures the idea that

a voting rule should not depend on the labeling of the two alternatives. While it is

commonly understood that the function that always outputs the same alternative is

a notable example of a non-neutral rule that satisfied many of Llamazares’ axioms,

but not neutrality, we find that the constant rule is actually part of a whole class of

functions. This class of functions will be what we refer to as the difference of votes

rules. So our version of difference of votes rules is more general than Llamazares’

version. The general version of the difference of votes rules will require the number

of votes in favor of one alternative and the number of votes in favor of the other

alternative to be greater than some fixed integer k in order to be chosen, and require

the number of votes in favor of the other alternative and the number in favor of

the first alternative to be greater than some fixed integer l in order to be chosen.

We will explore the unique relationship between the integers k and l, as well as

completely characterize these rules in this model. The next step in this model is to

remove the axiom of anonymity. The axiom of anonymity captures the idea that a

voting rule should not depend on the labeling of the voters. Since we do still require

the function to be canceallive, we will show that anonymity is implied on a large

subset of the domain. One of the main results is a complete characterization of the

class of aggregation functions with only two axioms: cancellation and monotonicity.

The infinite model has been less explored than the finite model and brings

2

with it new challenges. In 2006, Mark Fey [5] extended May’s Theorem to an infinite

model where he labeled the alternatives differently from May. In this thesis, we shift

the labeling of the alternatives to match May’s labeling, and we then extend many

of the results of Llamazares as well as our own results given in the finite model. We

are able to define both types of difference of votes rules in the infinite model, and

extend Llamazares’ result, as well as part of our finite model result in the infinite

model.

The third voting model is the fuzzy aggregation model and it is based on

fuzzy set theory [13]. This domain has been defined and studied by researchers

in the area of fuzzy set theory [14], as well as those in the area of social choice

theory [7]. The model was first introduced by H. Nurmi in 1981, when examining

the idea of preference intensities [13], where the votes can give a partial favor of

one alternative over the other without expressing full favor. The most notable

results, for our purposes, in the fuzzy model have been done by Garcia-Lapresta

and Llamazares [7], [8]. They characterized a class of majority type rules in the

fuzzy model as well as a fuzzy version of the difference of votes rules. We introduce

and prove two lemmas that help in the characterization of the fuzzy difference of

votes rules given by Garcia-Lapresta and Llamazares [8]. Our new proof of the

Garcia-Lapresta and Llamazares result will hopefully lead to other results in the

fuzzy model.

The final goal of this dissertation is to analyze the outputs of a computer

program that was written to help compare and contrast different voting rules. This

program generates random votes for N voters and runs the same set of votes through

two different voting methods and then gives a comparison of the outputs. Each run

of the program generates 100 comparisons and then analyzes the actual probability

of agreement of the two voting methods. We first compare simple majority rule to

a difference of votes rule and find that the probability of agreement is much less

3

than expected. Next, we use the program to compare simple majority rule to that

of the Electoral College, a voting method used in the United States to elect the

President. These results were surprising, as well, in that we had three hypotheses

and two of them seemed to be very much not the case. The third hypothesis is that

as N grew, the disagreement between (SMR) and the Electoral College would grow

as well. This hypothesis was not thrown out by our data, but was only confirmed

by a small margin. More tests will need to be run to solidify this result.

A precise description of the finite, infinite, and fuzzy voting models is given

in the next chapter. Since each model has a different domain, the sets of voters,

and could have different possible outputs, making comparisons among these three

models is not always straightforward.

4

CHAPTER 2

VOTING MODELS

A FINITE VOTING MODEL

The focus of this chapter is to introduce three voting models based on a

slate of two candidates or alternatives. For example, a group of graduate students

want to have a party where they will serve either wine or coke, but not both. Each

graduate student votes for either wine, coke, or neither. By voting neither, the

student abstains, maybe because they wanted to serve beer, but it was not put as

an option, or they simply do not care what is served. The collection of votes is

aggregated in some way and a winner is determined. This type of voting situation

has been studied extensively in the social choice literature, for example Part I of

Fishburn’s book [6]. In our first two models, the alternatives are denoted by the

integers 1 and −1. In the example above, we could denote a vote for coke with a 1

and a vote for wine with a −1. The integer 0 will be used to represent an abstention

vote.

DEFINITION 2.1. Any function of the form

f ∶ {−1,0,1}n → {−1,0,1}

where n ≥ 2 is an integer is called a finite aggregation function, or finite aggregation

rule. An element in the domain, denoted by

π = (x1, x2, ..., xn),

is called a profile.

5

A finite aggregation function has three possible outputs, alternative 1, alter-

native −1 or a tie, denoted by 0. In our example, an output of 1 means that coke

is chosen, an output of −1 means that wine is chosen and an output of 0 means we

choose neither. What happens in the event of a tie can vary. Often a vote is recast

or a person in leadership makes the final decision. From this point forward, we

will refer to functions in this model as aggregation functions, dropping the “finite”

adjective.

Here is a simple example of an aggregation function to help the reader un-

derstand Definition 2.1 more clearly.

EXAMPLE 2.1. Define f ∶ {−1,0,1}n → {−1,0,1} as follows. For any profile

π = (x1, x2, ..., xn),

f(π) = x1 ⋅ x2 ⋅ ... ⋅ xn

where the output of f is determined by the multiplication of each entry of π, or each

voter’s choice.

We will define various sets of the voting profile in order to help with analysis

of the finite aggregation functions we will study.

DEFINITION 2.2. The set of voters in a profile π = (x1, x2, ..., xn), n ≥ 2, will be

denoted by N . So N is the integers in the interval [1, n]. The set of voters who

voted for each alternative will be denoted as follows:

N+(π) = {i ∈ N ∶ xi = 1}, N−(π) = {i ∈ N ∶ xi = −1}, and N0(π) = {i ∈ N ∶ xi = 0}.

Finally, n+(π) = ∣N+(π)∣, n−(π) = ∣N−(π)∣, and n0(π) = ∣N0(π)∣.

Notice that the aggregation function f given in Example 2.1, can be defined

by f(π) = 0 if n0(π) > 0 and f(π) = −1n−(π), if n0(π) = 0.

6

DEFINITION 2.3. The notation E− represents the profile where all voters choose

−1, E+ represents the profile where all voters choose 1, and 0⃗ represents the profile

where all voters abstain.

The next step is to introduce some properties that a given aggregation func-

tion may or may not satisfy.

DEFINITION 2.4. An aggregation function f ∶ {−1,0,1}n → {−1,0,1} satisfies

Anonymity, or is anonymous, if for all profiles π and permutations σ of the set of

voters N , f(πσ) = f(π) where πσ = (xσ(1), xσ(2), ..., xσ(n)).

That is to say, if a function is anonymous, the order of the voters does not

effect the outcome.

DEFINITION 2.5. An aggregation function f ∶ {−1,0,1}n → {−1,0,1} satisfies

Neutrality, or is neutral, if f(−π) = −f(π) for all profiles π = (x1, x2, ..., xn), where

−π = (−x1,−x2, ...,−xn).

If a function in neutral, then the labeling of the alternatives does not effect

the outcome of the voting.

In order to look at the next two axioms, we need to define profile comparisons.

For any two profiles π = (x1, x2, ..., xn) and π′ = (x′1, x′2, ..., x′n), π′ ≥ π if x′i ≥ xi for

all integers i ∈ N .

DEFINITION 2.6. An aggregation function f ∶ {−1,0,1}n → {−1,0,1} satisfies

Monotonicity, or is monotone, if for all profiles π, π′, if π′ ≥ π then f(π′) ≥ f(π).

If a function is monotone, then increasing favor for any alternative will not

negatively effect that alternative’s chance of being chosen.

DEFINITION 2.7. An aggregation function f ∶ {−1,0,1}n → {−1,0,1} satisfies

Strict Monotonicity, or is strictly monotone, if f is monotone, and furthermore, if

7

π′ ≥ π and π′ ≠ π, then

f(π) = 0⇒ f(π′) = 1 and f(π′) = 0⇒ f(π) = −1.

The strict monotonicity condition adds a tie breaking condition to the basic

monotonicity axiom. This tie breaking axiom means that if a profile generates an

output of 0, a tie, and then one voter changes their choice, then that choice will be

the output.

In 1952, Kenneth May completely characterized the class of aggregation func-

tions that satisfy Strict Monotonicity, Neutrality, and Anonymity. It turns out that

this class only contains one function called the simple majority rule function (SMR)

[12]. The definition of (SMR) is given below:

DEFINITION 2.8. An aggregation rule fm ∶ {−1,0,1}n → {−1,0,1} is simple ma-

jority rule (SMR), if for all π ∈ {−1,0,1}n

fm(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1, n−(π) > n+(π),

1, n+(π) > n−(π),

0, otherwise.

(2.1)

In 2006, Bonifacio Llamazares extended May’s work by characterizing a wider

class of majority type rules [11]. He introduced a new axiom called cancellation,

which he defined as follows:

DEFINITION 2.9. An aggregation function f ∶ {−1,0,1}n → {−1,0,1} satisfies

Cancellation, or is cancellative, if for any profile π = (x1, x2, ..., xn) such that there

exists i, j ∈ N where xi = 1 and xj = −1, and there exists another profile π′ =

(x′1, x′2, ...x′n) such that x′k = xk for all k ≠ i, j and x′i = x′j = 0 then f(π) = f(π′).

The cancellation axiom indicates that a vote of −1 will “cancel out” a vote

of 1.

8

Llamazares completely characterized the class of aggregation functions which

satisfy Anonymity, Neutrality, Cancellation, and Monotonicity [11]. He called the

aggregation functions belonging to this class as “difference of votes” rules since the

outputs determined by n+(π) − n−(π) or n−(π) − n+(π). They are defined below.

DEFINITION 2.10. An aggregation rule f ∶ {−1,0,1}n → {−1,0,1} is said to be an

Mk rule, if there exists an integer k ∈ [0, n], such that for all π ∈ {−1,0,1}n,

Mk(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, n+(π) > n−(π) + k,

− 1, n−(π) > n+(π) + k,

0, otherwise.

(2.2)

In order to make the understanding completely clear, Llamazares’ Theorem

is stated below.

THEOREM 2.1. If an aggregation function f ∶ {−1,0,1}n → {−1,0,1} satisfies

Anonymity, Neutrality, Cancellation, and Monotonicity, then there exists an integer

k in the interval [0, n] such that f(π) =Mk(π) for all π.

The Mk rules are restricted to values of k in the interval [0, n]. If k is neg-

ative, then the resulting function is not well-defined. Also, k is defined to be an

integer, since for any real number j and integer k such that k ≤ j < k + 1, Mj =Mk.

Also for any value k > n, Mk = Mn. Thus to be well-defined and avoid repetition,

we restrict k to the integers in [0, n]. Notice that if k = 0, then M0 = fm.

AN INFINITE VOTING MODEL

We are now ready to introduce our second voting model. In this model, we

consider a countably infinite set of voters. This type of infinite voting model has

been studied by others in the area of voting theory such as Mark Fey [5]. The set

of voters N will be of replaced by N. Here N is defined to be the set of natural

9

numbers, {1,2,3, ...}. We will define an aggregation function on a countably infinite

set of voters. We are now ready to extend Definition 2.1 to the countably infinite

set of voters.

DEFINITION 2.11. An infinite aggregation function is any function of the form

f ∶ {−1,0,1}N → {−1,0,1}. The function f will take profiles π = (x1, x2, ...) ∈

{−1,0,1}N, where 1,−1 are alternatives and 0 represents abstention or indifference

in the domain and a tie in the output.

We now extend the notation given in Definition 2.2 the set of countable

voters.

DEFINITION 2.12. The set of voters in a profile π = (x1, x2, ...) who voted for each

alternative will be denoted as follows:

N+(π) = {i ∈ N ∶ xi = 1}, N−(π) = {i ∈ N ∶ xi = −1}, and N0(π) = {i ∈ N ∶ xi = 0}.

Finally, n+(π) = ∣N+(π)∣, n−(π) = ∣N−(π)∣, and n0(π) = ∣N0(π)∣. We will write

n∗(π) =∞, if n∗(π) is not finite, and follow the convention that ∞+ k =∞ for any

finite number k.

Here is an example of an infinite aggregation function on a countably infinite

set of voters.

EXAMPLE 2.2. An infinite aggregation rule f ∶ {−1,0,1}N → {−1,0,1} will be

called an M∞ rule if for all profiles π, f(π) =M∞(π) where

M∞(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, n+(π) =∞ and n−(π) <∞,

−1, n−(π) =∞ and n+(π) <∞,

0, otherwise.

(2.3)

10

Next, we need to extend our axioms to the countably infinite set of voters.

While some of these axioms extend naturally, others require a more careful approach.

Monotonicity, Neutrality, and Cancellation extend quite naturally.

DEFINITION 2.13. An infinite aggregation function f ∶ {−1,0,1}N → {−1,0,1} is

said to be Neutral, or satisfies neutrality, if f(−π) = −f(π) for all π = (x1, x2, ...) ∈

{−1,0,1}N where −π = (−x1,−x2, ..).

In the countably infinite set of voters, for profiles π = (x1, x2, ...), π′ = (x′1, x′2, ...),

we write π ≥ π′ if xi ≥ x′i, for all i ∈ N.

DEFINITION 2.14. An infinite aggregation function f ∶ {−1,0,1}N → {−1,0,1} is

said to be Monotone, or satisfies monotonicity, if for π, ρ ∈ {−1,0,1}N, π ≥ ρ implies

f(π) ≥ f(ρ).

Since cancellation only applies to a finite set within the profile, it extends

easily as well.

DEFINITION 2.15. An infinite aggregation function f ∶ {−1,0,1}N → {−1,0,1}

is said to be Cancellative, or satisfies cancellation, if for π = (x1, x2, ...), π′ =

(x′1, x′2, ...) ∈ {−1,0,1}N, such that xk = x′k for all k ≠ i, j and xi = 1, xj = −1

and x′i = x′j = 0 implies that f(π) = f(π′).

The above three axioms carried over nicely to the countably infinite set from

the finite set of voters; however, there are a number of different types of anonymity

to consider in our second voting model. We will only cover two of them, as they are

the most intuitive.

DEFINITION 2.16. An infinite aggregation function f ∶ {−1,0,1}N → {−1,0,1} is

said to be Finite Anonymous, or satisfies finite anonymity, if for any permutation

δ of N where ∣{ i ∶ δ(i) ≠ i}∣ < ∞, then f(πδ) = f(π). We will denote the set of all

such permutations by Σ.

11

DEFINITION 2.17. An infinite aggregation function f ∶ {−1,0,1}N → {−1,0,1} is

said to be Strongly Anonymous,or satisfies strong anonymity, if for any permutation

σ of N, f(πσ) = f(π).

When looking at infinite aggregation functions, we will also examine a new

axiom that is helpful in understanding these functions. To state this condition, we

say that a subset N of N is co-finite if N c = N/N is finite. For example, N = {x ∈

N ∶ x ≥ 100} is co-finite, since N/N = {x ∈ N ∶ x < 100} is finite. However, the set

2N = {x ∈ N ∶ 2 divides x} is neither finite nor co-finite since N/2N, the set of all

odd natural numbers, is also infinite.

DEFINITION 2.18. An aggregation function f is said to be Zero Co-finite if there

exists a profile π ∈ {−1,0,1}N, such that N0(π) is co-finite and f(π) ≠ 0.

The zero co-finite axiom is not met by the function M∞ defined in Example

2.2, where if only a finite set of the countably infinite subset of N do not abstain, no

winner is chosen. There could be many instances where one would want to choose

a winner even if only finitely many voters cast a vote.

FUZZY VOTING MODEL

Our third voting model involves fuzzy aggregation functions. These functions

are based on two alternatives, x and y, and each voter can choose any number in

the range [0,1], based on how strongly they feel towards one alternative or another.

A vote of 0.5 is complete indifference or abstention, a vote of 1 is complete favor

for y over x, and a vote of 0 is complete favor for x over y. A vote di such that

0.5 < di < 1 shows a level of favor towards y over x, with respect to an abstention.

A vote of 0.75 shows a 50% favor towards y over x. A graduate student in our

original example, with x = coke, y = wine might vote 0.75 if they like wine, but

not coke, but are not necessarily super happy with wine as a choice, because they

12

would rather have beer. The output options are either 0, 1 or 0.5, indicating a

choice of x, y, or a tie, respectively. In this model, we will assume the set of voters

is Nm = {1,2, ...,m}, where m ≥ 2 is an integer. It should be observed that 0 in the

first two models corresponds to 1
2 in this model.

DEFINITION 2.19. A fuzzy aggregation function, or fuzzy decision rule, is a map-

ping F ∶ [0,1]m → {0, 12 ,1} that assigns 0,0.5, or 1 to each profile π = (d1, ..., dm) ∈

[0,1]m, depending on whether 0 defeats 1, 0 and 1 tie, or 1 defeats 0, respectively.

In order to help better understand these rules, we will look at the fuzzy

version of simple majority rule defined in Definition 2.8.

EXAMPLE 2.3. An aggregation rule f̃m ∶ [0,1]m → {0, 12 ,1} is fuzzy simple majority

rule, if for all π ∈ [0,1]m

f̃m(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if
m

∑
i=1
di > 1

2m,

1
2 , if

m

∑
i=1
di = 1

2m,

0, if
m

∑
i=1
di < 1

2m.

(2.4)

We can extend our axioms, but they will look slightly different in this domain

than in the other two models. Our axioms are the same as those used by Garcia-

Lapresta and Llamazares in their 2010 paper [8]. Anonymity and monotonicity look

similar to the versions of anonymity and monotonicity given in the previous models.

DEFINITION 2.20. A fuzzy aggregation function F ∶ [0,1]m → {0,0.5,1} is Anony-

mous if for all permutations of Nm and all profiles π = (d1, ..., dm), F (dσ(1), ..., dσ(m)) =

F (d1, ..., dm).

Now, just as in our previous two cases, for any π = (d1, ..., dm) and π′ =

(d′1, ..., d′m), π ≥ π′ if di ≥ d′i for all i ∈ Nm.

13

DEFINITION 2.21. A fuzzy aggregation function F ∶ [0,1]m → {0, 12 ,1} is Mono-

tone if for all profiles π and π′, π′ ≥ π⇒ F (π′) ≥ F (π).

In order to describe the negative of a profile, we will first define a function

on [0,1].

DEFINITION 2.22. For any d ∈ [0,1], define N(d) = 1 − d. In other words, d +

N(d) = 1 for all d ∈ [0,1].

Now, we can define neutrality in the following way. Since in our previous

models, a vote of 1 was “neutralized” by negating it to −1, since 1 and −1 average

to 0, an abstention. In this model, a vote of d is “neutralized’ by N(d), since they

average to 1
2 , an abstention in this context.

DEFINITION 2.23. A fuzzy aggregation function F ∶ [0,1]m → {0, 12 ,1} is Neutral

if for all profiles (d1, ...dm), F (N(d1), ...,N(dm)) = N(F (d1, ..., dm)).

When we define cancellation, it will look the most different, since the alter-

natives have different labeling. However, the idea is the same.

DEFINITION 2.24. A fuzzy aggregation function F ∶ [0,1]m → {0, 12 ,1} is Cancella-

tive if for all pairs of profiles (d1, ...dm), (d′1, ..., d′m) ∈ [0,1]m, such that d′i = di + ε

and d′j = dj − ε, for some i, j ∈ {1, ...,m} and ε > 0, and d′k = dk for all k ≠ i, j, it

holds that F (d1, ...dm) = F (d′1, ..., d′m).

We can see, with little proof, that as with the finite aggregation functions, the

fuzzy simple majority rule, f̃m, is anonymous, neutral, monotone and cancellative.

Garcia-Lapresta and Llamazares showed that for fuzzy decisions rules cancellation

completely implies anonymity [8]. We also need to introduce a new axiom for these

rules called Pareto.

14

DEFINITION 2.25. A fuzzy aggregation function F ∶ [0,1]m → {0, 12 ,1} is Pareto

if

F (1, ...,1) = 1 and F (0, ...,0) = 0.

It is not hard to notice that f̃m is Pareto as well. Garcia-Lapresta and

Llamazares also defined fuzzy difference of votes rules. However, there were two

different variations of these rules [8]. They are listed below.

DEFINITION 2.26. Given a real number k ∈ [0,m), the fuzzy M̃k majority is the

fuzzy decision rule defined by:

M̃k(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if 1
m

m

∑
i=1
di > 1

2 + k
2m ,

1
2 , if ∣ 1m

m

∑
i=1
di − 1

2 ∣ ≤ k
2m ,

0, if 1
m

m

∑
i=1
di < 1

2 − k
2m .

(2.5)

DEFINITION 2.27. Given a real number k ∈ (0,m], the fuzzy M̃ ′

k majority is the

fuzzy decision rule defined by:

M̃ ′

k(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if 1
m

m

∑
i=1
di ≥ 1

2 + k
2m ,

1
2 , if ∣ 1m

m

∑
i=1
di − 1

2 ∣ < k
2m ,

0, if 1
m

m

∑
i=1
di ≤ 1

2 − k
2m .

(2.6)

Though these fuzzy aggregation rules were defined in this way by Garcia-

Lapresta and Llamazares, we will multiply each line through by m, and rewrite

them to make them more clear. The rewritten rules are listed below.

M̃k(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if
m

∑
i=1
di > 1

2(m + k),

1
2 , if ∣

m

∑
i=1
di − m

2 ∣ ≤ 1
2k,

0, if
m

∑
i=1
di < 1

2(m − k).

(2.7)

15

M̃ ′

k(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if
m

∑
i=1
di ≥ 1

2(m + k),

1
2 , if ∣

m

∑
i=1
di − m

2 ∣ < 1
2k,

0, if
m

∑
i=1
di ≤ 1

2(m − k).

(2.8)

While M̃ ′

k and M̃k look similar, since the profiles can contain votes that are any real

number, and not just integers, the outputs could vary even with the same profile.

For m = 3 and k = 1, where π = (2
3 ,

2
3 ,

2
3), M̃k(π) = 1

2 and M̃ ′

k(π) = 1. Notice that

M̃0 = f̃m, the fuzzy simple majority rule.

Now that all of our voting models have been introduced, the next few chapters

will discuss the Mk rules as they behave in each domain. We will highlight some

previous findings, as well as introduce new results in each model that have allowed

us to extend the definition of difference of votes rules in various ways.

16

CHAPTER 3

DIFFERENCE OF VOTES RULES ON A FINITE VOTING MODEL

The purpose of this chapter is to look further into the class of difference

of votes rules for finite aggregation rules. We will introduce our version of the

class of difference of votes rules. This class of functions contains both neutral

and non-neutral aggregation functions. We will prove that this class of functions

completely characterizes the set of functions that are cancellative, anonymous, and

monotone. We will then further extend these results, removing anonymity and

looking at aggregations functions that satisfy cancellation and monotonicity and

give a complete characterization of such rules.

First, we will introduce the function that we define as the difference of

votes rules. We will use the symbol Z to denote the set of integers. That is

Z = {...,−2,−1,0,1,2, ...}.

DEFINITION 3.1. An aggregation rule f ∶ {−1,0,1}n → {−1,0,1} is said to be an

Mk,l rule, if there exists k, l ∈ Z∩[−n−1, n], such that k+l ≥ −1 for all π ∈ {−1,0,1}n,

Mk,l(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 n+(π) > n−(π) + k,

−1 n−(π) > n+(π) + l,

0 otherwise.

(3.1)

In the definition of Mk,l rules, there were restrictions listed on k and l. In

order to understand the necessity of those restrictions, we will look at a lemma that

explains when this class of functions is well-defined.

17

LEMMA 3.1. If k, l ∈ Z∩[−n−1, n] then Mk,l is well defined if and only if k+l ≥ −1.

Proof. First, assume k + l ≤ −2, and Mk,l is well-defined. If k < 0 and l < 0, then it

follows for ρ = (0,0, ...0) that n+(ρ) > n−(ρ)+k and n−(ρ) > n+(ρ)+ l, so Mk,l would

not be well defined. Therefore, max{k, l} ≥ 0. Assume without loss of generality

k ≥ 0. Since l ≥ −n − 1 and k + l ≤ −2, it follows that k ≤ −2 − l, so k ≤ n − 1

or k < n. Let π be a profile such that n+(π) = k + 1 and n−(π) = 0. Observe that

n+(π) > n−(π)+k and n−(π) > n+(π)+l. Therefore, for that same π both Mk,l(π) = 1

and Mk,l(π) = −1 holds true. This is a contradiction, so k + l > −2, hence k + l ≥ −1.

Now, assume that for some k, l, Mk,l is not well-defined. Then there exists

π such that both n+(π) ≥ n−(π) + k + 1 and n−(π) ≥ n+(π) + l + 1. Thus k ≤

n+(π) − n−(π) − 1 and l ≤ n−(π) − n+(π) − 1. Hence k + l ≤ −2.

If k = l, then equation 3.1 is the same equation described by Llamazares [11],

and can be found in Definition 2.1. Since we allow k ≠ l, this is a broader class of

functions. If k = n and l = −n−1, then we get the constant function Mn,−n−1(π) = −1

for all π. If k = −n − 1 and l = n, then M−n−1,n(π) = 1 for all π. Thus, while the

difference of votes rules defined by Llamazares are neutral aggregation functions,

the class of Mk,l contains some non-neutral aggregation rules. In fact, we can show

that an Mk,l rule is only neutral if k = l.

LEMMA 3.2. The function Mk,l is neutral if and only if k = l.

Proof. If k = l, then since k + l > −2, 2k > −1, and k ≥ 0. Therefore, by definition,

we have an Mk rule which is neutral by Theorem 2.1.

Now, assume that Mk,l is neutral. Then anonymity and neutrality allow us

to see that Mk,l(0,0,0, ...) = 0, so k ≥ 0 and l ≥ 0.

If k < n, then consider a profile π such that n+(π) = k+1 and n−(π) = 0, then

Mk,l(π) = 1. By neutrality, Mk,l(−π) = −1, where n−(−π) = k + 1 and n+(−π) = 0.

18

Therefore, k + 1 > n+(−π) + l = l. Thus k ≥ l. Similarly, if l < n consider ρ such that

n−(ρ) = l + 1 and n+(ρ) = 0, then Mk,l(ρ) = −1. Considering −ρ, n+(−ρ) = l + 1 and

n−(−ρ) = 0, and by neutrality Mk,l(−ρ) = 1. Therefore, l + 1 > n−(−ρ) + k = k, so

l ≥ k. Thus, it follows that k = l.

We will look at an example to help understand the motivation and workings

of this class of functions.

EXAMPLE 3.1. Suppose there is a committee in the Senate of ten Senators, and

in order to overturn an old decision, they want a super-majority. It is common that

Senators are out of town from time to time. To insure that such decisions are not

made when only a few Senators are there, they develop an aggregation rule that in

order to overturn a previous decision the difference between those in favor and those

against must be greater than 3. Formally, if 1 represents a decision being overturned

and −1 represents keeping the old decision, then 1 wins if n+(π) > n−(π) + 3. The

senators’ aggregation rule is the Mk,l rule with n = 10 and defined by:

M3,−4(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 n+(π) > n−(π) + 3,

−1 n−(π) > n+(π) − 4,

0 otherwise.

(3.2)

When 6 Senators vote, the only way to get an output of 1 and overturn the ruling

would be to have 5 or 6 votes in favor. Since n+(π) = 5 > n−(π) + 3 and n+(π) =

6 > n−(π) + 3. Otherwise, 2 or more “no”’s will result in not changing the rule, as

n−(π) = 2 > n+(π) − 4. With 4 or 5 Senators voting, it would require all present

to vote in favor of overturning the rule in order to do so. If 3 or fewer Senators

are voting, the rule cannot pass. With all 10 voting, the order would require 7 or

more in favor to pass, but one abstention will actually lower the threshold to 6. This

voting rule also prevents Senators from abstaining in order to prevent decisions, as

it would require half of the committee to abstain to insure there is no change made.

19

It is notable that the aggregation function defined in Example 3.1 cannot

output 0. This happens to be specific to the relationship between k and l. It turns

out that an Mk,l rule cannot output 0 when their sum is minimal. This occurs when

k + l = −1.

PROPOSITION 3.1. For any Mk,l, k + l = −1 if and only if Mk,l(π) ≠ 0 for any

π ∈ {−1,0,1}n.

Proof. First, if l + k = −1, then assume, by way of contradiction, that there exists

ρ ∈ {−1,0,1}n such that Mk,l(ρ) = 0. Then n+(ρ) ≤ n−(ρ) + k and n−(ρ) ≤ n+(ρ) + l.

Thus, n+(ρ) ≤ n+(ρ)+l+k, and so 0 ≤ l+k. This contradicts that l+k = −1, therefore,

Mk,l(π) ≠ 0 for all π ∈ {−1,0,1}n.

Next, assume that there exists an Mk,l rule such that Mk,l(π) ≠ 0 for any

π ∈ {−1,0,1}n. First notice that if k = −n−1, then Mk,l(π) = 1 for all π. In order for

Mk,l to be well defined, l = n. Similarly, if l = −n−1, then k = n. Thus, we can assume

k > −n−1. Now for any π, either n+(π) > n−(π)+k or n−(π) > n+(π)+ l. Since both

cannot hold at the same time, assume π is such that n+(π) − n−(π) = k + 1. Then

Mk,l(π) = 1. Consider π′ such that n+(π′) − n−(π′) = k. Then n+(π′) /> n−(π′) + k,

so Mk,l(π′) ≠ 1. Hence, Mk,l(π′) = −1, since there exists no profile π such that

Mk,l(π) = 0. Therefore, n−(π′) > n+(π′) + l, which implies n−(π′) − n+(π′) > l.

Thus −k > l or k + l < 0. Since we already showed that k + l ≥ −1, it is clear that

k + l = −1.

Even though Mk,l rules are not neutral, there is a relationship between Mk,l

and Ml,k that extends neutrality.

PROPOSITION 3.2. For any k, l ∈ Z ∩ [−n − 1, n] such that k ≠ l and k + l ≥ −1,

and any π ∈ {−1,0,1}n, Mk,l(−π) = −Ml,k(π) or Mk,l(π) = −Ml,k(−π).

Proof. Let Mk,l(π) = 1, then n+(π) > n−(π) + k. Thus, n−(−π) > n+(−π) + k, so

Ml,k(−π) = −1. Similarly, if Mk,l(π) = −1, then n−(π) > n+(π) + l. Then n+(−π) >

20

n−(−π)+l, hence Ml,k(−π) = 1. Lastly, if Mk,l = 0, then neither n+(π) > n−(π)+k nor

n−(π) > n+(π) + l. Therefore neither n−(−π) > n+(−π) + k nor n+(−π) > n−(−π) + l.

Thus Ml,k(−π) = 0. Hence Mk,l(π) = −Ml,k(−π).

Now that we have a basic understanding of the roles of k and l, we can look

at which axioms from Chapter 2 the Mk,l rules satisfy. The first theorem we have

shows that Mk,l rules where k ≠ l satisfy all of the axioms that Mk rules satisfy,

with the exception of neutrality.

THEOREM 3.1. For any k, l ∈ Z ∩ [−n − 1, n] such that k ≠ l and k + l ≥ −1 the

function Mk,l ∶ {−1,0,1}n → {−1,0,1} is anonymous, cancellative, monotone, but is

not neutral.

Proof. Notice that for any permutation σ of N and π ∈ {−1,0,1}n, n+(π) = n+(πσ)

and n−(π) = n−(πσ). Therefore, Mk,l(π) =Mk,l(πσ). Hence, Mk,l is anonymous.

Let π = (x1, x2, ..., xn) and π′ = (x′1, x′2, ..., x′n) be profiles such that xk =

x′k for all k ≠ i, j, xi = 1, xj = −1 and x′i = x′j = 0, then N+(π′) = N+(π)/{i}

and N−(π′) = N−(π)/{j}. If Mk,l(π) = 1, then n+(π) − n−(π) > k. In this case

n+(π′) − n−(π′) = n+(π) − n−(π) − 1 + 1 > k. Hence Mk,l(π′) = 0. Alternatively, if

Mk,l(π) = −1, then n−(π) − n+(π) > l and n−(π′) − n+(π′) > l. Hence Mk,l(π′) = −1.

By completeness, if Mk,l(π) = 0, then Mk,l(π′) = 0. Thus Mk,l is cancellative.

Next, consider two profiles π and π′ such that π ≤ π′ and Mk,l(π) = 1, so

n+(π) > n−(π)+k. Then N+(π) ⊆ N+(π′)and N−(π′) ⊆ N−(π). Thus n+(π′) ≥ n+(π)

and n−(π′) ≤ n−(π). Hence, n+(π′) > n−(π′) + k, implies Mk,l(π′) = 1. Similarly, if

ρ and ρ′ are such that ρ ≥ ρ′ and Mk,l(ρ) = −1, then n−(ρ) > n+(ρ) + l. It follows

that N−(ρ) ⊆ N−(ρ′)and N+(ρ′) ⊆ N+(ρ). Thus n−(ρ′) > n−(ρ) and n+(ρ′) < n+(ρ),

so Mk,l(ρ′) = −1 and Mk,l is monotone.

By Lemma 3.2, since k ≠ l Mk,l is not neutral.

21

Now that we have proven that Mk,l rules are anonymous, cancellative, and

monotone, our next step is show that this class of functions completely characterize

all functions that satisfy these three axioms. We start by proving the following:

THEOREM 3.2. An aggregation function f ∶ {−1,0,1}n → {−1,0,1} satisfies anonymity,

cancellation, monotonicity and is not neutral if and only if there exists k, l ∈ Z ∩

[−n − 1, n] such that k ≠ l and k + l ≥ −1 such that f =Mk,l.

Proof. Assume that f satisfies our four conditions. We will define the integers k

and l in the following ways. If f(π) ≠ 1 for all π ∈ {−1,0,1}n, let k = n; otherwise,

let

k = min{n+(π) − n−(π) ∶ f(π) = 1} − 1.

Similarly, if f(π) ≠ −1 for all π ∈ {−1,0,1}n, let l = n; otherwise, let

l = min{n−(π) − n+(π) ∶ f(π) = −1} − 1.

Notice that k, l ∈ Z ∩ [−n − 1, n]. If k < n, then let κ be a profile such that n+(κ) −

n−(κ) = k+1 and f(κ) = 1. If l < n, then let λ be a profile such that n−(λ)−n+(λ) =

l + 1. Our first goal is to verify that k + l ≥ −1. If k = n, then since l ≥ −n − 1,

k + l ≥ −1. Similarly, if l = n, then k + l ≥ −1. Thus, from now on we will assume

that k < n and l < n. Since f is cancellative, we may assume that κ satisfies one of

the follow equations:

n+(κ) = 0 and n−(κ) = −k − 1, (3.3)

or

n−(κ) = 0 and n+(κ) = k + 1. (3.4)

Similarly, we may assume that λ satisfies one of the follow equations:

n+(λ) = 0 and n−(λ) = l + 1, (3.5)

22

or

n−(λ) = 0 and n+(λ) = −l − 1. (3.6)

Suppose Equations (3.3) and (3.6) hold. Then 0⃗ ≥ κ and 0⃗ ≤ λ. By mono-

tonicity, f(0⃗) ≥ f(κ) = 1 and f(0⃗) ≤ f(λ) = −1, which is impossible. Thus Equations

(3.3) and (3.6) cannot hold at the same time.

We cannot have k = l = −1, since then κ = λ = 0⃗ and f(κ) = 1, but f(λ) = −1.

Therefore, if Equations (3.4) and (3.5) hold then k + 1 ≥ 0 and l + 1 ≥ 0. So k ≥ −1

and l ≥ −1. Since k = l = −1 is impossible, it follows that k + l ≥ −1.

If Equation (3.3) and (3.5) hold, then n+(κ) = n+(λ) = 0. Since n−(κ) ≥ 0,

we know that −k − 1 ≥ 0. Similarly, l + 1 ≥ 0. But f is monotone, and f(λ) < f(κ),

so λ < κ. That implies that l + 1 > −k − 1 or l + k > −2; hence, l + k ≥ −1.

If Equations (3.4) and (3.6) hold, then n−(κ) = n−(λ) = 0 and we can argue

like above that

k + 1 > −l − 1 and so k + l ≥ −1.

At this point, by Lemma 3.1, the Mk,l rule is well defined.

Now, let f(π) = 1. Then n+(π) − n−(π) > k by the definition of k. Thus

n+(π) > n−(π) + k, so Mk,l(π) = 1. Similarly, let f(π) = −1. Then n−(π) − n+(π) > l

by the definition of l. So, n−(π) > n+(π) + l and Mk,l(π) = −1.

Next, assume that Mk,l(π) = 1. We will show that f(π) = 1. Now Mk,l(π) = 1

implies that n+(π) > n−(π) + k. So n+(π) − n−(π) > k. Since Mk,l is cancellative,

there exists π′ such that Mk,l(π′) =Mk,l(π) and one of the following holds:

n+(π′) = 0 and − n−(π′) > k, (3.7)

or

n−(π′) = 0 and n+(π′) > k. (3.8)

23

Therefore there are four cases to analyze.

1. Assume Equations (3.3) and (3.7) hold. Then n+(κ) = n+(π) = 0, n−(κ) =

−k − 1 and n−(π′) ≤ −k − 1. Since n−(π′) ≤ n−(κ) and n+(κ) = n+(π) = 0, there

exists a permutation σ of N such that κ ≤ π′σ. Therefore, by the monotonicity

and anonymity, f(κ) ≤ f(π′) = 1. Since f is cancellative, f(π′) = f(π) = 1.

2. Assume Equations (3.4) and (3.7) hold. Therefore, n−(κ) = n+(π′) = 0,

n+(κ) = k + 1 and n−(π′) ≤ −k − 1. We find then,

k + 1 ≥ 0 and 0 ≤ −k − 1,

k ≥ −1 and k ≤ −1.

So k = −1 and κ = π′ = 0⃗, so f(κ) = f(π′) = 1. Since f is cancellative,

f(π′) = f(π) = 1.

3. Assume Equations (3.3) and (3.8) hold. Then n−(π′) = n+(κ) = 0, n+(π′) > k

and n−(κ) = −k − 1. There exists a permutation σ of N such that π′σ ≥ κ.

Therefore, by monotonicity, f(π′σ) ≥ f(κ) = 1. Since f is anonymous and

cancellative, f(π) = f(π′) = f(π′σ) = 1.

4. Assume Equations (3.4) and (3.8) hold. Then n−(π′) = n−(κ) = 0, n+(π′) > k

and n+(κ) = k + 1. Using anonymity, if necessary, we can assume that π′ ≥ κ,

so by monotonicity and cancellation, f(π′) = f(π) = 1.

Now, assume that Mk,l(π) = −1. We will show that f(π) = −1. Keeping in

mind that Mk,l is cancellative, we may simplify the profile π by canceling pairs of

the form (−1,1) or (1,−1) to create π′ as above such that Mk,l(π′) = −1 and one of

the following holds:

n+(π′) = 0 and n−(π′) > l, (3.9)

24

or

n−(π′) = 0 and − n+(π′) > l. (3.10)

Therefore, we can compare λ and π′ with four cases as above.

1. Assume Equations (3.5) and (3.9) hold. Then n+(λ) = n+(π′) = 0, n−(λ) = l+1

and n−(π′) ≥ l + 1. So, by anonymity, if necessary, we may assume that π′ ≤ λ

and by monotonicity and cancellation f(π) = f(π′) ≤ f(λ) = −1.

2. Assume Equations (3.5) and (3.10) hold. Therefore, n+(λ) = n−(π′) = 0,

n−(λ) = l + 1 and n−(π′) ≤ −l − 1. We find then,

l + 1 ≥ 0 and 0 ≤ −l − 1

l ≥ −1 and l ≤ −1

So l = −1 and λ = π′ = 0⃗, so f(λ) = f(π′) = −1. Since f is cancellative,

f(π′) = f(π) = −1.

3. Assume Equations (3.6) and (3.9) hold. Then n+(π′) = n−(λ) = 0, n−(π′) ≥ l+1

and n+(λ) = −l − 1. Now, −l − 1 ≥ 0 implies l ≤ −1. By using anonymity, if

necessary, we may assume that π′ ≤ λ, so by monotonicity and cancellation,

we can find that f(π) = f(π′) ≤ f(λ) = −1.

4. Assume Equations (3.6) and (3.10) hold. Then n−(π′) = n−(λ) = 0, n+(π′) ≤

−l−1 and n+(λ) = −l−1. Using anonymity, if necessary, we can see that π′ ≤ λ,

so by monotonicity and cancellation f(π′) = f(π) = −1.

Thus, we have shown that for any π ∈ {−1,0,1}n, f(π) = 1 if and only if Mk,l(π) = 1

and f(π) = −1 if and only if Mk,l(π) = −1. Therefore, it can be concluded that

f(π) = 0 if and only if Mk,l(π) = 0. So f =Mk,l.

25

From our results above and those outlined in Theorem 2.1, we have the

following corollary. This corollary is the complete characterization of aggregation

functions that are monotone, anonymous and cancellative.

COROLLARY 3.1. An aggregation function f ∶ {−1,0,1}n → {−1,0,1} satisfies

monotonicity, anonymity, and cancellation if and only if there exists k, l ∈ Z∩ [−n−

1, n] such that k + l ≥ −1 and f =Mk,l

In order to show the necessity of each of our axioms, we will look at a few

examples. In Llamazares’ paper, he gives examples of functions are given that are

neutral as well as satisfying various other axioms[11]. Also, note that the example

given by Llamazares as monotone, anonymous, and cancellative, but not neutral

(labeled SWP #2) is an Mk,l rule where k = n − 2 and l = n − 1. The next two

examples are not neutral by Lemma 3.2. First we will define a function that satisfies

anonymity and monotonicity, but is not cancellative.

EXAMPLE 3.2. Consider the aggregation function H ∶ {−1,0,1}n → {−1,0,1}, for

n ≥ 5, defined by

H(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M1,3(π), n+(π) ≥ 4 or n−(π) ≥ 4,

0, otherwise.

(3.11)

We will prove that the aggregation function H is anonymous, monotone, but is not

cancellative.

Proof. First, we will show that H is not cancellative. Consider the profiles π =

(x1, x2, ..., xn) and π′ = (x′1, x′2, ..., x′n) such that n+(π) = 4, n−(π) = 1. Then H(π) =

1, since n+(π) − n−(π) = 3 > 1 and n+(π) ≥ 4. Define π′ via xk = x′k for all k ≠ i, j

and xi = 1, xj = −1 with x′i = x′j = 0. Then H(π′) = 0, since n+(π′) = 3 and n−(π) = 0.

Therefore, since H(π) ≠H(π′), H is not cancellative.

26

For n+(π) ≥ 4 or n−(π) ≥ 4, H is anonymous, since H(π) =M1,3(π) and Mk,l

rules are anonymous. If n+(π) < 4 and n−(π) < 4, then H(π) = 0 is anonymous.

Now, to show that H is monotone, let ρ and ρ′ be profiles such that ρ′ ≥ ρ.

If n+(ρ) ≥ 4 or n−(ρ′) ≥ 4, then H(ρ′) = M1,3(ρ′) ≥ M1,3(ρ) = H(ρ). If n+(ρ′) < 4

or n−(ρ) < 4, then H(ρ′) = 0 ≥ 0 = H(ρ). So we need only to compare two profiles

where one meets the criteria for M1,3 and one meets the criteria for the trivial part

of H.

Let ρ and ρ′ be profiles such that n+(ρ) ≤ 3, n−(ρ) ≤ 3 and ρ′ ≥ ρ. Thus

H(ρ) = 0. Since ρ′ ≥ ρ, n+(ρ′) ≥ n+(ρ) and n−(ρ′) ≤ n−(ρ) ≤ 3. If n+(ρ′) ≥ 4, then

H(ρ′) = 1. If n+(ρ′) ≤ 3, then H(ρ′) = 0. Hence H(ρ′) ≥ H(ρ). Now, let π′ and π

be such that n+(π) ≤ 3, n−(π) ≤ 3 and π ≥ π′. So H(π) = 0. Also, n−(π′) ≥ 3 and

n+(π′) ≤ 3. Thus, H(π′) ≤ 0 and H(π′) ≤ H(π). Hence, we have confirmed that H

is monotone.

The aggregation function defined in the next example is cancellative and

anonymous, but is not monotone.

EXAMPLE 3.3. Consider the function −M1,3 ∶ {−1,0,1}n → {−1,0,1}, for n ≥ 4,

defined by:

−M1,3(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, n+(π) > n−(π) + 1,

1, n−(π) > n+(π) + 3,

0, otherwise.

(3.12)

We will show that −M1,3 is cancellative, anonymous, but not monotone.

Proof. It follows that −M1,3 is not neutral as well. Since the output is determined

by n−(π) and n+(π), −M1,3 is anonymous. Let π be a profile such that π(i) = −1

and π(j) = 1. Consider π′ such that π′(i) = π′(j) = 0 and π′(k) = π(k) for all

k ≠ i, j. We know that M1,3(π) = M1,3(π′), so −M1,3(π) = −M1,3(π′). Thus, −M1,3

is cancellative.

27

Lastly, consider π ≤ ρ, such that n+(π) = n−(π) = 0, n+(ρ) = 3 and n−(ρ) = 0.

In this case, −M1,3(π) = 0 and −M1,3(ρ) = −1. Hence −M1,3(π) /≤ −M1,3(ρ). So

−M1,3 is not monotone.

In order to look at aggregation functions that are not anonymous, we have

to introduce some new subsets of the domain. We define the set U as follows:

U+ = {π ∈ {−1,0,1}n ∶ n+(π) = n − 1 and n−(π) = 0},

U− = {π ∈ {−1,0,1}n ∶ n−(π) = n − 1 and n+(π) = 0},

U = U+ ∪U−.

There is a close interaction between cancellation and anonymity, as Llamazares

stated this in his result [11].

THEOREM 3.3. Let f be aggregation function that satisfies cancellation. Then for

any profile π such that π ∈ {−1,0,1}n/U and any permutation σ of N , f(πσ) = f(π).

Additionally, we can take this a step further and understand what happens

on subsets U+ and U−, if a function is cancellative, but not anonymous.

COROLLARY 3.2. Let f ∶ {−1,0,1}n → {−1,0,1} be cancellative, monotone, but

not anonymous, then f is non-constant on U+ or U− or both.

Proof. Since f is cancellative, f is anonymous on {−1,0,1}n/U. Since f is not

anonymous there exist π,π′ such that n+(π) = n+(π′) and n−(π) = n−(π′) but

f(π) ≠ f(π′). Therefore, π,π′ ∈ U+ or π,π′ ∈ U−. Hence f is not constant on U+ or

U−.

Therefore, we have three possibilities to consider if f is not anonymous. We

will start with a lemma to help understand the interaction between cancellation and

monotonicity.

28

LEMMA 3.3. Let f ∶ {−1,0,1}n → {−1,0,1} be an aggregation function satisfying

cancellation and monotonicity. For any profiles π and ρ, if

n+(π) < n+(ρ) and n−(ρ) ≤ n−(π), (3.13)

or

n+(π) ≤ n+(ρ) and n−(ρ) < n−(π), (3.14)

then f(π) ≤ f(ρ).

Proof. Assume that f satisfies cancellation and monotonicity. Let π, ρ be profiles

such that n+(π) < n+(ρ) and n−(ρ) ≤ n−(π) or n+(π) ≤ n+(ρ) and n−(ρ) < n−(π).

Then, since either n+(π) ≠ n+(ρ) or n−(π) ≠ n−(ρ) or both, we know that π and ρ

are not both elements of U− or both elements of U+. Therefore, we have four cases.

Case 1: Neither π or ρ are in U. Then f is anonymous on {−1,0,1}/U, so there exists

π′ such that n+(π′) = n+(π), n−(π′) = n−(π), and π′ ≤ ρ. Thus f(π′) ≤ f(ρ)

by monotonicity, and f(π′) = f(π) by anonymity. Thus f(π) ≤ f(ρ).

Case 2: The profile π ∈ U and the profile ρ /∈ U. We can choose ρ′ such that n+(ρ′) =

n+(ρ) and n−(ρ′) = n−(ρ). Additionally, if Equation (3.13) holds, then pick ρ′

such that N+(π) ⊂ N+(ρ′) and N−(ρ′) ⊆ N−(π), and if Equation (3.14) hold,

then N+(π) ⊆ N+(ρ′) and N−(ρ′) ⊂ N−(π). Since ρ, ρ′ /∈ U, f(ρ) = f(ρ′) by

anonymity. By choice of ρ′, π ≤ ρ′, so f(π) ≤ f(ρ′). Thus, f(π) ≤ f(ρ).

Case 3: The profile ρ ∈ U and the profile π /∈ U. We can choose π′ such that N+(π′) ⊂

N+(ρ) and N−(ρ) ⊆ N−(π′) or N+(π′) ⊆ N+(ρ) and N−(ρ) ⊂ N−(π′). Since

π, π′ /∈ U, f(π) = f(π′) by anonymity. By choice of π′, π′ ≤ ρ′, so f(π′) ≤ f(ρ).

Thus, f(π) ≤ f(ρ).

Case 4: The profile π ∈ U− and the profile ρ ∈ U+. We can easily see that π < ρ.

Therefore, by monotonicity, f(π) ≤ f(ρ).

29

If ρ ∈ U− and π ∈ U+, then it could not hold that n+(π) ≤ n+(ρ). Hence we have

exhausted our case analysis, so f(π) ≤ f(ρ).

We can think of the conditions found in Equations (3.13) and (3.14) implying

f(π) ≤ f(ρ) as a weak anonymously monotone condition.

Now we will explore which aggregation functions are cancellative and mono-

tone, but not anonymous, looking first at what happens with f is not constant on

both U+ and U−.

THEOREM 3.4. Let f ∶ {−1,0,1}n → {−1,0,1} be cancellative, monotone and non-

constant on both U+ and U−. Then for all π /∈ U,

f(π) =Mn−1, n−1(π).

Proof. Given that f satisfies the hypothesis of our theorem, there exist profiles π,π′

that are both in U+, such that f(π) = 1 and f(π′) = 0. If f(χ) = −1 for any profile

χ ∈ U+, then by monotonicity, f(α) = −1 for all α ∈ U−. However, f is non-constant

on U−, so no such χ exists. Similarly, there exists profiles ρ, ρ′ that are both in U−,

such that f(ρ) = −1 and f(ρ′) = 0. If there exists α = (x1, x2, ..., xn) ∈ U− such that

f(α) = 1, then by monotonicity f(χ) = 1 for all χ ∈ U+. However, f is not constant

on U+, so no such α exists.

Next, consider E+. Since E+ > π, by monotonicity f(E+) ≥ f(π) = 1. So

f(E+) = 1. Also, consider E−. Since E− < ρ, by monotonicity f(E−) ≤ f(ρ) = −1.

So f(E−) = −1.

Notice, if n+(α) = n−1 and n−(α) = 1, then there exists i, j ∈ [1, n] such that

xi = 1 and xj = −1. Thus, we can create α′ = (x′1, x′2, ..., x′n) such that x′i = x′j = 0

and x′k = xk for all k ≠ i, j. Then n+(α′) = n − 2 and n−(α′) = 0. By cancellation

f(α) = f(α′). Similarly, if n−(α) = n − 1 and n+(α) = 1, we could follow the same

process to show that f(α) = f(α′) for α′ such that n−(α′) = n − 2 and n+(α′) = 0.

30

Now, to consider all profiles not in U and E+ or E−, we assume that α is a

profile such that n+(α) ≤ n − 2 and n−(α) ≤ n − 2. First, we will compare α to π′

from above. Since π′ ∈ U+, n+(π′) = n−1 and n−(π′) = 0. Therefore, by Lemma 3.3,

f(α) ≤ f(π′) = 0. Thus f(α) ≤ 0. Next, we will compare α to ρ′ from above. Since

ρ′ ∈ U−, n−(ρ′) = n − 1 and n+(ρ′) = 0. Therefore, by Lemma 3.3, f(α) ≥ f(ρ′) = 0.

Thus f(α) ≥ 0. Hence f(α) = 0.

Thus for π /∈ U, f(π) =Mn−1, n−1(π).

Secondly, we will look at the aggregation rules that are constant on U+, but non-

constant on U−.

THEOREM 3.5. Let f ∶ {−1,0,1}n → {−1,0,1} be cancellative, monotone, and

constant on U+, but non-constant on U−. Then for any profile ρ not belonging to

U−,

f(ρ) =Mk,l(ρ)

where l = n + f(E−),

and

k =min{n + 1, n+(π) − n−(π) ∶ π ∈ {−1,0,1}n and f(π) = 1} − 1.

Proof. Since f is monotone and not constant on U− it follows that f(E−) ≠ 1.

Therefore, f(E−) = 0 or f(E−) = −1. This in turn implies that l = n + f(E−) ∈

{n,n − 1}.

Case 1: Assume that f(E−) = 0. Then l = n. By monotonicity, f(π) ≥ 0 for

any profile π. Since f is not constant on U−, there exists π′ ∈ U− such that f(π′) = 1.

Notice that n+(π′)−n−(π′) = −n+1 and so k = −n. Let ρ be a profile not belonging to

U− and assume that ρ ≠ E−. Then either n−(ρ) ≤ n−2 or n−(ρ) = n−1 and n+(ρ) = 1.

In either case, observe that for profiles π′ and ρ either Equation (3.13) or (3.14)

holds. By Lemma 3.3, f(π′) ≤ f(ρ) and so f(ρ) = 1. Since n+(ρ) − n−(ρ) ≥ −n + 2,

31

it follows that Mk,l(ρ) = M−n,n(ρ) = 1. We have that f(ρ) = Mk,l(ρ) where k = −n

and l = n.

Case 2: Assume that f(E−) = −1. Then l = n − 1. Choose a profile π′

belonging to U− such that f(π′) ≥ f(π′′) for all π′′ ∈ U−. Since f is non-constant

on U−, f(π′) ≥ 0. If f(π′) = 1, then k = −n and the argument in Case 1 shows that

f(ρ) = Mk,l(ρ) where k = −n and l = n − 1, for all profiles ρ not belonging to U−.

Now, we can assume that f(π′) = 0. In other words, f(π′′) ≤ 0 for all π′′ belonging

to U−.

We define f̃ ∶ {−1,0,1}n → {−1,0,1} by

f̃(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if π ∈ U−,

f(π) otherwise.

(3.15)

Since both f and the zero function are monotone and cancellative, and f(E−) = −1,

f̃ is monotone and cancellative. Since f̃ is constant on U− and U+, f̃ is anonymous.

Therefore, from Theorem 3.2 and its proof, f̃ =Mk′,l′ such that

k′ =min{n + 1, n+(π) − n−(π) ∶ π ∈ {−1,0,1}n and f̃(π) = 1} − 1

and

l′ =min{n + 1, n−(π) − n+(π) ∶ π ∈ {−1,0,1}n and f̃(π) = −1} − 1.

Since f̃(E−) = f(E−) = −1 and f(π′′) ≤ f̃(π′′) = 0 for all π′′ belonging to U−, it

follows that f̃(π) = 1 if and only if f(π) = 1. Thus, k′ = min{n + 1, n+(π) − n−(π) ∶

π ∈ {−1,0,1}n and f(π) = 1} − 1, so k′ = k. Since f̃(E−) = −1, l′ ≤ n − 1, since

f̃(π) = 0 for all π ∈ U− and f̃ is monotone, l′ ≥ n − 1. Thus l′ = n − 1. Since

f(ρ) = f̃(ρ) = Mk′,l′ for all ρ /∈ U−, l = l′, and k′ = k, then f(ρ) = Mk,l(ρ) with

k = min{n + 1, n+(π) − n−(π) ∶ π ∈ {−1,0,1}n and f(π) = 1} − 1 and l = n − 1 for all

ρ not belonging to U−. Therefore, f(π) =Mk,n+f(E−)(π) for all π not in U−.

32

Now, we will look at the possibility that f is constant on U−, but non-constant

on U+.

THEOREM 3.6. Let f ∶ {−1,0,1}n → {−1,0,1} be cancellative, monotone, constant

on U−, and non-constant on U+. Then for any profile ρ not belonging to U+,

f(ρ) =Mk,l(ρ)

where k = n − f(E+) and

l =min{n + 1, n−(π) − n+(π) ∶ π ∈ {−1,0,1}n and f(π) = −1} − 1.

Proof. Let f be cancellative, monotone, constant on U−, and non-constant on U+.

Define f̂ ∶ {−1,0,1}n → {−1,0,1} as

f̂(π) = −f(−π). (3.16)

Since π ∈ U+ if and only if −π ∈ U−, then f̂ is constant on U+ and non-constant on

U−. If f(−π) = 1, then f̂(π) = −1. If f(−π) = −1, then f̂(π) = 1. Suppose π ≤ π′,

then −π ≥ −π′. Since f is monotone, f(−π) ≥ f(−π′), so f̂(π) = −f(−π) ≤ −f(−π′) =

f̂(π′). We now know that f̂ is monotone.

If π,π′ are profiles such that N+(π) ⊂ N+(π′), N−(π) ⊂ N−(π′), n+(π) =

n+(π′) − 1 and n−(π) = n−(π′) − 1, then since f is cancellative, f(−π) = f(−π′), so

f̂(π) = −f(−π) = −f(−π′) = f̂(π′). Hence f̂ is monotone and cancellative, as well.

Thus, by Theorem 3.5, f̂ is an Mk′,n+f̂(E−)
rule, where k′ =min{n+1, n+(π)−n−(π) ∶

π ∈ {−1,0,1}n and f̂(π) = 1} − 1. Therefore, by Proposition 3.2 and the definition

of f̂ ,

f =Mn+f̂(E−),k′

=Mn−f(E+),k′

33

such that

k′ =min{n + 1, n+(−π) − n−(−π) ∶ π ∈ {−1,0,1}n and f(−π) = −1} − 1

=min{n + 1, n−(π) − n+(π) ∶ π ∈ {−1,0,1}n and f(π) = −1} − 1.

Hence k′ = l. Furthermore, f =Mn−f(E+), l where

l =min{n + 1, n−(π) − n+(π) ∶ π ∈ {−1,0,1}n and f(π) = −1} − 1.

The next step to completely characterize anonymous and cancellative aggre-

gation functions is to prove the converses of the above three theorems. Now, we

will state and prove the converse of Theorem 3.4.

THEOREM 3.7. Let φ+ ∶ U+ → {0,1} and φ− ∶ U− → {−1,0} be any two non-constant

mappings. The function f ∶ {−1,0,1}n → {−1,0,1} defined by

f(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ+(π) π ∈ U+,

φ−(π) π ∈ U−,

Mn−1,n−1(π) otherwise,

satisfies cancellation, monotonicity, but not anonymity.

Proof. Since φ+ is non-constant on U+ and φ− is non-constant on U−, thus f is not

anonymous. Let π be a profile such that π(i) = −1 and π(j) = 1. Consider π′ such

that π′(i) = π′(j) = 0 and π′(k) = π(k) for all k ≠ i, j. Thus neither π nor π′ are

elements of U, so f(π) =Mn−1,n−1(π) =Mn−1,n−1(π′) = f(π′). Thus f is cancellative.

In order to show monotonicity, consider π ≤ ρ, then both profiles cannot be

in U+ and both profiles cannot be in U−, so we have five cases.

Case 1: If π ∈ U+ then f(π) = 0 or f(π) = 1. Since ρ ≥ π, either ρ = π or ρ = E+.

Since f(E+) =Mn−1,n−1(E+) = 1, f(π) ≤ f(ρ).

Case 2: If π ∈ U− then f(π) = 0 or f(π) = −1. Since ρ ≥ π, either ρ = π or ρ > π.

34

For all ρ > π, f(ρ) = 0 or f(ρ) = 1. Hence, f(π) ≤ f(ρ).

Case 3: If ρ ∈ U+ then f(ρ) = 0 or f(ρ) = 1. Either ρ = π or ρ > π. For all π < ρ,

either f(π) = 0 or f(π) = −1. So f(π) ≤ f(ρ).

Case 4: If ρ ∈ U− then f(ρ) = 0 or f(ρ) = −1. Either ρ = π or π = E−. Since

f(E−) =Mn−1,n−1(E−) = −1, f(π) ≤ f(ρ).

Case 5: If neither π nor ρ are in U. Then f(π) =Mn−1,n−1(π) ≤Mn−1,n−1(ρ) = f(ρ).

Therefore, f is monotone.

Next, to look at the converse of Theorem 3.5, we will state three separate

theorems, as there are multiple functions that need to be verified as monotone,

cancellative, but not anonymous.

THEOREM 3.8. Let φ−1 ∶ U− → {0,1} be any surjective mapping and let l be an

integer such that l ∈ [n,n − 1]. The function f1 ∶ {−1,0,1}n → {−1,0,1} defined by

f1(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ−1(π) π ∈ U−,

M−n,l(π) otherwise,

satisfies cancellation, monotonicity, but not anonymity.

THEOREM 3.9. Let φ−2 ∶ U− → {−1,0,1} be any surjective mapping. The function

f2 ∶ {−1,0,1}n → {−1,0,1} defined by

f2(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ−2(π) π ∈ U−,

M−n,n−1(π) otherwise,

satisfies cancellation, monotonicity, but not anonymity.

THEOREM 3.10. Let φ−3 ∶ U− → {−1,0} be any surjective mapping, and let k be an

integer such that k ∈ [−n+ 1, n]. The function f3 ∶ {−1,0,1}n → {−1,0,1} defined by

f3(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ−3(π) π ∈ U−,

Mk,n−1(π) otherwise,

35

satisfies cancellation, monotonicity, but not anonymity.

Proof. We will prove all of the above three theorems concurrently. Since φ−1 , φ−2 ,

and φ−3 are defined to be non-constant on U−, the functions f1, f2, and f3 are not

anonymous. Let π be a profile such that π(i) = −1 and π(j) = 1. Consider π′

such that π′(i) = π′(j) = 0 and π′(k) = π(k) for all k ≠ i, j. Thus neither π nor π′

are elements of U, so f1(π) = M−n,l(π) = M−n,l(π′) = f1(π′), f2(π) = M−n,n−1(π) =

M−n,n−1(π′) = f2(π′), and f3(π) =Mk,n−1(π) =Mk,n−1(π′) = f3(π′). Thus f1, f2, and

f3 are cancellative.

In order to show monotonicity, consider π ≤ ρ, then both profiles cannot be

in U− unless π = ρ. If π = ρ then f1(π) = f1(ρ), f2(π) = f2(ρ), and f3(π) = f3(ρ).

We will assume π < ρ and consider three cases.

Case 1: Assume π ∈ U−. Now π ∈ U− along with ρ > π implies that n+(ρ) −

n−(ρ) ≥ −n + 2, and so

f1(ρ) =M−n,l(ρ) = 1 and f2(ρ) =M−n,n−1(ρ) = 1

Hence, f1(π) ≤ f1(ρ) and f2(π) ≤ f2(ρ).

Now π ∈ U− along with ρ > π implies that n−(ρ) − n+(ρ) ≤ n − 2. It follows

that

f3(ρ) =Mk,n−1(ρ) ≠ −1

Since f3(π) = φ−3(π) ≤ 0, and f3(ρ) ≠ −1, it follows that f3(π) ≤ f3(ρ).

Case 2: Assume ρ ∈ U−. Now ρ ∈ U− along with ρ > π implies that π = E−.

So n−(π) − n+(π) = n. Therefore,

f2(π) =M−n,n−1(π) = −1 and f3(π) =Mk,n−1(π) = −1

Thus, f2(π) ≤ f2(ρ) and f3(π) ≤ f3(ρ).

36

Since, n+(π) − n−(π) = −n, it follows that

f1(π) =M−n,l(π) ≤ 0 ≤ φ−1(ρ) = f1(ρ)

Hence f1(π) ≤ f1(ρ).

Case 3: Assume neither π nor ρ are in U−. Then f1(π) = M−n,l(π) ≤

M−n,l(ρ) = f1(ρ), f2(π) =M−n,n−1(π) ≤M−n,n−1(ρ) = f2(ρ), and f3(π) =Mk,n−1(π) ≤

Mk,n−1(ρ) = f3(ρ). Therefore, f is monotone.

Lastly, we can add three similar theorems, in order to state and prove the

converse of Theorem 3.6. These can be proven using Proposition 3.2 and Theorems

3.8, 3.9, and 3.10.

THEOREM 3.11. Let φ+1 ∶ U+ → {−1,0} be any surjective mapping and let k be an

integer such that k ∈ [n,n − 1]. The function g1 ∶ {−1,0,1}n → {−1,0,1} defined by

g1(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ+1(π) π ∈ U+,

Mk,−n(π) otherwise,

satisfies cancellation, monotonicity, but not anonymity.

THEOREM 3.12. Let φ+2 ∶ U+ → {−1,0,1} be any surjective mapping. The function

g2 ∶ {−1,0,1}n → {−1,0,1} defined by

g2(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ+2(π) π ∈ U+,

Mn−1,−n(π) otherwise,

satisfies cancellation, monotonicity, but not anonymity.

THEOREM 3.13. Let φ+3 ∶ U+ → {0,1} be any surjective mapping, and let l be an

integer such that l ∈ [−n + 1, n]. The function g3 ∶ {−1,0,1}n → {−1,0,1} defined by

g3(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ+3(π) π ∈ U+,

Mn−1,l(π) otherwise,

37

satisfies cancellation, monotonicity, but not anonymity.

Proof. Since φ+1 , φ+2 , and φ+3 are defined to be non-constant on U+, g1, g2, and g3

are not anonymous. Let π be a profile such that π(i) = −1 and π(j) = 1. Consider

π′ such that π′(i) = π′(j) = 0 and π′(k) = π(k) for all k ≠ i, j. Thus neither π nor π′

are elements of U+, so g1(π) =Mk,−n(π) =Mk,−n(π′) = g1(π′), g2(π) =Mn−1,−n(π) =

Mn−1,−n(π′) = g2(π′), and g3(π) =Mn−1,l(π) =Mn−1,l(π′) = g3(π′). Thus g1, g2, and

g3 are cancellative.

Now, given g1 and the mapping φ+1 , define

f1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−φ+1(−π) π ∈ U−

−g1(−π) otherwise.

Notice that φ−1 ∶ U− → {−1,0,1} defined by φ−1(π) = −φ+1(−π) has range {−1,0},

since φ+1 has range {0,1}. If π /∈ U−, then −π /∈ U+. So by proposition 3.2, f1(π) =

−g1(−π) = −Mk,−n(−π) =M−n,k(π). Therefore,

f1(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ−1(π) π ∈ U−

M−n,k(π) otherwise.

By Theorem 3.8, f1 is monotone. If π ≤ ρ, then −π ≥ −ρ and so f1(−ρ) ≤ f1(−π).

Therefore, −f1(−ρ) ≥ −f1(−π). It then follows that g1(ρ) ≥ g1(π). Hence g1 is

monotone. Similar arguments can be made to show that g2 and g3 are monotone.

Combining Theorems 3.4, 3.5, 3.6 and their converses, the following corollary

arises.

COROLLARY 3.3. An aggregation function f ∶ {−1,0,1}n → {−1,0,1} satisfies

cancellation and monotonicity if and only if there exists integers k, l ∈ [−n−1, n] such

that k+l ≥ −1 and there exists mappings φ+ ∶ U+ → {−1,0,1} and φ− ∶ U− → {−1,0,1}

38

such that

f(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ+(π) if π ∈ U+

φ−(π) if π ∈ U−

Mk,l(π) otherwise

(3.17)

where for all π ∈ U−

Mk,l(E−) ≤ φ−(π) ≤Mk,l(π), (3.18)

and for all π′ ∈ U+

Mk,l(E+) ≥ φ+(π′) ≥Mk,l(π′). (3.19)

Proof. First, we will show that f , as defined above is cancellative. Let π be a

profile such that π(i) = −1 and π(j) = 1. Consider π′ such that π′(i) = π′(j) = 0

and π′(k) = π(k) for all k ≠ i, j. Thus neither π nor π′ are elements of U, thus

f(π) = Mk,l(π) = Mk,l(π′) = f(π′), since Mk,l is cancellative. Next, we will show

that f is monotone. Let π ≤ ρ. If π ∈ U− and ρ ∈ U+, then using equations (3.18)

and (3.19), along with the fact that Mk,l is monotone,

f(π) = φ−(π) ≤Mk,l(π) ≤Mk,l(ρ) ≤ φ+(ρ) = f(ρ).

If π ∈ U− and ρ /∈ U, then by equation (3.18),

f(π) = φ−(π) ≤Mk,l(π) ≤Mk,l(ρ) = f(ρ).

If π /∈ U and ρ ∈ U+, then be equation (3.19),

f(π) =Mk,l(π) ≤Mk,l(ρ) ≤ φ+(ρ) = f(ρ).

If π, ρ /∈ U, then f(π) = Mk,l(π) ≤ Mk,l(ρ) = f(ρ). Therefore, for any π ≤ ρ,

f(π) ≤ f(ρ). Hence f is monotone.

39

Now, assume that f satisfies cancellation and monotonicity. Define φ− ∶ U− →

{−1,0,1} and φ+ ∶ U+ → {−1,0,1} by the following:

φ−(π) = f(π), for all π ∈ U−, and φ+(π) = f(π), for all π ∈ U+.

Recall, that if f is monotone and cancellative, but not anonymous then by Corollary

3.2, f is either non-constant on U+, U− or both. So, we will examine four cases.

Case 1: Assume f is anonymous. By Corollary 1, f = Mk,l for some

k, l ∈ Z such that k, l ∈ [−n − 1, n] and k + l ≥ −1. Thus f satisfies Equation (3.17).

Since φ− =Mk,l and φ+ =Mk,l it follows that f satisfies Equations (3.18) and (3.19).

Case 2: Assume f is non-constant on both U+ and U−. By Theorem

3.4, f satisfies Equation (3.17) with k = l = n − 1. It was shown in the proof of

Theorem 3.4 that f(π) ≤ 0 for all π ∈ U− and f(π′) ≥ 0 for all π′ ∈ U+. Since

Mn−1,n−1(π) =Mn−1,n−1(π′) = 0 for all π ∈ U− and π′ ∈ U+ it follows that Equations

(3.18) and (3.19) hold.

Case 3: Assume f is non-constant on U−. By Theorem 4, there exist

integers k and l belonging to the interval [−n − 1, n] such that k + l ≥ −1 and

f(ρ) = Mk,l(ρ) for any profile ρ not belonging to U−. So Equation (3.17) holds.

Since φ+(π) = f(π) =Mk,l(π) for all π ∈ U+, Equation (3.19) also holds.

Notice that if k ≤ −n, then φ−(π) ≤ 1 =Mk,l(π) for all π ∈ U− and so Equation

(3.18) holds. If k > −n, then, by Case 2 in the proof of Theorem 4, l = n − 1 and

f(π′′) ≤ 0 for all π′′ belonging to U−. Therefore, φ−(π) = f(π) ≤ 0 ≤Mk,l(π) for all

π ∈ U− and, again, Equation (3.18) also holds.

Case 4: Assume f is non-constant on U+. By Theorem 5, there exist

40

integers k and l belonging to the interval [−n − 1, n] such that k + l ≥ −1 and

f(ρ) = Mk,l(ρ) for any profile ρ not belonging to U+. So Equation (3.17) holds.

Since φ−(π) = f(π) =Mk,l(π) for all π ∈ U−, Equation (3.18) also holds.

We now want to show that Equation (3.19) holds. If f(π) = −1 for some

π ∈ U+, then, by definition of l given in the statement of Theorem 5, l ≤ −n. Now

l ≤ −n implies that Mk,l(π′) = −1 for all π′ ∈ U+. Thus, φ+(π′) ≥ −1 = Mk,l(π′) for

all π′ ∈ U+ and so Equation (3.19) holds. We may now assume that f(π′) ≥ 0 for

all π′ ∈ U+. Since f is monotone, non-constant on U+, and π′ ≤ E+ for all π′ ∈ U+

it follows that f(E+) ≠ −1. By Theorem 5, we know that k = n − f(E+) and so

k = n − 1 or k = n. Therefore, Mk,l(π′) ≤ 0 ≤ φ+(π′) = f(π′) for all π′ ∈ U+ and so in

this case Equation (3.19) holds.

In all cases, we have shown that Equations (3.17), (3.18), and (3.19) hold.

That gives us a complete characterization of the entire class of functions

that are cancellative and monotone. These functions may be called the extended

difference of votes rules. From this point, we will extend these functions in to our

infinite aggregation model. We will look at which axioms these functions satisfy

in the countably infinite model, as well as which axioms are needed to characterize

these functions completely with a countable infinite set of voters.

41

CHAPTER 4

DIFFERENCE OF VOTES RULES ON AN INFINITE VOTING MODEL

In this Chapter, we extend the Mk and Mk,l rules to the infinite aggregation

model. As we look at these functions, we will determine which infinite axioms

are needed to completely characterize these classes of rules in the infinite model.

While many of the hypotheses from the previous Chapter hold in this model, it is

important to note that not all do. For this reason, we must be careful to evaluate

and prove each in the infinite model. In fact, the class of Mk rules require an

additional axiom in this model, than was needed in the finite model, and the class

of Mk,l rules have a whole class of exceptions that must be characterized.

The first order of business is to define Mk rules in the domain where the set

of voters is the countably infinite set of natural numbers N. We will us the notation

N0 to indicate the set of natural numbers adjoin 0.

DEFINITION 4.1. An infinite aggregation rule f ∶ {−1,0,1}N → {−1,0,1} is said

to be an Mk rule, if there exists k ∈ N0, such that for all π ∈ {−1,0,1}N,

Mk(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 n+(π) > n−(π) + k

−1 n−(π) > n+(π) + k

0 otherwise.

(4.1)

Now we need to verify what axioms these Mk rules satisfy. The second section

of Chapter 2 can assist the reader in recalling the definitions of each axiom in the

infinite model. Before we clarify which axioms are satisfied, we will state and prove

42

a few lemmas regarding axiom interaction, to help with proving axiom satisfaction

later in this Chapter.

This first lemma allows us to only prove one direction of monotonicity, rather

than having to prove both directions, if the function is neutral.

LEMMA 4.1. Suppose the infinite aggregation rule f ∶ {−1,0,1}N → {−1,0,1} sat-

isfies neutrality. If for any profiles π, and π′

π ≤ π′ and f(π) = 1⇒ f(π′) = 1

then f satisfies Monotonicity.

Proof. Let f satisfy neutrality and assume that for π ≤ π′, then f(π) = 1 implies

that f(π′) = 1. Consider profiles ρ and ρ′ such that ρ′ ≤ ρ and f(ρ) = −1, then

f(−ρ) = 1 and −ρ ≤ −ρ′, so f(−ρ′) = 1 by hypothesis, and f(ρ′) = −1 by neutrality.

Thus, if there exist profiles π and ρ such that π ≥ ρ, if f(ρ) = −1, we are done, if

f(ρ) = 1, we have shown, that f(π) = 1. If f(ρ) = 0, then f(π) ≠ −1, since that

would violate ρ′ ≤ ρ and f(ρ) = −1⇒ f(ρ′) = −1. Thus f(π) = 0 or f(π) = 1. Hence

f(ρ) ≤ f(π), and so f is Monotone.

The next lemma allows us to determine the output of an anonymous and

neutral function, if the cardinality of the set of 1’s and −1’s are equal. That is:

LEMMA 4.2. If an infinite aggregation rule f satisfies strong anonymity and neu-

trality, and ∣N+(π)∣ = ∣N−(π)∣, then f(π) = 0.

Proof. Let ∣N+(π)∣ = ∣N−(π)∣. Then there exists a bijection φ ∶ N+(π) → N−(π).

Define a permutation σ on N via

σ(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(i) if i ∈ N+(π)

φ−1(i) if i ∈ N−(π)

i otherwise.

43

Notice that πσ = −π, by construction of σ. Thus, f(−π) = f(πσ). By Strong

Anonymity, f(π) = f(πσ) = f(−π). By Neutrality, f(−π) = −f(π). Hence f(π) =

−f(π). Therefore, f(π) = 0.

Next we are able to show that Mk rules satisfy the same axioms in the infinite

model as in the finite model. We can easily notice that finitely anonymous infinite

aggregation rules are a subset of strongly anonymous infinite aggregation rules. We

prove that Mk is strongly anonymous below, as it will be necessary in characterizing

these rules later in this chapter.

THEOREM 4.1. For all nonnegative integers k, Mk ∶ {−1,0,1}N → {−1,0,1} satis-

fies strong anonymity, neutrality, monotonicity, and cancellation.

Proof. First, note that for any permutation σ of N, n+(π) = n+(πσ) and n−(π) =

n−(πσ). Therefore, by the definition of Mk, Mk(π) = Mk(πσ). Hence, Mk is

strongly anonymous. Also, notice that n+(π) = n−(−π) and n−(π) = n+(−π). Thus,

Mk(−π) = −Mk(π) by the definition of Mk. Thus, Mk is neutral. Let π ≥ π′, then

n+(π) ≥ n+(π′), and n−(π) ≤ n−(π′). Therefore, Mk(π) ≥Mk(π′), and Mk is mono-

tone by definition. Let π = (x1, x2, ...) and π′ = (x′1, x′2, ...) agree everywhere except

at i, j, and let xi = 1, xj = −1, and x′i = x′j = 0. Then, n+(π) = n+(π′) + 1 and

n−(π) = n−(π′) + 1. Thus, if n+(π) > n−(π) + k, then n+(π′) > n−(π′) + k. Similarly,

if n−(π) > n+(π) + k, then n−(π′) > n+(π′) + k. Hence, Mk is cancellative.

Recall Equation (2.3) that defined M∞ ∶ {−1,0,1}N → {−1,0,1}. It turns out

that this function also satisfies all of the axioms stated in Theorem 4.1.

PROPOSITION 4.1. The infinite aggregation rule M∞ ∶ {−1,0,1}N → {−1,0,1}

satisfies strong anonymity, neutrality, monotonicity, and cancellation.

Proof. First, we will show that M∞ is anonymous. Notice that for any permutation

σ of N, n+(π) = n+(πσ) and n−(π) = n−(πσ). Therefore, since M∞ is completely

determined by n+(π) and n−(π), M∞(π) =M∞(πσ).

44

Next, we will show that M∞ is neutral. Notice that for any π, N+(π) =

N−(−π) and N−(π) = N+(−π). So

n+(π) = n−(−π) and n−(π) = n+(−π). (4.2)

Hence M∞(−π) = −M∞(π) for any profile π.

Now we will show M∞ is monotone. Let π′ ≥ π. Now consider π such

that M∞(π) = 1. Since n+(π) = ∞, n+(π′) = ∞. Also, since n−(π) < ∞ and

n−(π′) ≤ n−(π), therefore n−(π′) < ∞. Hence M∞(π′) = 1. Therefore, since M∞ is

neutral, M∞ is monotone by Lemma 4.1.

Finally, we can show that M∞ is cancellative. Let π = (x1, x2, ...) such that

xi = 1 and xj = −1. Assume M∞(π) = 1 and consider π′ = (x′1, x′2, ...) where x′i =

x′j = 0 and x′k = xk for all k ≠ i, j. Then N+(π′) = N+(π)/{i}, so n+(π′) = ∞. Also,

N−(π′) = N−(π)/{j}, so n−(π′) = n−(π) − 1 <∞. Hence, M∞(π′) = 1. By neutrality,

the same holds if M∞(π) = −1. Now, if M∞(π) = 0, then either n+(π) < ∞ and

n−(π) < ∞ or n+(π) = n−(π) = ∞. First, assume n+(π) < ∞ and n−(π) < ∞.

Consider π′′ = (x′1, x′2, ...) where x′i = x′j = 0 and x′k = xk, then n+(π′) = n+(π)−1 <∞

and n−(π′) = n−(π) − 1 <∞. Hence M∞(π′) = 0. Next, assume n+(π) = n−(π) =∞.

Consider π′′ = (x′1, x′2, ...) where x′i = x′j = 0 and x′k = xk, then n+(π′) = n+(π)−1 =∞

and n−(π′) = n−(π) − 1 =∞. Hence M∞(π′) = 0.

A new axiom was defined in Chapter 2 for the infinite aggregation model.

This axiom was called the zero co-finite axiom. Now, we can prove that Mk rules

satisfy the zero co-finite axiom, but the M∞ rule does not.

LEMMA 4.3. For all nonnegative integers k, Mk satisfies the zero co-finite axiom.

Proof. Let π be a profile such that ∣N+(π)∣ = k + 1, and ∣N−(π)∣ = 0. Then N0(π) is

co-finite and Mk(π) = 1 ≠ 0. Thus Mk satisfies the zero co-finite axiom.

LEMMA 4.4. The infinite aggregation rule M∞ does not satisfy the zero co-finite

axiom.

45

Proof. Let π be a profile where N0(π) is co-finite. Thus n+(π) <∞ and n−(π) <∞.

Therefore, M∞(π) ≠ 1 and M∞(π) ≠ −1, hence M∞(π) = 0. Therefore, M∞ is not

zero co-finite.

When seeking to characterize the Mk rules in the infinite case, we discovered

the function M∞ also meets all of the criteria for the finite Mk rules, but is not an

Mk rule, unless you allow k =∞. For that reason, it was necessary to introduce the

zero co-finite axiom. It turns out the M∞ function part of entire class of functions

that are not zero co-finite, but satisfy the other axioms. We will look further into

these after we discuss the Mk rules in this model.

Before we characterize the Mk rules in this model, there is an important

lemma regarding infinite aggregation functions that satisfy all of our axioms listed

in Theorem 4.1.

LEMMA 4.5. If an infinite aggregation function f satisfies strong anonymity, can-

cellation, neutrality, and monotonicity, then for any π ∈ {−1,0,1}N such that N0(π)

is co-finite and f(π) = 1, then there exists π′ ∈ {−1,0,1}N such that n−(π′) = 0,

f(π′) = 1 and n+(π′) = n+(π) − n−(π).

Proof. Let π ∈ {−1,0,1}N such that N0(π) is co-finite and f(π) = 1. Let n+(π) = p

and n−(π) = q. There exists a permutation σ of N such that πσ = (x1, x2,) where

xi = 1 for the first p odd i ∈ N and xi = −1 for the first q even i ∈ N and 0 elsewhere.

Since f is anonymous, f(πσ) = f(π). If xi = 0 for all i, π = 0⃗, and since f is neutral,

f(0⃗) = 0. Thus there is at least one non-zero xi. Now, for each pair xi, xi+1 in

πσ, we can use the cancellation property of f to create πi where xi = xi+1 = 0, and

f(πi) = f(πσ) = f(π) for any i. Furthermore, we can start with π1 and then repeat

this process, creating π1,3 = (π1)3 that has 0′s in the first 4 terms. Continuing in this

manner min{p, q} times to create π′ has 0′s in the first 2(min{p, q}) terms. Notice,

that since f satisfies (C), f(π′) = f(π) = 1. From the construction of π′, either

46

n+(π′) = 0 or n−(π′) = 0. Since f(0⃗) = 0 by neutrality, if n+(π′) = 0, then π′ < 0⃗;

therefore, by monotonicity, f(π′) ≤ f(0⃗). But f(π′) = 1, by (A) and (C). Hence,

n−(π′) = 0, and n+(π′) = n+(π)−min{p, q}. Further, since n−(π′) = 0, n+(π) > n−(π),

and min{p, q} = q = n−(π). Thus, as desired, n+(π′) = n+(π) − n−(π).

Notice that since f is neutral, if f(π) = −1, this will still hold for a similar

π′ with f(π′) = −1.

Using the same axioms as listed in Theorem 2.1 in the finite characterization,

and the addition of the zero co-finite axiom, we can now fully characterize the Mk

rules in the infinite model with domain {−1,0,1}N.

THEOREM 4.2. An aggregation rule f ∶ {−1,0,1}N → {−1,0,1} satisfies strong

anonymity, neutrality, monotonicity, cancellation, and zero co-finite if and only if

f is an Mk-rule for some k ∈ N0.

Proof. If f is an Mk rule, we showed above that it has these properties. Now, assume

that f ∶ {−1,0,1}N → {−1,0,1} satisfies strong anonymity, neutrality, monotonicity,

cancellation, and zero co-finite. Since f satisfies the zero co-finite axiom, there

is a profile such ρ such that N0(ρ) is co-finite and f(ρ) ≠ 0. Since f is neutral,

f(−ρ) = −f(ρ); therefore, {f(ρ),−f(ρ)} = {1,−1}. Thus, without loss of generality,

we can assume that there exists a profile ρ such that f(ρ) = 1. Then by Lemma

4.5, there exists ρ′ such that f(ρ′) = 1, n−(ρ′) = 0, and n+(ρ′) = n+(ρ) − n−(ρ). We

can then define

k = min{n+(π) ∶ n−(π) = 0 and f(π) = 1} − 1. (4.3)

We know that this minimum exists, since n+(ρ′) is in the set {n+(π) ∶ n−(π) =

0 and f(π) = 1}. We can insure that min{n+(π) ∶ n−(π) = 0 and f(π) = 1} ≥ 1 since

if n+(π) = 0, then by Lemma 4.2, f(π) = 0. Let α be a profile that obtains this

minimum and has all 1’s appearing first, followed by all zeros.

47

Let Mk be defined as earlier, based on k above, and assume Mk(π) = 1.

Then n+(π) > n−(π) + k. To determine f(π), since Mk satisfies strong anonymity,

neutrality, monotonicity, cancellation, and zero co-finite, if n+(π) + n−(π) < ∞, by

Lemma 4.5 we can create π′ such that Mk(π′) = 1, n−(π′), and n+(π′) = n+(π) −

n−(π). Then, by definition of k, and since both π′ and α have all 1’s moved to

the front of the profile, α ≤ π′. Then by monotonicity, f(π′) ≥ f(α) = 1. Since

f is also strong anonimity and cancellation, we can then infer that f(π) = 1 in

a similar manner as in the proof of Lemma 4.5. If N0(π) is not co-finite, since

Mk(π) = 1, we cannot have n+(π) = n−(π) =∞, because then Mk(π) = 0, by Lemma

4.2. Therefore, either n+(π) < ∞ or n−(π) < ∞. Since one of these sets is finite,

we can follow in the same manner of cancellation as in Lemma 4.5 and create a π′

such that n−(π′) = 0 or n+(π′) = 0, and Mk(π′) = Mk(π). Since Mk is anonymous

and neutral, by Lemma 4.2, f(0⃗) = 0. Since π′ ≥ 0⃗ and Mk is monotone,Mk(π′) ≥ 0

so Mk(π′) ≠ −1 implying Mk(π′) = 1. Hence, n−(π′) = 0. Furthermore, since f is

also monotone, and n−(π′) = 0, then π′ > ρ′ implies f(π′) ≥ f(ρ′) = 1. Therefore

f(π′) = 1 and by cancellation and a similar argument as in Lemma 4.5, f(π) = 1.

By neutrality, we then can say that if Mk(π) = −1, then f(π) = −1. If

Mk(π) = 0, then n+(π) ≤ n−(π) + k and n−(π) ≤ n+(π) + k, or both are infinite. If

both are not infinite, then, by minimality of k + 1, f(π) = 0. If both are infinite, by

Lemma 4.2 f(π) =Mk(π) = 0.

Now, let f(π) = 1, then if we assume Mk(π) = 0. This would imply from

above that f(π) = 0, so Mk(π) ≠ 0. Similarly, Mk(π) ≠ −1. Thus, Mk(π) = 1. The

same argument will show that f(π) = 0 → Mk(π) = 0 and f(π) = −1 → Mk(π) =

−1.

Since the characterization from Llamazares did not include the zero co-finite

axiom, we wished to remove this axiom. In this infinite model, there are many

different functions that satisfy neutrality, strong anonymity, monotonicity, and can-

48

cellation, but are not zero co-finite. We mentioned the infinite aggregation rule M∞

earlier,we no introduce two new classes of functions: the fk class of functions and

the I function.

DEFINITION 4.2. For any integer k ≥ −1, define the infinite aggregation function

fk ∶ {−1,0,1}N → {−1,0,1}

by

fk(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 2n−(π) + n0(π) ≤ k;

−1 if 2n+(π) + n0(π) ≤ k;

0 otherwise.

(4.4)

Notice that if k = −1, then fk(π) ≠ 1 for any π and fk(π) ≠ −1 for any π.

Therefore, f−1 is the constant 0 function.

PROPOSITION 4.2. For any integer k ≥ −1, the infinite aggregation function fk

defined above satisfies neutrality, strong anonymity, monotonicity, and cancellation,

but is not zero co-finite.

Proof. First, notice that if 2n−(π) + n0(π) ≤ k, then n+(π) = ∞, and if 2n+(π) +

n0(π) ≤ k, then n−(π) = ∞. It follows then that if N0(π) is co-finite, then both

N+(π) and N−(π) are finite, and when both N−(π) and N+(π) are finite fk(π) = 0

for all k. Thus the class of fk rules are not zero co-finite.

Next, assume that fk(π) = 1, then 2n−(π)+n0(π) ≤ k. Consider now −π and

observe that n+(−π) = n−(π) and n0(π) = n0(−π). It follows then that 2n+(−π) +

n0(−π) ≤ k, so fk(−π) = −1. Similarly, if fk(π) = −1, then fk(−π) = 1. Hence fk

rules satisfy neutrality.

Let π be any profile in {−1,0,1}N and σ a permutation of N. Then consider

the profile πσ. It can be seen clearly that n−(πσ) = n−(π), n+(πσ) = n+(π), and

49

n0(πσ) = n0(π). Therefore, if 2n−(π) + n0(π) ≤ k, then 2n−(πσ) + n0(πσ) ≤ k and if

2n+(π) + n0(π) ≤ k, then 2n+(πσ) + n0(πσ) ≤ k. Thus fk(πσ) = fk(π).

Now consider profiles π,π′ such that π ≤ π′. Assume that fk(π) = 1, then

2n−(π) + n0(π) ≤ k. This means the set of voters who didn’t vote for alternative 1

is at most k. Since π′ ≥ π, N+(π) ⊆ N+(π′), n−(π′) ≤ n−(π), and n−(π′) + n0(π′) ≤

n−(π)+n0(π). Thus 2n−(π′)+n0(π′) ≤ 2n−(π)+n0(π) ≤ k. Thus fk(π′) = 1 and by

Lemma 4.1, fk is Monotone.

Lastly, let the profiles π = (x1, x2, ...) and π′ = (x′1, x′2, ...) be such that xk = x′k
for all k ≠ i, j, xi = 1, xj = −1, and x′i = x′j = 0. If fk(π) = 1, 2n−(π) + n0(π) ≤

k, then 2n−(π′) + n0(π′) = 2[n−(π) − 1] + n0(π) + 2 = 2n−(π) + n0(π) ≤ k. Thus

fk(π′) = fk(π) = 1. If instead, 2n+(π)+n0(π) ≤ k, then similarly, 2n+(π′)+n0(π′) =

2[n+(π) − 1] + n0(π) + 2 = 2n+(π) + n0(π) ≤ k. Hence fk(π′) = fk(π) = −1. Thus it

follows that fk is cancellative.

DEFINITION 4.3. Now, define the infinite aggregation function

I ∶ {−1,0,1}N → {−1,0,1}

by

I(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if N+(π) is co-finite;

−1 if N−(π) if co-finite;

0 otherwise.

(4.5)

PROPOSITION 4.3. The infinite aggregation function I defined above satisfies

neutrality, strong anonymity, monotonicity, and cancellation, but is not zero co-

finite.

Proof. First, notice that if N+(π) is co-finite, then n+(π) = ∞, and if N−(π) is

co-finite, then n−(π) = ∞. If N0(π) is co-finite, then both N+(π) and N−(π) are

50

finite. When both N−(π) and N+(π) are finite, then I(π) = 0. It follows then that

function I is not zero co-finite.

Next, assume that I(π) = 1, then N+(π) is co-finite. Consider now −π and

observe that N−(−π) = N+(π). It follows that N−(−π) is co-finite, so I(−π) = −1.

Similarly, if I(π) = −1, then I(−π) = 1. Hence I satisfies neutrality.

Let π be any profile in {−1,0,1}N and σ a permutation of N. Then consider

the profile πσ. It can be seen clearly that n−(πσ) = n−(π), n+(πσ) = n+(π), and

n0(πσ) = n0(π). Therefore, if N+(π) is co-finite, then N+(πσ) is as well and if

N−(π) is co-finite, then N−(πσ) is also co-finite. Thus I(πσ) = I(π).

Now consider profiles π,π′ such that π ≤ π′. Assume that I(π) = 1, then

N+(π) is co-finite. This means the set of voters who didn’t vote for alternative 1 is

finite. Since π′ ≥ π, N+(π) ⊆ N+(π′), so N+(π′) is also co-finite. Thus I(π′) = 1 and

by Lemma 4.1, I is Monotone.

Lastly, let the profiles π = (x1, x2, ...) and π′ = (x′1, x′2, ...) be such that xk =

x′k for all k ≠ i, j, xi = 1, xj = −1, and x′i = x′j = 0. If I(π) = 1, N+(π) is co-

finite, then N+(π′) = N+(π)/i and N−(π′) ∪ N0(π′) = N−(π)/j ∪ N0(π) ∪ {i, j}.

Thus N+(π′) infinite, and N−(π′) ∪N0(π′) is finite, so N+(π′) is co-finite. Hence,

I(π′) = I(π) = 1. If instead, N−(π) is co-finite, then similarly, N−(π′) = N−(π′)/i

and N+(π′) ∪N0(π′) = N−(π)/j ∪N0(π) ∪ {i, j}. Hence I(π′) = I(π) = −1. Thus it

follows that I is cancellative.

THEOREM 4.3. An infinite aggregation function f satisfies strong anonymity,

monotonicity, neutrality, and cancellation, and is not zero co-finite if and only if

f = fk for some integer k ≥ −1 or f = I or f =M∞.

Proof. We have shown that fk, I and M∞ satisfy all of our axioms in Propositions

4.2, 4.3, and 4.1, respectively. Therefore, we only need to prove that if the axioms

are satisfied, then we have one of these three classes of rules.

51

Now, assume that f satisfies the axioms listed. Consider the set

O = {n0(π) ∶ π ∈ {−1,0,1}N and f(π) = 1}

If O = ∅, then f = f−1, and we are done. Now we may assume that O is non-empty

and we have two cases.

Case 1. Assume that the set O is bounded above by some integer k, such

that maxO = k. We will show that f(π) = fk(π) for all π ∈ {−1,0,1}N.

Let π be any profile such that n−(π) > 0 and 2n(π) + n0(π) is finite. Let A

be a subset of N+(π) such that ∣A∣ = n−(π). Let π′ be the profile satisfying

N−(π) = ∅ and N0(π′) = N0(π) ∪N−(π) ∪A

Notice that n−(π′) = 0 and n0(π′) = 2n(π) + n0(π). Moreover, since both f

and fk satisfy cancellation

f(π′) = f(π) and fk(π′) = fk(π).

Assume that f(π) = 1. If n−(π) = 0, then 2n−(π) + n0(π) = n0(π) ≤ k

and so fk(π) = 1. If n−(π) > 0, then we can work with the profile π′. Now

f(π) = 1 implies that f(π′) = 1. Since f(π′) = 1 it follows that n0(π′) ≤ k. Since

n0(π′) = 2n−(π) + n0(π) we get that 2n−(π) + n0(π) ≤ k and so fk(π′) = 1. Hence

fk(π) = 1.

Now suppose that fk(α) = 1 for some profile α. Then 2n−(α) + n0(α) ≤ k.

Let ρ be a profile where the maximum value of the set O is achieved. So f(ρ) = 1

and n0(ρ) = k. By the previous paragraph, f(ρ) = 1 implies fk(ρ) = 1 and so

2n−(ρ)+n0(ρ) ≤ k = n0(ρ). It follows that n−(ρ) = 0. By the argument given above,

we know that there exists a profile α′ such that n−(α′) = 0, n0(α′) = 2n−(α)+n0(α),

f(α′) = f(α), and fk(α′) = fk(α). Since

n−(α′) = n−(ρ) = 0 and n0(α′) ≤ n0(ρ),

52

it follows that there exists a permutation σ of N such that ρσ ≤ α′. Applying strong

anonymity and monotonicity we get

f(ρ) = f(ρσ) ≤ f(α′).

Now f(ρ) = 1 implies that f(α′) = 1. Hence f(α) − 1.

We can say that, for any profile π, f(π) = 1 if and only if fk(π) = 1. Since f

and fk are neutral, f(π) = fk(π) for all π ∈ {−1,0,1}N.

Case 2. Assume that the set O is not bounded above. Then we have two

sub-cases: either A. for any profile π, f(π) = 1 implies that n0(π) <∞ or B. there

exists a profile α such that f(α) = 1 and n0(α) =∞.

If A. holds, then we will show that f(π) = I(π) for all π ∈ {−1,0,1}N.

First, assume that f(π) = 1. Then n0(π) is finite. Since f is not zero co-finite,

n−(π) + n+(π) =∞. Since f is anonymous neutral, if n+(π) = n−(π), then f(π) = 0.

Since f is monotone, n+(π) > n−(π). Therefore, n+(π) =∞. Thus n−(π) <∞, and

it follows that N+(π) is co-finite. Hence I(π) = 1. Since f and I are neutral, if

f(π) = −1, then I(π) = −1.

Next, we want to show that if I(π) = 1, then f(π) = 1. But first, we must

observe the following result.

Let l be any nonnegative integer and ρ be any profile such that n−(ρ) = l

and n0(ρ) = 0. Since O is unbounded from above there exists a profile ρ′ such that

2l ≤ n0(ρ′) <∞ and f(ρ′) = 1. Now choose a profile ρ′′ such that N+(ρ′′) = N+(ρ′)∪A

and N−(ρ′′) = N−(ρ′) ∪B, where A and B are disjoint subsets of N0(ρ′) such that

∣A∣ = ∣B∣ = l. By cancellation, f(ρ′′) = f(ρ′) = 1. Notice n−(ρ′′) ≥ l. We can find

a permutation σ of N such that ρ′′σ ≤ ρ. By strong anonymity and monotonicity,

f(ρ′′) = f(ρ′′σ) ≤ f(ρ) = 1.

Now assume I(π) = 1. Then N+(π) is co-finite. Then there exists a non-

negative integer l such that l = ∣N0(π)∪N−(π)∣. Let ρ be the profile where N−(ρ) =

53

N0(π)∪N−(π) and N+(ρ) = N+(π).It follows from above that f(ρ) = 1. Since ρ ≤ π,

it follows from monotonicity that f(π) = 1. Since both I and f are neutral, we have

that f(π) = I(π) for all π ∈ {−1,0,1}N.

If B. holds, then we will show that f(π) =M∞(π) for all π ∈ {−1,0,1}N.

Assume first that f(π) = 1. Since f is not zero co-finite, either n+(π) = ∞

or n−(π) = ∞. If n+(π) = n−(π) = ∞, then, by Lemma 4.2, f(π) = 0 contrary to

f(π) = 1. If n−(π) = ∞ and n+(π) < ∞, then we can remove n+(π) 1’s and n+(π)

−1’s from the profile π and create a profile π′ such that n+(π′) = 0 and f(π′) = f(π).

So f(π′) = −1. Observe that π′ ≤ 0⃗, so by monotonicity, f(π′) ≤ f(0⃗), and f(0⃗) = 0

by Lemma 4.2. However, this contradicts that f(π′) = 1. Therefore, n+(π) =∞ and

n−(π) <∞. Thus M∞(π) = 1.

If f(π) = −1, then by neutrality f(−π) = 1. From above, f(−π) = 1 implies

M∞(−π) = 1. Since M∞ is neutral, M∞(π) = −1.

Assume now that M∞(π) = 1. Consider α, the profile described previously.

Notice that if n−(π) = n+(π), then by Lemma 4.2, f(π) = 0. Since f(α) = 1,

n(α) ≠ n+(α). Since f is not zero co-finite, either n+(α) = ∞ or n−(α) = ∞. It

follows by monotonicity that n+(α) = ∞ and n−(α) < ∞. Since n=(α) = ∞, and

f satisfies cancellation, there exists a profile α′ such that n−(α′) = 0, n+(α′) = ∞,

and f(α′) = f(α) = 1. Thus N0(α′) ∪ N+(α′) = N. Since M∞(π) = 1, we know

that n−(π) < ∞. By cancellation of M∞, there exists π′ such that n−(π′) = 0,

n+(π′) = n+(π) =∞, and M∞(π′) =M∞(π). Now we have that N0(π′)∪N+(π′) = N

and either n0(π′) <∞ or n0(π′) =∞. If n0(π′) =∞, then there exists a permutation

σ of N such that π′σ > α′, then f(π′σ) = f(π′) = f(π), by strong anonymity and

cancellation. Also, f(π′σ) ≥ f(α′) = f(α) = 1. Thus f(π) = f(π′) = f(π′σ) = 1,

If instead, both n0(π′) = n+(π′) =∞, then there exists two bijections σ1 and

σ2 defined as follows:

σ1 ∶ N0(π′)→ N0(α′)

54

and

σ2 ∶ N+(π′)→ N+(α′)

.

Now, define the permutation σ of N as follows:

σ(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ1(i) if i ∈ N0(π′)

σ2(i) if i ∈ N+(π′).

Observe that π′ = α′σ. By strong anonymity, f(π′) = f(α′σ) = f(α′) = 1. We

now know that for any profile π, M∞(π) = 1 if and only if f(π) = 1. Therefore by

neutrality, f =M∞ and we are done.

From the preceding results, we can now characterize all infinite aggregation

functions that satisfy strong anonymity, monotonicity, neutrality, and cancellation.

The following corollary comes as a result of Theorems 4.1, 4.2, and 4.3, as well as

Propositions 4.1, 4.2, and 4.3,

COROLLARY 4.1. If f ∶ {−1,0,1}N → {−1,0,1} satisfies strong anonymity, mono-

tonicity, neutrality, and cancellation than one of the following holds:

1. There exists an integer k ≥ 0 such that f =Mk;

2. There exists an integer k ≥ −1 such that f = fk;

3. The function f = I;

4. The function f =M∞.

Now that we have completely extended the characterization of Mk rules to

the infinite model, we will look at what happens when we reduce the axioms used

in this characterization. In order to do so, let us look at the relationship between

cancellation and anonymity in the infinite model. First, by introducing subsets of

the domain, as we did in the finite model.

55

DEFINITION 4.4. Define the following subsets of {−1,0,1}N:

U+ = {π ∈ {−1,0,1}N ∶ n0(π) = 1, n−(π) = 0}

U− = {π ∈ {−1,0,1}N ∶ n0(π) = 1, n+(π) = 0}

and U = U+ ∪ U−

While cancellation does not imply strong anonymity of this model, we can

show that it implies finite anonymity on a large subset of the domain. We give an

example below of a function that is not finite anonymous, to clarify that cancellation

does not imply finite anonymity

EXAMPLE 4.1. There exists integers k ≥ 0, l ≥ 1 and an infinite aggregation

function F ∶ {−1,0,1}N → {−1,0,1} where F is defined as follows:

F (π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mk(π) if π ∈ {−1,0,1}N/U

1 if π ∈ U and xi = 0 for i ≤ l

−1 if π ∈ U and xi = 0 for i > l

(4.6)

Notice, if a profile π is in U , there is only one 0 in a profile, then the placement of

that 0 uniquely determines the output, thus F is not finite anonymous. If π /∈ U ,

F = Mk, so F is cancellative. However, if π ∈ U there exists no such integers i, j

such that xi = −1, and xj = 1 or r, s such that xr = xs = 0, thus cancellation is

trivially satisfied.

Now, we can show that the cancellation implies finite anonymity, when the

domain is restricted to {−1,0,1}N/U . Recall that Σ is the set of all finite permuta-

tions of N.

THEOREM 4.4. If an infinite aggregation rule f ∶ {−1,0,1}N → {−1,0,1} is can-

cellative, then for all profiles π ∈ {−1,0,1}N/U and all permutations σ ∈ Σ, f(π) =

f(πσ).

56

Proof. Since any finite permutation can be written as a product of transpositions,

we may assume that σ = (i j), for some i, j ∈ N. We will show that for any profile

π ∈ {−1,0,1}N/U that f(π) = f(πσ). We have three cases.

Case 1 If xi = xj, then πσ = π, and it follows that f(π) = f(πσ).

Case 2 If xi = 1 and xj = −1. Then, since f is cancellative, we can create

profiles π′ and π′′, successively, as shown in Table 1, with k ≠ i and k ≠ j.

Table 4.1: Case 2
term

profile
i j k

π 1 −1 xk

π′ 0 0 xk

π′′ −1 1 xk

Then, we can see easily that π′′ = πσ, and since, by cancellation f(π) = f(π′) =

f(π′′), then f(π) = f(πσ).

Case 3 If xi = 0 and xj = 1, we will assume this is the same as if xi = 0 and

xj = −1, as the proof is almost identical. Since π ∈ {−1,0,1}N/U , either there exists

a profile element xr such that xr = 0 and r ≠ i or there exists a profile element xs

such that xs = −1. If there exists an xr = 0, then we will successively create profiles

π′ and π′′, using cancellation, as in Table 2.

Table 4.2: Case 3i
term

profile
i j r k

π 0 1 0 xk

π′ 1 1 −1 xk

π′′ 1 0 0 xk

If there exists xs = −1, then we will successively create profiles π′ and π′′ as in Table

3. In either case, we can see that π′′ = πσ and by cancellation f(π) = f(π′) = f(π′′).

57

Table 4.3: Case 3ii
term

profile
i j s k

π 0 1 −1 xk

π′ 0 0 0 xk

π′′ 1 0 −1 xk

Thus f(π) = f(πσ) as desired.

Next we will prove the necessity of our axioms listed in Theorem 4.2. In

order to do this, we will give examples of functions that satisfy some, but not all,

of the axioms.

The first example will be proven to be anonymous, neutral, cancellative, and

zero co-finite, but not monotone.

EXAMPLE 4.2. The aggregation function N will be defined as follows.

N(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M∞(π) N0 is not co-finite.

−M0(π) N0 is co-finite.

(4.7)

THEOREM 4.5. The function N ∶ {−1,0,1}N → {−1,0,1} is strongly anonymous,

neutral, cancellative, and zero co-finite, but is not monotone.

Proof. First, we will show that N is strongly anonymous. For any permutation σ of

N and π ∈ {−1,0,1}N, if N0(π) is co-finite, then N0(πσ) is co-finite. Also n+(πσ) =

n+(π) and n−(πσ) = n−(π). Since both M∞(π) and M0(π) depend completely on

N0(π), n−(π) and n+(π), N(π) = N(πσ).

Next we will show that N is neutral. Let N(π) = 1, then either (1) n−(π) =∞

and n+(π) < ∞ or (2) N0(π) is co-finite and n+(π) > n−(π). We will assume first

that that (1) holds. Since N−(π) = N+(−π) and N+(π) = N−(−π) so n+(−π) = ∞

and n−(−π) <∞. Therefore f(−π) = −1. Now assume that (2) holds, then N0(π) is

58

co-finite; thus, N0(−π) is co-finite. Again, N−(π) = N+(−π) and N+(π) = N−(−π),

so n+(−π) < n−(π) and N(−π) = −1. Hence N is neutral.

Now we will show that N is cancellative. Notice first, if N0(π) is co-finite

(not co-finite), and xi, xj ∈ π such that xi = 1 and xj = −1, we can create π′ with

x′k = xk for all k ≠ i, j, x′i = x′j = 0, and N0(π′) is also co-finite (not co-finite). Then

for any profile π there again are two cases:

Case 1 N0(π) is co-finite. Then consider π such that f(π) = 1 with xi = 1 and xj = −1

and π′ with x′k = xk for all k ≠ i, j, x′i = x′j = 0. Since N(π) = 1, n+(π) = ∞

and it follows that n+(π′) =∞. Also, n−(π′) = n−(π) − 1 <∞, thus N(π′) = 1.

Since N is neutral, this will hold with N(π) = −1.

Case 2 N0(π) is not co-finite. Then let N(π) = 1, thus n+(π) ≤ n−(π). Then for any

pair xi, xj ∈ π such that xi = 1 and xj = −1, if we create π′ such that x′i = x′j = 0

and x′k = xk for all k ≠ i, j. Then n+(π′) = n+(π) − 1 and n−(π′) = n−(π) − 1.

Thus n+(π′) < n−(π′), so N(π′) = 1. Again, neutrality holds, so the N(π) = −1

case follows.

We can show that N satisfies the zero co-finite axiom quickly by noting that

if π is such that n+(π) = 1 and n−(π) = 0, then N(π) = 1. N0(π) is obviously

co-finite, and N(π) ≠ 0.

Lastly, we will show the N is not monotone. Let π be such that N0 is co-finite

and N(π) = 1. Thus, n+(π) < n−(π). We know N(−π) = −1 and n−(−π) < n+(−π)

by neutrality. Also, N+(π) = N−(−π) and N−(π) = N+(−π); hence, −π ≥ π. Under

the monotonicity condition, this would imply N(−π) ≥ N(π), but this is not the

case. Thus, N is not monotone.

Next we will define an aggregation function that is finitely anonymous, mono-

tone, cancellative, neutral and zero co-finite, but is not strongly anonymous.

59

EXAMPLE 4.3. Let E = {z ∈ N0 ∶ z2 ∈ N0} be the set of positive even integers, and

define F ∶ {−1,0,1}N → {−1,0,1} via

F (π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 n+(π) = n−(π) =∞ and ∣E/N+(π)∣ <∞

−1 n+(π) = n−(π) =∞ and ∣E/N−(π)∣ <∞

M0(π) otherwise.

(4.8)

We will prove that the aggregation function F satisfies all of the axioms of Theorem

4.2 except strong anonymity.

THEOREM 4.6. The function F ∶ {−1,0,1}N → {−1,0,1} is zero co-finite, neutral,

cancellative, monotone, and finite anonymous (but not strongly anonymous) .

Proof. First, note the M0 is zero co-finite, so F is as well. Before continuing this

proof, it is important to notice that since M0 is both strongly anonymous and

neutral, if n+(π) = n−(π), M0(π) = 0. Therefore, if F (π) ≠ 0 we must be in the case

where F ≠M0, so n+(π) = n−(π) =∞ and either ∣E/N+(π)∣ <∞ or ∣E/N−(π)∣ <∞.

Alternatively, if n+(π) = n−(π) and F (π) = 0, then neither ∣E/N+(π)∣ < ∞ nor

∣E/N−(π)∣ <∞ hold, so F (π) =M0(π) = 0.

Next we will show neutrality. If we are in the case where π is such that F (π) =

M0(π), we are done, since M0 is neutral. Observe that E/N+(π) = E/N−(−π) and

E/N+(−π) = E/N−(π). Therefore, if F (π) ≠ M0(π), then F (π) = −F (π). Thus F

is neutral.

Cancellation holds for M0 as well, so if π is such that F (π) =M0(π), cancel-

lation holds. If F (π) ∈ {−1,1} and n+(π) = n−(π) =∞, then either ∣E/N+(π)∣ <∞

or ∣E/N−(π)∣ <∞. Without loss of generality, assume F (π) = 1 then ∣E/N+(π)∣ <∞.

Let π = (x1, x2,), such that xi = 1 and xj = −1. Consider π′ = (x′1, x′2, ...) such

that x′k = xk for all k ≠ i, j and xi = xj = 0. Then n+(π′) = n−(π′) = ∞ and

N+(π) ⊆ N+(π′). Thus ∣E/N+(π′)∣ < ∣E/N+(π)∣ < ∞, so F (π′) = F (π) = 1. Since

60

cancellation is a finite process, no amount would make n+(π) = n−(π) <∞, thus F

is cancellative.

For profiles π and π′ such that π ≤ π′, if F (π) =M0(π) and F (π′) =M0(π′),

then F (π) ≤ F (π′) since M0 is monotone. Now, let π ≤ π′ such that F (π) = 1 and

n+(π) = n−(π) =∞, then either n+(π′) = n−(π′) =∞ or n+(π′) =∞ and n−(π′) <∞,

since monotonicity is point-wise. If we are in the latter case, then F (π′) =M0(π′)

and n+(π′) > n−(π′), so F (π) = 1. If we are in the former case, then we know that

∣E/N+(π)∣ < ∞. Since N+(π) ⊆ N+(π′), so ∣E/N+(π′)∣ ≤ ∣E/N+(π)∣ < ∞. Hence

F (π) = 1. Thus, by Lemma 4.1, F is monotone.

Since F is cancellative, by Theorem 4.4, for all π ∈ {−1,0,1}N/U and τ ∈ Σ,

F (π) = F (πτ). Let ρ ∈ U , then either (i) n+(ρ) =∞ and n−(ρ) = 0 or (ii) n−(ρ) =∞

and n+(ρ) = 0. In either case, for any permutation σ ∈ Σ, we find ρσ ∈ U as well. So

F (ρ) =M0(ρ) and F (ρσ) =M0(ρσ). Furthermore, since M0 is strongly anonymous,

F (ρ) =M0(ρ) =M0(ρσ) = F (ρσ) for ρ ∈ U . Hence F is finite anonymous.

However, consider the following permutation φ of N and profile α = (a1, a2, ...)

φ(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i + 1 if i ∈ N/E

i − 1 if i ∈ E

ai =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if i ∈ E

−1 if i ∈ N/E

Then n+(α) = n−(α) =∞ and ∣E/N+(α)∣ = 0 <∞, so F (α) = 1. If we apply φ to α,

then n+(αφ) = n−(αφ) = ∞, but ∣E/N−(α)∣ = 0 < ∞, so F (αφ) = −1. Thus F is not

strongly anonymous.

The next example is strongly anonymous, neutral, monotone, and zero co-

finite, but is not cancellative.

61

EXAMPLE 4.4. Consider now the aggregation function H ∶ {−1,0,1}N → {−1,0,1},

H(π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M0(π) n+(π) ≥ 4 or n−(π) ≥ 4

0 otherwise.

(4.9)

THEOREM 4.7. The aggregation function H ∶ {−1,0,1}N → {−1,0,1} is strongly

anonymous, neutral, monotone, and zero co-finite, but is not cancellative.

Proof. First, we will show that H is not cancellative and zero co-finite. Consider the

profiles π = (x1, x2, ...) and π′ = (x′1, x′2, ...) such that n+(π) = 4, n−(π) = 1, xk = x′k
for all k ≠ i, j and xi = 1, xj = −1 with x′i = x′j = 0. Then H(π) = 1, showing H is

zero co-finite. Also, since n+(π) = 4 and n−(π) < 4, but H(π′) = 0, since n+(π′) = 3

and n−(π) = 0. Therefore, since H(π) ≠H(π′), H is not cancellative.

For n+(π) ≥ 4 or n−(π) ≥ 4, H is strongly anonymous and neutral, since

H(π) = M0(π). Otherwise, the function H is the trivial function, and is trivially

strongly anonymous, neutral, and monotone. Therefore, H is strongly anonymous,

and neutral. Now, we need to show that H is monotone. We need only to consider

what happens when comparing two profiles where one meets the criteria for M0 and

one meets the criteria for the trivial part of H.

Let ρ and ρ′ be profiles such that n+(ρ) ≤ 3, n−(ρ) ≤ 3 and ρ′ ≥ ρ. Thus

H(ρ) = 0. Since ρ′ ≥ ρ, n+(ρ′) ≥ n+(ρ) and n−(ρ′) ≤ n−(ρ) ≤ 3. If n+(ρ′) ≥ 4, then

H(ρ′) = 1. If n+(ρ′) ≤ 3, then H(ρ′) = 0. Hence H(ρ′) ≥ H(ρ). Since H is neutral,

it follows that H is monotone.

Our final example is the extension of the Mk,l rule defined in the finite model

in Equation 3.1. This rule will satisfy all of our axioms, except neutrality.

For this example, we need to introduce some new notation. For our purposes,

the notation −∞ represents the opposite of ∞, and so ∞−∞ = 0.

EXAMPLE 4.5. Consider now the function Mk,l ∶ {−1,0,1}N → {−1,0,1} for k, l ∈

62

Z ∪ {−∞,∞} such that k ≠ l and k + l ≥ −1.

Mk,l(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 n+(π) > n−(π) + k

−1 n−(π) > n+(π) + l

0 otherwise.

(4.10)

Before proving that the Mk,l rules satisfy our axioms, we extend Lemmas 3.1

and 3.2 to this model.

LEMMA 4.6. If k, l ∈ Z∪{−∞,∞} then Mk,l is well defined if and only if k+ l ≥ −1.

Proof. First, if both k and l are less than 0, it follows that both n+(ρ) > n−(ρ) + k

and n−(ρ) > n+(ρ)+l would hold for the profile ρ = (0,0,0, ...); therefore, both k and

l cannot be negative. In order for Mk,l to be well defined, we must restrict the values

of k and l further. Assume that there exists π such that both n+(π) > n−(π)+k and

n−(π) > n+(π) + l hold. Then, n+(π) ≥ n−(π) + k + 1 and n−(π) ≥ n+(π) + l + 1. By

substitution, n+(π) ≥ n+(π)+k+l+2, and k+l ≤ −2. Hence, from the contrapositive,

we have that if k + l ≥ −1, then Mk,l is well-defined.

LEMMA 4.7. The function Mk,l is neutral if and only if k = l.

Proof. If k = l, then since k + l > −2, 2k > −1, and k ≥ 0. Therefore, by definition,

we have an Mk rule which is neutral by Theorem 4.1. Now, assume that Mk,l is

neutral, then Mk,l(0,0,0, ...) = 0 by Lemma 4.2, so k ≥ 0 and l ≥ 0.

First, let k <∞, the consider π such that n+(π) = k + 1 and n−(π) = 0, then

Mk,l(π) = 1. By neutrality, Mk,l(−π) = −1, when n−(−π) = k + 1 and n+(−π) = 0.

Therefore, k + 1 > n+(−π) + l = l. Thus k ≥ l. Similarly, consider ρ such that

n−(ρ) = l + 1 and n+(ρ) = 0, then Mk,l(ρ) = −1. Considering −ρ, n+(−ρ) = l + 1 and

n−(−ρ) = 0, and by neutrality Mk,l(−ρ) = 1. Therefore, l + 1 > n−(−ρ) + k = k, so

l ≥ k. Thus, it follows that k = l.

63

Next, let k = ∞, then in order for Mk,l(π) = 1, n+(π) > n−(π) + ∞, which

cannot occur. Therefore, there exists no π such thatMk,l(π) = 1. Then by neutrality,

there is no π such that Mk,l(π) = −1. Hence Mk,l(π) = 0 for all π, thus k = l =∞.

We can now prove that the class of Mk,l rules is strongly anonymous, can-

cellative, zero co-finite, monotone, but is not neutral.

THEOREM 4.8. For any k, l ∈ Z ∪ {−∞,∞} such that k ≠ l and k + l ≥ −1 the

function Mk,l ∶ {−1,0,1}N → {−1,0,1} is strongly anonymous, cancellative, zero

co-finite, monotone, but is not neutral.

Proof. Next, notice that Mk,l is zero co-finite, for finite k and l since the profile with

n+(π) − n−(π) = k + 1 yields Mk,l(π) = 1, but ∣N0(π)∣ =∞ and ∣N+(π) ∪N−(π)∣ <∞.

Since k ≠ l and k + l ≥ −1, if k = ∞, then l = −∞, and visa versa. In either case,

Mk,l(π) ≠ 0 for all π and thus Mk,l is zero co-finite.

Now, notice that for any permutation σ of N and π ∈ {−1,0,1}N, n+(π) =

n+(πσ) and n−(π) = n−(πσ). Therefore, for Mk,l(π) = Mk,l(πσ). Hence, Mk,l is

strongly anonymous.

Let π = (x1, x2, ...) and π′ = (x′1, x′2, ...) be profiles such that xk = x′k for

all k ≠ i, j, xi = 1, xj = −1 and x′i = x′j = 0, then N+(π′) = N+(π)/{i} and N−(π′) =

N−(π)/{j}. Letting Mk,l(π) = 1, we know n+(π)−n−(π) > k. Thus, n+(π′)−n−(π′) =

n+(π) − n−(π) − 1 + 1 > k. Alternatively, if Mk,l(π) = −1, then n−(π) − n+(π) > l

and n−(π′)−n+(π′) > l. Hence Mk,l(π′) = −1. By completeness, if Mk,l(π) = 0, then

Mk,l(π′) = 0. Thus Mk,l is cancellative.

Next, consider two profiles π and π′ such that π ≤ π′ and Mk,l(π) = 1, so

n+(π) > n−(π)+k. Then N+(π) ⊆ N+(π′)and N−(π′) ⊆ N−(π). Thus n+(π′) ≥ n+(π)

and n−(π′) ≤ n−(π). Hence, n+(π′) > n−(π′) + k, so Mk,l(π′) = 1. Similarly, for ρ

and ρ′ such that ρ ≥ ρ′ and Mk,l(ρ) = −1, then n−(ρ) > n+(ρ) + l. It follows that

N−(ρ) ⊆ N−(ρ′)and N+(ρ′) ⊆ N+(ρ). Thus n−(ρ′) > n−(ρ) and n+(ρ′) < n+(ρ), so

64

Mk,l(ρ′) = −1 and Mk,l is monotone.

While some of our results carried over from the finite model, not all of them

did. You may notice that if k =∞ and l = −∞, that while k + l = 0 ≠ −1, Mk,l(π) ≠ 0

for any π ∈ {−1,0,1}N. This shows that the Proposition 3.1 does not hold in the

infinite model. However, we can extend Proposition 3.2 quite naturally.

PROPOSITION 4.4. For any k, l ∈ Z∪ {−∞,∞} such that k ≠ l and k + l ≥ −1, and

any π ∈ {−1,0,1}N, Mk,l(−π) = −Ml,k(π) or Mk,l(π) = −Ml,k(−π).

Proof. First, assume both k and l are finite. Let Mk,l(π) = 1, then n+(π) > n−(π)+k.

Thus, n−(−π) > n+(−π) + k, so Ml,k(−π) = −1. Similarly, if Mk,l(π) = −1, then

n−(π) > n+(π) + l. Then n+(−π) > n−(−π) + l, hence Ml,k(−π) = 1. Lastly, if

Mk,l = 0, then neither n+(π) > n−(π) + k nor n−(π) > n+(π) + l. Therefore, neither

n−(−π) > n+(−π) + k nor n+(−π) > n−(−π) + l. Thus Ml,k(−π) = 0. Hence Mk,l(π) =

−Ml,k(−π).

Next, assume l = ∞ and k = −∞. Let Mk,l(π) = 1, then n+(π) > n−(π) −∞.

Therefore, n−(−π) > n+(−π) −∞, so Ml,k(−π) = −1. If Mk,l(π) ≠ −1 for any π. It

follows, if Ml,k(π) = −1, then it follows Mk,l(−π) = 1. Notice Mk,l(π) ≠ −1 for any π,

and Ml,k(π) ≠ 1 for any π. Assume that Mk,l(π) = 0, then neither n+(π) > n−(π)−∞

nor n−(π) > n+(π) +∞. Also, it follows neither n−(−π) > n+(−π) −∞ nor n+(−π) >

n−(−π) +∞, so Ml,k(−π) = 0.

Lastly, assume k = ∞ and l < ∞. Let Mk,l(π) = 1, then n+(π) > n−(π) +∞.

Thus, n−(−π) > n+(−π) +∞, so Ml,k(−π) = −1. Now, if Mk,l(π) = −1, then n−(π) >

n+(π) + l. Then n+(−π) > n−(−π) + l, hence Ml,k(−π) = 1. Lastly, if Mk,l = 0, then

neither n+(π) > n−(π)+∞ nor n−(π) > n+(π)+l. Hence neither n−(−π) > n+(−π)+∞

nor n+(−π) > n−(−π) + l. Thus Ml,k(−π) = 0.

Since not all of the propositions carried over from the finite model into the

infinite model, is also happens that we have not found a full characterization for

65

all of the Mk,l rules in the infinite model. However, if we restrict our k, l to finite

integers, we can include a new axiom that allows for a full characterization of this

subset of Mk,l rules.

DEFINITION 4.5. An infinite aggregation function f ∶ {−1,0,1}N → {−1,0,1} sat-

isfies the Strong Zero Co-finite axiom if there exists π,π′ ∈ {−1,0,1}N such that

N0(π) and N0(π′) are co-finite and {f(π), f(π′)} = {−1,1}.

Before characterizing the finite k, l Mk,l rules, we show that they satisfy the

strong zero co-finite axiom.

PROPOSITION 4.5. An infinite aggregation function defined by Mk,l such that

k, l ∈ Z and k + l ≥ −1 satisfies the strong zero co-finite axiom.

Proof. Define π as the profile such that n+(π) = k + 1 and n−(π) = 0. Then

Mk,l(π) = 1 and N0(π) is co-finite. Define π′ to be the profile such that n−(π′) =

l + 1 and n+(π) = 0. Then Mk,l(π′) = −1 and N0(π′) is co-finite. Therefore

{Mk,l(π),Mk,l(π′)} = {−1,1}, so Mk,l satisfies the strong zero co-finite axiom.

Now we can characterize the class of finite k, l Mk,l rules.

THEOREM 4.9. An infinite aggregation function f ∶ {−1,0,1}N → {−1,0,1} satis-

fies strong anonymity, cancellation, monotonicity, and strong zero co-finite axiom,

but is not neutral if and only if there exists k, l ∈ Z such that k ≠ l and k + l ≥ −1

such that f =Mk,l.

Proof. We have already shown that Mk,l satisfies all of the axioms listed. Thus, we

can now assume that f satisfies all of our axioms, and we will prove that f =Mk,l.

Now, define k and l as follows.

k = min{n+(π) − n−(π) ∶ f(π) = 1} − 1.

66

and

l = min{n−(π) − n+(π) ∶ f(π) = −1} − 1

Since f satisfies strong zero co-finite, neither set is empty, so the minimum exists.

Also, since f satisfies strong zero co-finite, neither k nor l is infinite, as if k(l) =∞,

then f(π) ≠ 1(−1) for any π. Thus k, l ∈ Z.

Let κ be a profile such that n+(κ) − n−(κ) = k + 1 and f(κ) = 1. Then let λ

be a profile such that n−(λ)−n+(λ) = l+1 and f(λ) = −1. Our first goal is to verify

that k + l ≥ −1. Since f is cancellative, we may assume that κ satisfies one of the

follow equations:

n+(κ) = 0 and n−(κ) = −k − 1 (4.11)

or

n−(κ) = 0 and n+(κ) = k + 1. (4.12)

Similarly, we may assume that λ satisfies one of the follow equations:

n+(λ) = 0 and n−(λ) = l + 1 (4.13)

or

n−(λ) = 0 and n+(λ) = −l − 1. (4.14)

Suppose Equations (4.11) and (4.14) hold. Then 0⃗ ≥ κ and λ ≥ 0⃗. By

monotonicity, f(0⃗) ≥ f(κ) = 1 and f(λ) = −1 ≥ f(0⃗), which is impossible. Thus

Equations (4.11) and (4.14) cannot hold at the same time.

We cannot have k = l = −1, since then κ = λ = 0⃗ and f(κ) = 1, but f(λ) = −1.

Therefore, if Equations (4.12) and (4.13) hold then k+1 ≥ 0 and l+1 ≥ 0. So k ≥ −1

and l ≥ −1. Since k = l = −1 is impossible, it follows that k + l ≥ −1.

Now, suppose Equations (4.11) and (4.13) hold. Then n+(κ) = n+(λ) = 0, so

n−(κ) = −k − 1 and n−(λ) = l + 1. If k = l = −1, the κ = λ, which cannot hold and

67

Mk,l be well defined. Since n−(κ) ≥ 0, −k ≥ −1. Also, since n−(λ) ≥ 0, l ≥ −1. Then

it follows that, since both k and l cannot be −1 at the same time, that

k + l ≥ −1.

If Equations (4.12) and (4.14) hold, then n−(κ) = n+(λ) = 0 and we can argue

like above that k and l cannot both be negative one, and result to find

k + 1 > −l − 1 and so k + l ≥ −1.

At this point, by Lemma 4.6, the Mk,l rule is well defined.

Now, let f(π) = 1. Then n+(π) − n−(π) > k since k + 1 is minimal. Thus

n+(π) > n−(π) + k, so Mk,l(π) = 1. Similarly, let f(π) = −1. Then n−(π) − n+(π) > l

by the minimality of l + 1. So, n−(π) > n+(π) + l and Mk,l(π) = −1.

Next, assume that Mk,l(π) = 1. This implies that n+(π) > n−(π) + k. So

n+(π) − n−(π) > k. Since Mk,l is cancellative, there exists π′ such that Mk,l(π′) =

Mk,l(π) and either n+(π′) = 0 and −n−(π′) > k or n−(π′) = 0 and n+(π′) > k. Since

k ≠ ±∞, κ, a profile that attains the minimum for k + 1 as defined above, exists.

Now, f is cancellative as well, so there exists κ′ such that f(κ) = f(κ′) and either

n+(κ′) = 0 and −n−(κ′) = k + 1 or n−(κ′) = 0 and n+(κ′) = k + 1. Therefore, we can

compare κ′ and π′ with four cases.

Case 1 Assume n+(π′) = 0, −n−(π′) > k and n+(κ′) = 0, −n−(κ′) = k + 1, then 0 ≤

n−(π′) < −k and 0 ≤ n−(κ′) = −k − 1, hence k ≤ −1. Notice that n−(π′) ≤ n−(κ)

and so there exists a permutationσ of N such that π′σ ≥ κ′. Therefore, by

monotonicity of f , f(π′σ) ≥ f(κ′) = f(κ) = 1. Since f is strongly anonymous,

f(π′) = f(π′σ) = 1. Since f is cancellative, f(π′) = f(π) = 1.

Case 2 Assume n+(π′) = 0, −n−(π′) > k and n−(κ′) = 0, n+(κ′) = k + 1; therefore,

0 ≤ n−(π′) < −k, so k < 0, and n+(κ′) = k + 1 ≥ 0. Thus, k ≥ −1, but k < 0,

so k = −1. Hence, n−(π′) < 1, so n−(π′) = 0. Similarly, n+(κ′) = k + 1 = 0, so

68

n+(π′) = n−(π′) = n−(κ′) = n+(κ′) = 0. Thus, κ′ = π′, so f(κ′) = f(π′) = 1.

Since f is cancellative, f(π′) = f(π) = 1.

Case 3 Assume n−(π′) = 0, n+(π′) > k and n−(κ′) = 0, −n+(κ′) = k + 1. Since both f

and Mk,l are strongly anonymous, there exists σ ∈ SN such that π′σ ≥ κ′. There-

fore, by monotonicity of f , f(π′σ) ≥ f(κ′) = f(κ) = 1. Since f is anonymous,

f(π′) = f(π′σ) = 1. Since f is cancellative, f(π′) = f(π) = 1.

Case 4 Assume n−(π′) = 0, n+(π′) > k and n+(κ′) = 0, −n−(κ′) = k + 1. Then 0 ≤

n−(κ′) = −k − 1, so k ≤ −1, but n+(π′) > k. Therefore, π′ ≥ (0,0,0, ...) and

(0,0,0, ...) ≥ κ′. Thus by transitivity, π′ ≥ κ′, so by monotonicity f(π′) ≥

f(κ′) = f(κ) = 1. Since f is cancellative, f(π) = f(π′) = 1.

Similarly, assume that Mk,l(π) = −1. Therefore, it follows that n−(π) −

n+(π) > l. Since Mk,l is cancellative, there exists π′ such that Mk,l(π′) = Mk,l(π)

and either n−(π′) = 0 and −n+(π′) > l or n−(π′) = 0 and n−(π′) > k. Since l ≠ ±∞,

λ, a profile that attains the minimum for l + 1 as defined above, exists. Now, f is

cancellative as well, so there exists λ′ such that f(λ) = f(λ′) and either n+(λ′) = 0

and n−(λ′) = k + 1 or n−(λ′) = 0 and −n+(λ′) = k + 1. Therefore, we can compare λ′

and π′ with four cases.

Case 1 Assume n−(π′) = 0, −n+(π′) > l and n−(λ′) = 0, −n+(λ′) = l + 1. Therefore,

0 ≤ n+(π′) < −l and 0 ≤ n+(λ′) = −l − 1. Since both f and Mk,l are strongly

anonymous, there exists σ ∈ SN such that π′σ ≤ λ′. Therefore, by monotonicity

of f , f(π′σ) ≤ f(λ′) = f(λ) = −1. Since f is anonymous, f(π′) = f(π′σ) = −1.

Since f is cancellative, f(π′) = f(π) = −1.

Case 2 Assume n+(π′) = 0, n−(π′) > l and n−(λ′) = 0, −n+(λ′) = l + 1. So 0 ≤ n+(λ′) =

−l−1 and n−(π′) > l. So π′ ≤ (0,0,0, ...) and λ′ ≥ (0,0,0, ...), so by transitivity

69

π′ ≤ λ′. Therefore, since f is monotone, f(π′) ≤ f(λ′) = f(λ) = −1. Since f is

cancellative, f(π) = f(π′) = −1.

Case 3 Assume n+(π′) = 0, n−(π′) > l and n+(λ′) = 0, n−(λ′) = l+1. Since both f and

Mk,l are strongly anonymous, there exists σ ∈ SN such that π′σ ≤ λ′. Therefore,

by monotonicity of f , f(π′σ) ≤ f(λ′) = f(λ) = −1. Since f is anonymous,

f(π′) = f(π′σ) = −1. Since f is cancellative, f(π′) = f(π) = −1.

Case 4 Assume n−(π′) = 0, −n+(π′) > l and n+(λ′) = 0, n−(λ′) = l + 1. Then 0 ≤

n+(π′) < −l , so l < 0, and 0 ≤ n−(λ′) = l + 1, so l + 1 ≥ 0. Thus l ≥ −1 and

l < 0, so l = −1. Therefore, n+(π′) < 1 and n−(λ′) = 0. So n−(π′) = n+(π′) =

n+(λ′) = n−(λ′) = 0. Hence π′ = λ′, so f(π′) = f(λ′) = f(λ) = −1. Since f is

cancellative, f(π) = f(π′) = −1.

Thus, we have shown that for all π ∈ {−1,0,1}N, f(π) = 1 if and only if Mk,l(π) = 1

and f(π) = −1 if and only if Mk,l(π) = −1. Therefore, it can be concluded that

f(π) = 0 if and only if Mk,l(π) = 0, so f(π) =Mk,l(π).

The Theorems in this Chapter have completely characterized the Mk rules for

the infinite model with a countably infinite set of voters. While this extends many

of the results from Chapter 3, we have not yet looked deeper into characterizing the

infinite aggregation functions that do not satisfy neutrality. Doing so, and extending

Corollary 3.3 and its preceding Theorems, has been left for future work.

70

CHAPTER 5

DIFFERENCE OF VOTES RULES ON THE FUZZY VOTING MODEL

Now that the Mk and Mk,l rules have been characterized in our first two

models, we will look at the third and final model which we call the fuzzy voting

model. Extending the Mk rules to the fuzzy model was first done by Garcia-Lapresta

and Llamazares in 2010 [8]. They were able to completely characterize these rules

in the fuzzy model. Our goal in this chapter is to give a new proof of the main result

given in [8]. We will first state and prove two new lemmas and use them to prove

the characterization of the Mk rules in the fuzzy domain, similar to our previous

models.

Recall that in the fuzzy decision model, there are two definitions for the

difference of votes rules. These two classes of functions are known as the M̃k rules

defined in Definition 2.26 and the M̃ ′

k rules defined in Definition 2.27. They are

stated again below for convenience. In this section, we will use the notation sum(π)

to indicate the sum of all the entries in the profile π. That is if π = (d1, d2, ..., dm),

then sum(π) =
m

∑
i=1
di.

DEFINITION 5.1. Given a real number k ∈ [0,m), the fuzzy M̃k majority is the

fuzzy decision rule defined by:

M̃k(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 1
m

m

∑
i=1
di > 1

2 + k
2m ,

1
2 if ∣ 1m

m

∑
i=1
di − 1

2 ∣ ≤ k
2m ,

0 if 1
m

m

∑
i=1
di < 1

2 − k
2m .

(5.1)

71

DEFINITION 5.2. Given a real number k ∈ (0,m], the fuzzy M̃ ′

k majority is the

fuzzy decision rule defined by:

M̃ ′

k(π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 1
m

m

∑
i=1
di ≥ 1

2 + k
2m ,

1
2 if ∣ 1m

m

∑
i=1
di − 1

2 ∣ < k
2m ,

0 if 1
m

m

∑
i=1
di ≤ 1

2 − k
2m .

(5.2)

Before stating our lemmas, we will confirm that both the M̃k and M̃ ′

k classes

of fuzzy aggregation functions satisfy the axioms necessary for the characterization.

THEOREM 5.1. For any k ∈ [0,m) the fuzzy aggregation function M̃k satisfies

cancellation, Pareto, monotonicity and neutrality.

Proof. For this proof, we will use the definition of M̃k given in Equation (2.7). First,

note that the output of M̃k is completely determined by the sum(π) and the value

of k.

We will now show that M̃k is cancellative. Consider π = (d1, d2, ..., dm), such

that sum(π) = M . Suppose π′ = (d′1, d′2, ...d′m) satisfies d′i = di + ε, d′j = dj − ε, and

d′k = dk for all k ≠ i, j. Then it follows that sum(π′) = M − ε + ε = M = sum(π).

Since k is fixed, it follows that M̃k(π) = M̃k(π′).

Next we will show that M̃k is Pareto. Consider M̃k(0,0, ...,0). It follows that

sum(0,0, ...,0) = 0, and 1
2(m−k) is minimal as k approaches m, since k <m. Thus,

for all k, 1
2(m − k) > 0 = sum(0,0, ...,0), hence M̃k(0,0, ...,0) = 0. Now consider

M̃k(1,1, ...,1). It follows that sum(1,1, ...,1) = m, and 1
2(m + k) is maximal as k

approaches m, since k < m. Therefore, 1
2(m + k) < m = sum(1,1, ...,1). Hence

M̃k(1,1, ...,1) = 1 and M̃k is Pareto.

Now we will show that M̃k is neutral. Consider N(π). We can easily see

that sum(N(π)) =
m

∑
i=1

(1 − di) = m − sum(π). Furthermore, if M̃k(π) = 1, then

sum(π) > 1
2(m + k), so sum(N(π)) =m − sum(π) <m − 1

2(m + k) = 1
2(m − k). Thus

72

M̃k(N(π)) = −1. Similarly, if M̃k(π) = −1, then by the same algebra, M̃k(N(π)) = 1.

Lastly, if M̃k(π) = 0, then ∣sum(π) − m
2 ∣ ≤ 1

2k. It follows that

∣sum(N(π)) − m
2
∣ = ∣m − sum(π) − m

2
∣

= ∣m
2
− sum(π)∣

= ∣sum(π) − m
2
∣.

Therefore, ∣sum(N(π)) − m
2 ∣ = ∣sum(π) − m

2 ∣ ≤ 1
2k, so M̃k(N(π)) = 0. Hence M̃k is

neutral.

Finally, we will show that M̃k is monotone. Let π′ ≥ π, then it follows that

sum(π′) ≥ sum(π). Therefore, by the definition of M̃k it is clear that M̃k(π′) ≥

M̃k(π).

Next, we need to show that class of fuzzy aggregation functions M̃ ′

k rules

satisfy cancellation, Pareto, monotonicity and neutrality, as well. This class of

fuzzy aggregation functions is markedly different than the M̃k rules, even though

that may not be obvious at first. Before proving the theorem about this class of

functions, consider this remark, to understand the differences and necessity of two

proofs.

REMARK 5.1. The M̃ ′

k rules allow for values of k ∈ (0,m], which allows for k =m.

In this case, notice that M̃ ′

k(π) = 1 only if sum(π) = m, and M̃ ′

k(π) = 0 only if

sum(π) = 0. However, M̃k allows for values of k ∈ [0,m), so while k ≠ m, it does

allow k = 0, which cannot happen in the M̃ ′

k rules. With k = 0, the M̃k = f̃m, the

fuzzy simple majority rule. There are other slight differences in the M̃k and M̃ ′

k

rules, based on whether the sum is strictly less(greater) than or whether its allowed

to be less(greater) than or equal to. While these differences seem slight at first, the

difference is distinct and necessary when considering the range of k for each class

of functions. So, while they are inherently similar, these two classes are functions

are indeed two different classes of functions.

73

Now, we may continue with the proof for M̃ ′

k rules.

THEOREM 5.2. For any k ∈ (0,m] the fuzzy aggregation functions M̃ ′

k satisfies

cancellation, Pareto, monotonicity and neutrality.

Proof. For this proof, we will use the definition of M̃ ′

k given in Equation (2.8). First,

note that, as with the previous proof, the output of M̃ ′

k is completely determined

by the sum(π) and the value of k.

We will now show that M̃ ′

k is cancellative. Consider π = (d1, d2, ..., dm), such

that sum(π) = S. Then for π′ = (d′1, d′2, ...d′m) such that d′i = di + ε, d′j = dj − ε, and

d′k = dk for all k ≠ i, j. Then it follows that sum(π′) = S − ε + ε = S = sum(π). Since

k is fixed, it follows that M̃ ′

k(π) = M̃ ′

k(π′).

Next we will show that M̃ ′

k is Pareto. Consider M̃ ′

k(0,0, ...,0). It follows that

sum(0,0, ...,0) = 0. Also 1
2(m−k) is minimal when k =m, and 1

2(m−m) = 0. Thus,

for all k, 1
2(m − k) ≥ 0 = sum(0,0, ...,0), hence M̃ ′

k(0,0, ...,0) = 0. Now consider

M̃ ′

k(1,1, ...,1). It follows that sum(1,1, ...,1) = m, and 1
2(m + k) is maximal when

k = m, and 1
2(m + m) = m. Therefore, 1

2(m + k) ≤ m = sum(1,1, ...,1). Hence

M̃ ′

k(1,1, ...,1) = 1 and M̃ ′

k is Pareto.

Now we will show that M̃ ′

k is neutral. Consider N(π). We can easily see

that sum(N(π)) =
m

∑
i=1

(1 − di) = m − sum(π). Furthermore, if M̃ ′

k(π) = 1, then

sum(π) ≥ 1
2(m + k), so sum(N(π)) =m − sum(π) ≤m − 1

2(m + k) = 1
2(m − k). Thus

M̃ ′

k(N(π)) = −1. Similarly, if M̃ ′

k(π) = −1, then by the same algebra, M̃ ′

k(N(π)) = 1.

Lastly, if M̃ ′

k(π) = 0, then ∣sum(π) − m
2 ∣ < 1

2k. It follows that

∣sum(N(π)) − m
2
∣ = ∣m − sum(π) − m

2
∣

= ∣m
2
− sum(π)∣

= ∣sum(π) − m
2
∣.

Therefore, ∣sum(N(π)) − m
2 ∣ = ∣sum(π) − m

2 ∣ < 1
2k, so M̃ ′

k(N(π)) = 0. Hence M̃ ′

k is

neutral.

74

Finally, we will show that M̃ ′

k is monotone. Let π′ ≥ π, then it follows that

sum(π′) ≥ sum(π). Therefore, by the definition of M̃ ′

k it is clear that M̃ ′

k(π′) ≥

M̃ ′

k(π).

The definition of the various axioms were presented in Chapter 2. To begin

looking at the fuzzy model, we will prove a few lemmas based on these axioms. The

first lemma, requires only that the function be cancellative, as it was proven by

Garcia-Lapresta and Llamazares that cancellation completely implies anonymity in

this model [8].

LEMMA 5.1. Let the fuzzy decision rule F ∶ [0,1]m → {0, 12 ,1} satisfy cancellation.

For any two profiles π = (x1, ..., xm) and ρ = (y1, ..., ym) such that sum(π) = sum(ρ),

then F (π) = F (ρ).

Proof. We will use induction on the length of the profile m to prove this lemma.

First, assume that m = 2, then x1 + x2 = y1 + y2. Without loss of generality, let

x1 ≥ y1, if x1 = y1, then x2 = y2, and we are done, so assume the contrary. Then

there exists some ε > 0 such that x1 = y1 + ε and x2 = y2 − ε. Thus, by cancellation,

F (π) = F (ρ).

Now, we will assume that the cancellation condition holds for m − 1 length

profiles, m ≥ 3.

Case 1: Suppose there exists j such that xj = yj, define the mapping G ∶

[0,1]m−1 → {0, 12 ,1} by G(z1, ..., zm−1) = F (α), where α = (a1, a2, ..., am) such that

aj = xj, ai = zi for i < j and α(i) = zi−1 for i ≥ j + 1. G is cancellative, since F is

cancellative. So, define π′ = (x′1, ..., x′m)ρ′ = (y′1, ..., y′m) ∈ [0,1]m−1 such that x′i = xi

for i < j, and x′i = xi+1 for i ≥ j, and ρ′ is defined similarly. Then G(π′) = F (π)

and G(ρ′) = F (ρ). Now, sum(π′) = sum(π) − xj and sum(ρ′) = sum(ρ) − yj. Since

xj = yj and sum(π) = sum(ρ), it follow that sum(π′) = sum(ρ′). Thus, by our

75

inductive hypothesis, G(π′) = G(ρ′). Hence, by our definition of G, G(π′) = F (π) =

F (ρ) = G(ρ′).

Case 2: Suppose no such j exists such that xj = yj, that is xi ≠ yi for all i.

Then, consider E = {∣xj − yj ∣ ∶ i = 1,2, ...,m} and let ε = minE, and call one of the

terms where this occurs j. Without loss of generality, let xj > yj. Then there exists

i ∈ Nm such that xi < yi, since sum(π) = sum(ρ). Create ρ′ such that y′j = yj + ε,

y′i = yi − ε and yk = yk, for all k ≠ i, j. Then, by cancellation, F (ρ′) = F (ρ). Now,

consider F (π) and F (ρ′), by construction, y′j = xj. Then, we can use Case 1 to

assert that F (π) = F (ρ′). Thus, by transitivity, F (π) = F (ρ).

Next, monotonicity is added to the axioms the fuzzy aggregation function

satisfies. Once that is done, we can compare the output of the function on two

profiles, π and ρ, based solely on sum(π) and sum(ρ).

LEMMA 5.2. Let the fuzzy decision rule F ∶ [0,1]m → {0, 12 ,1} satisfy cancellation

and monotonicity. For any two profiles π = (x1, ..., xm) and ρ = (y1, ..., ym) such

that sum(π) ≤ sum(ρ), then F (π) ≤ F (ρ).

Proof. If sum(π) = sum(ρ), we know from Lemma 5.1 that F (π) = F (ρ). So

we will assume that sum(π) < sum(ρ). Then there exists some ε > 0, such that

sum(ρ) = sum(π) +mε. Create ρ′ = (y′1, ..., y′m) such that y′i = min{xi + ε,1} for

all i ∈ Nm. Then note that π ≤ ρ′ and sum(ρ) ≥ sum(ρ′) ≥ sum(π). Then let

δ =
m

∑
i=1
ε − (yi − xi). Notice

δ = sum(π) +mε − sum(ρ′). If δ = 0, then let ρ̃ = ρ′.

If δ > 0, create ρ̃ as follows, so that sum(ρ̃) = sum(ρ′) + δ = sum(ρ). For

i = 1,2, ...,m − 1, let δi = y′i + δi−1 − 1 with the convention δ0 = δ. For example

δ1 = ρ′(1) + δ − 1. If δ1 ≤ 0, then ρ̃ is defined by

ρ̃ = y′1 + δ, y + 2′, y′3, ..., y
′

m).

76

If δ1 > 0 and δ2 ≤ 0, the ρ̃ is defined by

ρ̃ = (1, y + 2′ + δ1, y′3, ..., y′m).

This pattern continues until we either find the first index i such that δi > 0 and

δi+1 ≤ 0 or we get δi > 0 for all i = 1,2, ...,m − 1. Observe that

δm−1 = y′m−1 + δm−2 − 1

= (y′m−1 − 1) + +ρ′(m − 2) + δm−3

= y′m−1 + y′m−2 − 2 + δm−3

.

.

.

=
n

∑
i=1

y′i − (m − 1) + δ

Since δ = sum(ρ) − sum(ρ′), we can determine

δm−1 =
m−1

∑
i=1

y′i − (m − 1) + sum(ρ) − sum(ρ′)

= − y′m −m + 1 + sum(ρ)

y′m + δm−1 =sum(ρ) −m + 1

≤ m −m + 1

=1.

If δm−1 ≥ 0, then ρ̃ = (z1, ..., zm) = (1,1, ...,1, y′m + δm−1). If δm−1 ≤ 0, then there

exists a first index j such that 1 ≤ j ≤ m − 1, δj ≤ 0, and δi > 0 for all integers

i ∈ [0, j − 1]. In this case, we let zi = 1 for all i < j, zj = y′j + δj−1, and zk = y′k
for all integers k ∈ [j + 1,m]. Therefore, sum(ρ) = sum(ρ′) + δ = sum(ρ̃), so by

Lemma5.1, F (ρ) = F (ρ̃). Furthermore, each zi ≥ xi, it follows from monotonicity

that F (π) ≤ F (ρ̃). Hence F (π) ≤ F (ρ).

77

These two lemmas allow us to prove the Llamazares and Garcia-Lapresta

characterization result of the M̃k and M̃ ′

k rules[8]. Our proof uses a different ap-

proach than Llamazares and Garcia-Lapresta, but has the same conclusion.

THEOREM 5.3. Let F ∶ [0,1]m → {0, 12 ,1} satisfy cancellation, Pareto, monotonic-

ity and neutrality, then F is either an M̃k or M̃ ′

k rule.

Proof. Consider F ∶ [0,1]m → {0, 12 ,1} and let k = inf{2sum(π) −m : F (π) = 1}.

Now since F is Pareto, F (1,1, ...,1) = 1 and since F is neutral, F (1
2 ,

1
2 , ...,

1
2) = 1

2 . We

know sum(1
2 ,

1
2 , ...,

1
2) = 1

2m and sum(1,1, ...,1) = 1 so by Lemma 5.2, if F (π) = 1,

1
2m < sum(π) ≤ m. So 0 < k ≤ m. If there exists a profile ρ such that F (ρ) = 1 and

2sum(ρ) −m = k, then we will show that F = M̃ ′

k rule with this k. Otherwise, we

will show that F = M̃k rule.

First, assume that F attains its infimum. Let π = (d1, d2, ..., dm) and assume

that F (π) = 1. By Lemma 5.2 and the nature of the infimum, 2sum(π) −m ≥ k.

Since sum(π) ≥ 1
2(m + k), it follows from Equation (2.8) that M̃k

′(π) = 1.

Now assume that F (π) = 0. Since F is neutral, F (N(π)) = 1. Therefore,

2sum(N(π))−m ≥ k, so m−2sum(π) ≥ k. Since sum(π) ≤ 1
2(m−k) it follows from

Equation (2.27) that M̃k
′(π) = 0.

Now, let F (π) = 1
2 , then neither 2sum(π) −m ≥ k nor m − 2sum(π) ≥ k;

therefore, ∣sum(π) − m
2 ∣ < k

2 and so M̃k
′(π) = 1

2 .

Finally, assume that there does not exist a profile ρ such that F (ρ) = 1 and

2sum(ρ) − m = k. Let F (π) = 1, then from Lemma 5.2 and the nature of the

infimum, 2sum(π) −m > k. Thus 1
m

m

∑
i=1
di > 1

2 + k
2m , so M̃k(π) = 1.

Now, let F (π) = 0, then since F is neutral, F (N(π)) = 1. Therefore,

2sum(N(π)) −m > k, so m − 2sum(π) > k, so M̃k(π) = 0.

Lastly, let F (π) = 1
2 , then neither 2sum(π) −m > k nor m − 2sum(π) > k;

therefore, ∣sum(π) − m
2 ∣ ≤ k

2 , so M̃k(π) = 1
2 .

78

Combining Theorems 5.1 and 5.2 with Theorem 5.3, the following corollary

falls out as a consequence and confirms the main result from the Garcia-Lapresta

and Llamazares [8].

COROLLARY 5.1. A fuzzy aggregation function F ∶ [0,1]m → {0, 12 ,1} satisfies

cancellation, Pareto, monotonicity and neutrality if and only if F = M̃k or F = M̃ ′

k.

The fuzzy aggregation model is the third and final model where we explored

the difference of votes rules. It is notable that when characterizing these rules

in this model and the infinite model, an additional axiom was needed as opposed

to characterizing these rules in the finite model. In the fuzzy model, we had the

addition of Pareto, and in our infinite model, we had the addition of the zero co-

finite axiom. We were not able to look into the extended difference of votes rules

that are not neutral, as we did in the previous two models. Though, we believe a

similar characterization can be proven. This characterization will be left for future

work. The next Chapter will discuss the application of such rules, by the use of

computer simulations and statistics to predict the variability of such rules from the

simple majority rule function in the appropriate model.

79

CHAPTER 6

SIMULATING DIFFERENCE OF VOTES RULES AND OTHER VOTING
RULES

In this chapter, we take a turn and look at making comparisons between

two voting rules in the finite voting model. Theoretically, we can calculate the

probability that Llamazares’ difference of votes rule (Mk) would have an output

that is different than that of the simple majority rule function (SMR). However,

through computer simulations we can look at the actual difference that occurs. It

turns out the probability we thought would hold did not hold in simulation and

indicates there is more going on than we immediately thought. Furthermore, we

can use computer simulations to compare the output of simple majority rule with

the output of the Electoral College. The Electoral College is the voting method used

by the United States to elect its President. First, we will compare the hypothesized

agreement to the simulation agreement of the Mk rule with (SMR). Then we will

compare the Electoral College to simple majority rule. While the Electoral College

is not in the class of functions we discussed in the previous chapters, we wanted to

use it since it is such an important voting method in the United States. Our hope is

that the simulation and analysis given in this chapter will provide some insight into

the electoral system in the United States. For this chapter, we will be assuming

that we are in the finite aggregation model, but will not have a fixed value of the

size of the voting population N , in fact we will look at what happens as this number

changes.

First, let’s take a look at the theoretical set of profiles where an Mk rule,

80

with k ≥ 1, would differ from (SMR). Recall that (SMR) can be defined using the

difference of vote rule M0. We will let ∣N ∣ = N . We can see that for each N , there

are 3N profiles. However, for all π = (x1, x2, ..., xN) ∈ {−1,0,1}N , both aggregation

functions can be determined solely by n+(π)−n−(π) =
N

∑
i=1
xi. Thus we assumed that

we need to only count the profiles in π that have different sums. So initially, the

idea was this. There are 2N + 1 different possible sums. For each k, there are 2k

sums where Mk rules differ from (SMR). Therefore, we can say the probability that

the outputs differ is

2k

2N + 1
(6.1)

If we want the outputs to differ at a level that is statistically significant, then for

some 0 < α < 1, we need

2k

2N + 1
> α

or N < k
α
− 1

2
.

That is to say, we want N to be smaller than k
α − 1

2 forMk and (SMR) to have a

statistically significant difference of their outputs at a level of α = .05. With k = 10

and α = .05, that would require your population to be less than 200 for the Mk to

vary from (SMR) significantly. However, in our simulation, this looks to be off. This

program was run ten times, generating 1,000 comparisons with N > 200 and k = 10,

and the difference in the outputs was highly significant. Whereas, this hypothesis

would indicate the difference would be statistically insignificant. An example of one

of the runs of the program can be noticed below in Figure 6.1.

81

Figure 6.1: For N = 211 and k = 10, the Mk v. (SMR).

Notice that with N = 211, as in Figure 6.1, we get a probability of agreement

of 0.31. This is a very low probability of agreement. As mentioned above, this same

simulation was run many times, with similar results. When looking further into

this, it was determined that we were not including the number of different times

when each sum occurs, but how to include this seems unclear. Notice that while

there is only one way to get a sum of N , there are N ways to get a sum of N − 1,

and N(N+1
2 ways to get a sum of N − 2. Now, most of these cancel out, as they will

get the same output in Mk as in (SMR). Determining this statistically proved to be

harder than expected. Therefore, it was easier to use simulations to get an estimate

of the relationship between k and N . For the results to be meaningful, we must fix

k and adjust the values of N . Therefore, we ran the simulation with fixed k = 10

and growing numbers of N , we can see that N must be much larger in order for the

results to not be significant. The reader can look at the code that generated these

results in the Appendix. Some of the results are highlighted below.

82

Figure 6.2: For N = 1000 and k = 10, the Mk v. (SMR).

Figure 6.3: For N = 1750 and k = 10, the Mk v. (SMR).

83

Figure 6.4: For N = 2000 and k = 10, the Mk v. (SMR).

Figure 6.5: For N = 2000 and k = 10, the Mk v. (SMR).

84

Figure 6.6: For N = 5000 and k = 10, the Mk v. (SMR).

Figure 6.7: For N = 8500 and k = 10, the Mk v. (SMR).

85

Figure 6.8: For N = 9500 and k = 10, the Mk v. (SMR).

Figure 6.9: For N = 9300 and k = 10, the Mk v. (SMR).

The above figures show that the outputs of the Mk rule and (SMR) did not

become statistically close to identical until N = 9500. It was not until N = 9500, that

in 500 trials we were able to get similarity with 95% probability. In this simulation,

we see that while the difference of votes rules looks to be very close to (SMR), the

two aggregation functions differ quite significantly for N < 90k. While this is not

a mathematically proven result, it is an applicable modeling that we can use to

86

estimate the relationship between k and N .

Now, we would like to give an application of this simulator on two aggregation

functions that come up quite often when discussing voting theory. One of these

two voting methods is commonly referred to as “popular vote,” but is the same as

(SMR). The other voting method is known as the Electoral College. In the Electoral

College, voters vote for electors that then vote for the winner. The Appendix

contains all of the C# code used for this simulation, if the reader wants to see the

entirety of how the Electoral College is calculated. In this section, we will explain

some assumptions made, then give a brief overview of the calculations, as they are

quite involved.

When analyzing the results, it is important to note there were a few as-

sumptions made. The first assumption is that all of the states use winner take all

elector appointment. While there are a few states that do not, this has not affected

the outcome of any election in history. The second assumption made was that the

electors use (SMR) to pick the winner of the election. In actuality, the winner has

to receive 270 of the 538 votes, which is one more that 50%. Our assumption allows

for the output of 0 if both candidates receive 269 votes, but in all of our simulations,

the Electoral College function has never output 0. Also, our simulation makes one

large profile and then partitions the profile based on the population of each state,

alphabetically. Therefore, another assumption is that the population of each state

was fixed with the population determined by the 2010 Census. The Census popu-

lation determines the number of electors that each state receives, but if a number

of people moved after the Census, this could change where the partition should

occur in the profile. However, the state populations have not changed drastically in

recent years. In the case of extreme movement away from or to any state(s), this

simulation should be reworked.

For example, we started with Alabama where 1.5% of the population of

87

the United States live, so we multiplied our N by 0.015, and made the Alabama

partition go from the first voter to the 0.015 ⋅N voter. If the ending number was

not an integer, the program rounded down, because if we rounded up, there could

be an error in the program not being able to run on the states at the end. Once

the Alabama partition was made, (SMR) was run on the votes in that partition.

The alternative chosen by the Alabama partition was then inputted into a weighted

majority rule function, with all the other states partitions’ outcomes. Each state’s

choice, 1, −1, or 0, was then multiplied by the number of Electoral College votes it

has. In example, Alabama’s choice would be multiplied by six. All of these weighted

alternative choices are then summed together and the sign function determines the

output. That is, if the sign is positive, 1 is chosen, and if the sign is negative, −1 is

chosen.

With each run of the simulation, our simulator generates 100 profiles at a

time of size N and runs each of them through both aggregation functions. The

constant function 1 and the constant function -1 were used as control functions

to make sure that the profiles we were working with were truly a random sample.

Below we have included one of these tests, that shows the constant function 1 agrees

with (SMR) about 50% of the time. This comparison was also run with the Electoral

College, generating a similar result.

88

Figure 6.10: For N = 300,000,000 the Constant Function 1 v. (SMR).

When starting this simulation, it was hypothesized that as N grew, the prob-

ability of agreement between the two voting methods would become more precise,

or that the variance in the simulations would shrink. This was thought because we

assumed that the true probability of difference would be more distinct for larger

N . It was also hypothesized that as N grew the probability of disagreement would

increase. This hypothesis was based on the fact that out of the 58 presidential

elections in the history of the United States of America, only five have resulted in

the Electoral College picking a different winner than the candidate that won the

popular vote. Moreover, two of these five elections happened in the past 20 years,

when the voter population of the United States is now more than 5,000 times the

size of the voter population in the first election in 1792. There were only 28,579

voters in the first presidential election and in 2016 there were nearly 139,000,000

[15]. Since we can see from historical evidence that the popular vote and the Elec-

toral College disagreed on 5 times in 55 elections, we would hypothesize that the

overall probability of agreement would be close to 90%, since that is the historical

89

average.

When we started to run the simulations, the averages for each value of N

seemed to be fairly close to each other, with outliers for both small and large N .

Some notable outliers include an agreement as low as 49% and as high as 92%. It

is important to note, we ran the program 10 times generating 1000 comparisons at

N = 2000 and 10 times generating 1000 comparisons at N = 300,000,000. Once all

of these were run, the percent of agreement for N = 2000 was 82.1% with a standard

deviation of 10.47, and for N = 300,000,000 was 75.5% with a standard deviation

of 9.65. These values were calculated with the help of Microsoft Excel. This Excel

sheet also ran a T-Test analysis to determine if there was a statistically significant

difference in the means, as well as an F-Test to see if their was a statistically

significant difference in the variances. With an α level of 0.10, the T-Test showed

that the means were statistically significant. This indicates that the probability of

agreement for N = 300,000,000 is actually statistically smaller than the probability

of agreement for N = 2000. While that seems to affirm our hypothesis, this would

not hold true for smaller α levels. Therefore, a more powerful CPU would be needed

to generate more simulations, faster, in order to get a more affirming result. While

the T-Test seems to affirm our hypothesis, the F-Test clearly rejected the hypothesis

that the variance would get smaller for larger values of N . The results of these tests

are listed below.

90

Figure 6.11: Statistical Values Used for Calculations and Conclusions

In each of our simulations, whether N = 2,000 or N = 500,000,000, the like-

lihood of agreement was almost always between 75% and 88%, with a few outliers.

We expected that maybe this likelihood would get closer to a more constant number

as N grew, however, that was not the case. Below are three of these runs of the

simulation.

91

Figure 6.12: For N = 2000 the Electoral College v. (SMR).

Figure 6.13: For N = 300,000,000 the Electoral College v. (SMR).

92

Figure 6.14: For N = 300,000,000 the Electoral College v. (SMR).

For these large values of N , the simulator took 20-30 minutes to run. While

the simulation was run on 300,000,000 multiple times, it was not run as many

times on 500,000,000, since the result seemed to be similar after two runs, or 200

comparisons. The average, over 1,000 comparisons, with varying values of N was

79% agreement. This percentage was lower than hypothesized, but not unbelievable.

However, this is more than 10% smaller than our historical average.

In order to truly determine if N is significant in the agreement between

(SMR) and the Electoral College, we need a computer with a larger memory and

more powerful CPU. This will allow for many more comparisons to be run at once.

Once we do that, we can better compare the percent of agreement. Hopefully we

can get access to such a computer in the future to help verify the results we see

from the simulation.

93

CHAPTER 7

REMARKS AND CONCLUSION

In this dissertation we explored three different voting models, analyzing the

classes of difference of votes rules in each. In the finite aggregation model, we

characterized a new extension, the Mk,l rules, as well as characterizing all finite

aggregation rules that satisfied only two axioms: cancellation and monotonicity.

From there, these difference of votes rules were extended into the infinite model.

There was no previous characterization of the difference of votes rules in the infinite

model. So we first defined and characterized the Mk rules and then extended the

definition of the Mk,l rules. In the third model, the fuzzy aggregation model, the Mk

rules were defined and characterized in previous research, but we re-examined them

to find a proof of the characterization in line with the previous two models. Lastly,

a computer simulation was used to analyze the probability of agreement between

the outputs of an Mk rule with k = 10 and simple majority rule (SMR), as well as

other voting methods that are commonly used. This simulation showed that the

difference of votes rules agreed with (SMR) less often than we expected.

In the finite voting model, a notable characterization was that of May in 1952,

which used neutrality, anonymity and strict monotonicity to characterize (SMR).

All of the characterizations in this paper have utilized the axiom of cancellation,

which was not part of May’s characterization, but is an axiom satisfied by (SMR).

While cancellation can easily seem like an axiom one would want an aggregation

function to satisfy, cancellation does not allow for the voting rule to demand a

certain percentage of the population to not abstain. This means, for any voter set

94

N of size n and integer k, we could determine a winner with only k + 1 voters not

abstaining. This could present a problem when n is significantly larger than k.

There have been a number of characterizations of various classes of voting

rules given in the finite model where the axiom of cancellation was not used. Ex-

amples of such characterizations can be found in the work by Hoots and Powers

[9], Dasgupta and Maskin [4], as well as Perry and Powers [16], and many others

[17], [10]. These characterizations look further into anonymity and monotonicity

without including cancellation. Other extensions of May’s Theorem can be found

in the work by Asan and Sanver[1], [2], as well as Cato [3]. With the addition of

our characterizations, the only axiom that has yet to be completely eliminated is

anonymity. Our research has eliminated anonymity, but by including cancellation,

we did not completely eliminate it. The next step is to possibly characterize the

class of voting rules that satisfy only strict monotonicity and neutrality.

May’s Theorem was extended to the infinite voting model by Fey [5], but his

characterization used a different representation for the alternatives than was used

in the finite voting model. By defining the alternatives in this model to mimic the

finite model, we were able to redefine the axioms to extend naturally from the finite

model. After doing this, we were able to extend many of the results from the finite

model. In particular, we were able to characterize the Mk and Mk,l rules in the

finite model. However, we were not able to completely describe the class of infinite

aggregation rules that satisfy only monotonicity and cancellation. A solution to

this problem will require more analysis and is significantly more complex since one

needs to consider cases where a subset of voters is infinite.

The fuzzy aggregation model has been used to deal with preference intensities

and was first introduced by H. Nurmi [13]. Garcia-Lapresta and Llamazares defined

the Mk rules in the fuzzy model and were able to characterize them. While we were

able to redefine these rules to be more in line with our definition of the Mk rules in

95

the finite model, and verify the Garcia-Lapresta and Llamazares’ characterization

of the fuzzy Mk rules, we were not able to characterize a fuzzy version of the Mk,l

rules. However, the lemmas that were introduced and proven in this thesis should

be of assistance in solving this problem.

The computer simulation modeled a truly random sampling of voting profiles.

This data showed that while historically the Electoral College only disagreed with

popular vote roughly 9% of the time, its probability of disagreement is actually much

higher. While this simulator gives profiles that are truly random, that randomness

could be part of the reason that the probability is different from the actual practice

of the voting methods. Another step would be to try to make the voting profiles

more in-line with what we see in the United States, with no more than 60% choosing

any one alternative and no less than 40% choosing any one alternative. This may

or may not effect the comparison of the voting methods, but may be able to give

some additional insight into the matter.

The focus of this thesis has been on three voting models and yet there are

other models one could consider. For example, we could allow the size of the voting

population to be the cardinality of R, the real numbers. For more information on

this model see the article by K. Surekha and K.P.S Bhaskara Rao [18].

96

REFERENCES

[1] G. Asan and M. R. Sanver, Another characterization of the majority rule,

Economics Letters 75(3) (2002), 409–412.

[2] , Maskin monotonic aggregation rules, Economics Letters 91(2) (2006),

179–183.

[3] Susumu Cato, Pareto principles, positive responsiveness, and majority deci-

sions, Theory Dec. 71(4) (2011), 503–518.

[4] P. Dasgupta and E. Maskin, On the robustness of majority rule, Journal of the

European Economic Association 6(5) (2008), 949–973.

[5] Mark Fey, May’s theorem with an infinite population, Social Choice and Welfare

23(2) (2004), 275–293.

[6] P.C. Fishburn, The theory of social choice, Princeton University Press, Prince-

ton, NJ, 1973.

[7] J. L. Garcia-Lapresta and B. Llamazares, Majority decisions based on difference

of votes, Journal of Mathematical Economics 35 (2001), 463–481.

[8] , Preference intensities and majority decisions based on difference of

support between alternatives, Group Decis Negot 19 (2010), 527–542.

[9] L. Hoots and R.C. Powers, Anonymous and positively responsive aggregation

rules, Mathematical Social Sciences (2015), 9–14.

97

[10] N. Houy, A characterization of qualified majority voting rules, Mathematical

Social Sciences 54 (2007), 17–24.

[11] B. Llamazares, The forgotten decision rules: Majority rules based on difference

of votes, Mathematical Social Sciences 51, (3) (2006), 311–326.

[12] K.O. May, A set of independent necessary and sufficient conditions for simple

majority decision, Econometrica 20 (1952), 680–684.

[13] H. Nurmi, Approaches to collective decision making with fuzzy preference rela-

tions, Fuzzy Sets Syst 6 (1981), 249–259.

[14] , Fuzzy social choice: a selective retrospect, Soft Comput 12 (2008),

281–288.

[15] Library of Congress, Presidential elections, June 2, 2017.

[16] J. Perry and R.C. Powers, Anonymity, monotonicity, and quota pair systems,

Mathematical Social Sciences 60 (2010), 57–60.

[17] AK Sen, Collective choice and social welfare, Holden-Day, 1970.

[18] K. Surekha and K.P.S. Bhaskara Rao, May’s theorem in an infinite setting,

Journal of Mathematical Economics 46 (2010), 50–55.

98

APPENDIX

Below is the C# code used to calculate the various aggregation functions
used in the simulations in Chapter 6.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace kin2

{

public class CalculationClass

{

int N;

int[] vec;

public int SMR(int[] rho, int start, int stop, out int fs)

{

int total = 0;

for (var index = start; index <= stop; index++)

{

total += rho[index];

}

if (total == 0)

{

fs = total;

}

else if (total > 0)

{

fs = 1;

}

else if (total < 0)

{

fs = -1;

}

else

{

fs = 100;

}

return fs;

}

public int DVR(int[] rho, out int dr)

99

{

int pos = 0;

int neg = 0;

int count;

foreach (int i in rho)

{

if (i == -1)

{

neg++;

}

else if (i == 1)

{

pos++;

}

else

{

}

}

count = Math.Abs(pos - neg);

int choose = pos - neg;

if (count < 10)

{

dr = 0;

}

else if (choose > 0)

{

dr = 1;

}

else if (choose < 0)

{

dr = -1;

}

else

dr = 101;

return dr;

}

public int WMR(int[] rho, out int fb)

{

//state variables, alphabetical

int total = 0;

int A = 0;

int B = 0;

int C = 0;

int D = 0;

int E = 0;

int f = 0;

int g = 0;

100

int h = 0;

int i = 0;

int j = 0;

int k = 0;

int l = 0;

int m = 0;

int n = 0;

int o = 0;

int p = 0;

int q = 0;

int r = 0;

int s = 0;

int t = 0;

int u = 0;

int v = 0;

int w = 0;

int x = 0;

int y = 0;

int Aa = 0;

int Bb = 0;

int Cc = 0;

int Dd = 0;

int Ee = 0;

int ff = 0;

int gg = 0;

int hh = 0;

int ii = 0;

int jj = 0;

int kk = 0;

int ll = 0;

int mm = 0;

int nn = 0;

int oo = 0;

int pp = 0;

int qq = 0;

int rr = 0;

int ss = 0;

int tt = 0;

int uu = 0;

int vv = 0;

int ww = 0;

int xx = 0;

int yy = 0;

int zz = 0; //District of Columbia

//state population variables by percentage

double Ap = (N * 0.015);

double Bp = (Ap + (N * 0.0023));

double Cp = (Bp + (N * 0.0212));

double Dp = (Cp + (N * 0.0093));

double ep = (Dp + (N * 0.1218));

double fp = (ep + (N * 0.0170));

double gp = (fp + (N * 0.0113));

101

double hp = (gp + (N * 0.0029));

double ip = (hp + (N * 0.0631));

double jp = (ip + (N * 0.0318));

double kp = (jp + (N * 0.0045));

double lp = (kp + (N * 0.0051));

double mp = (lp + (N * 0.04));

double np = (mp + (N * 0.0206));

double op = (np + (N * 0.0097));

double ppo = (op + (N * 0.0091));

double qp = (ppo + (N * 0.0138));

double rp = (qp + (N * 0.0145));

double sp = (rp + (N * 0.0041));

double tp = (sp + (N * 0.0187));

double up = (tp + (N * 0.0211));

double vp = (up + (N * 0.0311));

double wp = (vp + (N * 0.0171));

double xp = (wp + (N * 0.0093));

double yp = (xp + (N * 0.0189));

double Aap = (yp + (N * 0.0032));

double Bbp = (Aap + (N * 0.0059));

double Ccp = (Bbp + (N * 0.0090));

double Ddp = (Ccp + (N * 0.0041));

double Eep = (Ddp + (N * 0.0279));

double ffp = (Eep + (N * 0.0065));

double ggp = (ffp + (N * 0.0616));

double hhp = (ggp + (N * 0.0312));

double iip = (hhp + (N * 0.0024));

double jjp = (iip + (N * 0.0361));

double kkp = (jjp + (N * 0.0122));

double llp = (kkp + (N * 0.0125));

double mmp = (llp + (N * 0.0398));

double nnp = (mmp + (N * 0.0033));

double oop = (nnp + (N * 0.0152));

double ppp = (oop + (N * 0.0027));

double qqp = (ppp + (N * 0.0205));

double rrp = (qqp + (N * 0.0855));

double ssp = (rrp + (N * 0.0093));

double ttp = (ssp + (N * 0.0019));

double uup = (ttp + (N * 0.0261));

double vvp = (uup + (N * 0.0223));

double wwp = (vvp + (N * 0.0057));

double xxp = (wwp + (N * 0.018));

double yyp = (xxp + (N * 0.0018));

double zzp = (yyp + (N * 0.0021));

//for (var index = 0; index < Ap; index++)

//{

int Alabama = 0;

int place = Convert.ToInt32(Ap);

SMR(vec, Alabama, place, out A);

//}

//for (var index = Convert.ToInt32(Ap); index < Bp; index++)

102

//{

int Alaska = Convert.ToInt32(Ap);

place = Convert.ToInt32(Bp);

SMR(vec, Alaska, place, out B);

// }

//for (var index = Convert.ToInt32(Bp); index < Cp; index++)

//{

int Arizona = Convert.ToInt32(Bp);

place = Convert.ToInt32(Cp);

SMR(vec, Arizona, place, out C);

// }

//for (var index = Convert.ToInt32(Cp); index < Dp; index++)

//{

int Arkansas = Convert.ToInt32(Cp);

place = Convert.ToInt32(Dp);

SMR(vec, Arkansas, place, out D);

//}

//for (var index = Convert.ToInt32(Dp); index < ep; index++)

//{

int California = Convert.ToInt32(Dp);

place = Convert.ToInt32(ep);

SMR(vec, California, place, out E);

//}

//for (var index = Convert.ToInt32(ep); index < fp; index++)

//{

int Colorado = Convert.ToInt32(ep);

place = Convert.ToInt32(fp);

SMR(vec, Colorado, place, out f);

// }

//for (var index = Convert.ToInt32(fp); index < gp; index++)

//{

int Connecticut = Convert.ToInt32(fp);

place = Convert.ToInt32(gp);

SMR(vec, Connecticut, place, out g);

//}

//for (var index = Convert.ToInt32(gp); index < hp; index++)

//{

int Delaware = Convert.ToInt32(gp);

place = Convert.ToInt32(hp);

SMR(vec, Delaware, place, out h);

//}

//for (var index = Convert.ToInt32(hp); index < ip; index++)

//{

int Florida = Convert.ToInt32(hp);

place = Convert.ToInt32(ip);

SMR(vec, Florida, place, out i);

//}

103

//for (var index = Convert.ToInt32(ip); index < jp; index++)

//{

int Georgia = Convert.ToInt32(ip);

place = Convert.ToInt32(jp);

SMR(vec, Georgia, place, out j);

//}

//for (var index = Convert.ToInt32(jp); index < kp; index++)

//{

int Hawaii = Convert.ToInt32(jp);

place = Convert.ToInt32(kp);

SMR(vec, Hawaii, place, out k);

//}

//for (var index = Convert.ToInt32(kp); index < lp; index++)

//{

int Idaho = Convert.ToInt32(kp);

place = Convert.ToInt32(lp);

SMR(vec, Idaho, place, out l);

//}

//for (var index = Convert.ToInt32(lp); index < mp; index++)

//{

int Illinois = Convert.ToInt32(lp);

place = Convert.ToInt32(mp);

SMR(vec, Illinois, place, out m);

//}

//for (var index = Convert.ToInt32(mp); index < np; index++)

//{

int Indiana = Convert.ToInt32(mp);

place = Convert.ToInt32(np);

SMR(vec, Indiana, place, out n);

//}

//for (var index = Convert.ToInt32(np); index < op; index++)

//{

int Iowa = Convert.ToInt32(np);

place = Convert.ToInt32(op);

SMR(vec, Iowa, place, out o);

//}

//for (var index = Convert.ToInt32(op); index < ppo; index++)

//{

int Kansas = Convert.ToInt32(op);

place = Convert.ToInt32(ppo);

SMR(vec, Kansas, place, out p);

//}

//for (var index = Convert.ToInt32(ppo); index < qp; index++)

//{

int Kentucky = Convert.ToInt32(ppo);

place = Convert.ToInt32(qp);

SMR(vec, Kentucky, place, out q);

//}

//for (var index = Convert.ToInt32(qp); index < rp; index++)

//{

int Louisiana = Convert.ToInt32(qp);

place = Convert.ToInt32(rp);

SMR(vec, Louisiana, place, out r);

104

//}

//for (var index = Convert.ToInt32(rp); index < sp; index++)

//{

int Maine = Convert.ToInt32(rp);

place = Convert.ToInt32(sp);

SMR(vec, Maine, place, out s);

//}

//for (var index = Convert.ToInt32(sp); index < tp; index++)

//{

int Maryland = Convert.ToInt32(sp);

place = Convert.ToInt32(tp);

SMR(vec, Maryland, place, out t);

//}

//for (var index = Convert.ToInt32(tp); index < up; index++)

//{

int Massachusetts = Convert.ToInt32(tp);

place = Convert.ToInt32(up);

SMR(vec, Massachusetts, place, out u);

//}

//for (var index = Convert.ToInt32(up); index < vp; index++)

//{

int Michigan = Convert.ToInt32(up);

place = Convert.ToInt32(vp);

SMR(vec, Michigan, place, out v);

//}

//for (var index = Convert.ToInt32(vp); index < wp; index++)

//{

int Minnesota = Convert.ToInt32(vp);

place = Convert.ToInt32(wp);

SMR(vec, Minnesota, place, out w);

//}

//for (var index = Convert.ToInt32(wp); index < xp; index++)

//{

int Mississippi = Convert.ToInt32(wp);

place = Convert.ToInt32(xp);

SMR(vec, Mississippi, place, out x);

//}

//for (var index = Convert.ToInt32(xp); index < yp; index++)

//{

int Missouri = Convert.ToInt32(xp);

place = Convert.ToInt32(yp);

SMR(vec, Missouri, place, out y);

//}

//for (var index = Convert.ToInt32(yp); index < Aap; index++)

//{

int Montana = Convert.ToInt32(yp);

place = Convert.ToInt32(Aap);

SMR(vec, Montana, place, out Aa);

//}

//for (var index = Convert.ToInt32(Aap); index < Bbp; index++)

//{

int Nebraska = Convert.ToInt32(Aap);

place = Convert.ToInt32(Bbp);

105

SMR(vec, Nebraska, place, out Bb);

//}

//for (var index = Convert.ToInt32(Bbp); index < Ccp; index++)

//{

int Nevada = Convert.ToInt32(Bbp);

place = Convert.ToInt32(Ccp);

SMR(vec, Nevada, place, out Cc);

//}

//for (var index = Convert.ToInt32(Ccp); index < Ddp; index++)

//{

int NewHampshire = Convert.ToInt32(Ccp);

place = Convert.ToInt32(Ddp);

SMR(vec, NewHampshire, place, out Dd);

//}

//for (var index = Convert.ToInt32(Ddp); index < Eep; index++)

//{

int NewJersey = Convert.ToInt32(Ddp);

place = Convert.ToInt32(Eep);

SMR(vec, NewJersey, place, out Ee);

//}

//for (var index = Convert.ToInt32(Eep); index < ffp; index++)

//{

int NewMexico = Convert.ToInt32(Eep);

place = Convert.ToInt32(ffp);

SMR(vec, NewMexico, place, out ff);

//}

//for (var index = Convert.ToInt32(ffp); index < ggp; index++)

//{

int NewYork = Convert.ToInt32(ffp);

place = Convert.ToInt32(ggp);

SMR(vec, NewYork, place, out gg);

//}

//for (var index = Convert.ToInt32(ggp); index < hhp; index++)

//{

int NorthCarolina = Convert.ToInt32(ggp);

place = Convert.ToInt32(hhp);

SMR(vec, NorthCarolina, place, out hh);

//}

//for (var index = Convert.ToInt32(hhp); index < iip; index++)

//{

int NorthDakota = Convert.ToInt32(hhp);

place = Convert.ToInt32(iip);

SMR(vec, NorthDakota, place, out ii);

//}

//for (var index = Convert.ToInt32(iip); index < jjp; index++)

//{

int Ohio = Convert.ToInt32(iip);

place = Convert.ToInt32(jjp);

SMR(vec, Ohio, place, out jj);

//}

//for (var index = Convert.ToInt32(jjp); index < kkp; index++)

//{

int Oklahoma = Convert.ToInt32(jjp);

106

place = Convert.ToInt32(kkp);

SMR(vec, Oklahoma, place, out kk);

//}

//for (var index = Convert.ToInt32(kkp); index < llp; index++)

//{

int Oregon = Convert.ToInt32(kkp);

place = Convert.ToInt32(llp);

SMR(vec, Oregon, place, out ll);

//}

//for (var index = Convert.ToInt32(llp); index < mmp; index++)

//{

int Pennsylvania = Convert.ToInt32(llp);

place = Convert.ToInt32(mmp);

SMR(vec, Pennsylvania, place, out mm);

//}

//for (var index = Convert.ToInt32(mmp); index < nnp; index++)

//{

int RhodeIsland = Convert.ToInt32(mmp);

place = Convert.ToInt32(nnp);

SMR(vec, RhodeIsland, place, out nn);

//}

//for (var index = Convert.ToInt32(nnp); index < oop; index++)

//{

int SouthCarolina = Convert.ToInt32(nnp);

place = Convert.ToInt32(oop);

SMR(vec, SouthCarolina, place, out oo);

//}

//for (var index = Convert.ToInt32(oop); index < qqp; index++)

//{

int SouthDakota = Convert.ToInt32(oop);

place = Convert.ToInt32(qqp);

SMR(vec, SouthDakota, place, out qq);

//}

//for (var index = Convert.ToInt32(qqp); index < rrp; index++)

//{

int Texas = Convert.ToInt32(qqp);

place = Convert.ToInt32(rrp);

SMR(vec, Texas, place, out rr);

//}

//for (var index = Convert.ToInt32(rrp); index < ssp; index++)

//{

int Utah = Convert.ToInt32(rrp);

place = Convert.ToInt32(ssp);

SMR(vec, Utah, place, out ss);

//}

//for (var index = Convert.ToInt32(ssp); index < ttp; index++)

//{

int Vermont = Convert.ToInt32(ssp);

place = Convert.ToInt32(ttp);

SMR(vec, Vermont, place, out tt);

//}

//for (var index = Convert.ToInt32(ttp); index < uup; index++)

//{

107

int Virginia = Convert.ToInt32(ttp);

place = Convert.ToInt32(uup);

SMR(vec, Virginia, place, out uu);

//}

//for (var index = Convert.ToInt32(uup); index < vvp; index++)

//{

int Washington = Convert.ToInt32(uup);

place = Convert.ToInt32(vvp);

SMR(vec, Washington, place, out vv);

//}

//for (var index = Convert.ToInt32(vvp); index < wwp; index++)

//{

int WestVirginia = Convert.ToInt32(vvp);

place = Convert.ToInt32(wwp);

SMR(vec, WestVirginia, place, out ww);

//}

//for (var index = Convert.ToInt32(wwp); index < xxp; index++)

//{

int Wisconsin = Convert.ToInt32(wwp);

place = Convert.ToInt32(xxp);

SMR(vec, Wisconsin, place, out xx);

//}

//for (var index = Convert.ToInt32(xxp); index < yyp; index++)

//{

int Wyoming = Convert.ToInt32(xxp);

place = Convert.ToInt32(yyp);

SMR(vec, Wyoming, place, out yy);

//}

//for (var index = Convert.ToInt32(yyp); index < zzp; index++)

//{

int DC = Convert.ToInt32(yyp);

place = N - 1;

SMR(vec, DC, place, out zz);

// }

total = ((9 * A) + (3 * B) + (11 * C) + (6 * D) + (55 * E) + (9 * f) + (7 * g) + (3 * h)

+ (29 * i) + (16 * j) + (4 * k) + (l * 4) + (m * 20) + (11 * n) + (o * 6) + (p * 6)

+ (q * 8) + (r * 8) + (s * 4) + (t * 10) + (u * 11) + (v * 16) + (w * 10) + (x * 6)

+ (y * 10) + (Aa * 3) + (Bb * 5) + (Cc * 6) + (Dd * 4) + (Ee * 14) + (ff * 5) + (gg * 29)

+ (hh * 15) + (ii * 3) + (jj * 18) + (kk * 7) + (ll * 7) + (mm * 20) + (nn * 4) + (oo * 9)

+ (pp * 3) + (qq * 11) + (rr * 38) + (ss * 6) + (tt * 3) + (uu * 13) + (vv * 12) + (ww * 5)

+ (xx * 10) + (yy * 3) + (zz * 3));

if (total == 0)

{

fb = 0;

}

else if (total > 0)

{

fb = 1;

}

else if (total < 0)

{

fb = -1;

108

}

else fb = 102;

return fb;

}

public int D(int[] profile, out int d)

{

d = profile[1];

return d;

}

public void NewSample(string fun1, string fun2, int numberN, out string outputText, out int count)

{

N = numberN;

vec = new int[N];

Random rnd = new Random();

int num = rnd.Next(-1, 2);

vec[0] = num;

int out1;

int out2;

count = 0;

outputText = string.Empty;

for (int i = 1; i < N; i++)

{

num = rnd.Next(-1, 2);

vec[i] = num;

}

if (fun1.Equals("Simple Majority Rule"))

{

SMR(vec, 0, (N - 1), out out1);

outputText = outputText + "\r\n\t" + out1.ToString();

if (fun2.Equals("Difference of Votes (10)"))

{

DVR(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

109

else if (fun2.Equals("Electoral College"))

{

WMR(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Constant 1"))

{

out2 = 1;

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Constant -1"))

{

out2 = -1;

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Dictator"))

{

D(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

110

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

}

else if (fun1.Equals("Difference of Votes (10)"))

{

DVR(vec, out out1);

outputText = outputText + "\r\n\t" + out1.ToString();

if (fun2.Equals("Simple Majority Rule"))

{

SMR(vec, 0, (N - 1), out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Electoral College"))

{

WMR(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Constant 1"))

{

out2 = 1;

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

111

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Constant -1"))

{

out2 = -1;

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Dictator"))

{

D(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

}

else if (fun1.Equals("Electoral College"))

{

WMR(vec, out out1);

outputText = outputText + "\r\n\t" + out1.ToString();

if (fun2.Equals("Simple Majority Rule"))

{

112

SMR(vec, 0, (N - 1), out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Difference of Votes (10)"))

{

DVR(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

}

else if (fun2.Equals("Constant 1"))

{

out2 = 1;

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Constant -1"))

{

out2 = -1;

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

113

}

else if (fun2.Equals("Dictator"))

{

D(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

}

else if (fun1.Equals("Constant 1"))

{

out1 = 1;

outputText = outputText + "\r\n\t" + out1.ToString();

if (fun2.Equals("Simple Majority Rule"))

{

SMR(vec, 0, (N - 1), out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Difference of Votes (10)"))

{

DVR(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

114

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Electoral College"))

{

WMR(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Constant -1"))

{

out2 = -1;

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Dictator"))

{

D(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

}

115

else if (fun1.Equals("Constant -1"))

{

out1 = -1;

outputText = outputText + "\r\n\t" + out1.ToString();

if (fun2.Equals("Simple Majority Rule"))

{

SMR(vec, 0, (N - 1), out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Difference of Votes (10)"))

{

DVR(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Electoral College"))

{

WMR(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

116

}

else if (fun2.Equals("Constant 1"))

{

out2 = 1;

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Dictator"))

{

D(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

}

else if (fun1.Equals("Dictator"))

{

D(vec, out out1);

outputText = outputText + "\r\n\t" + out1.ToString();

if (fun2.Equals("Simple Majority Rule"))

{

SMR(vec, 0, (N - 1), out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

117

else if (fun2.Equals("Difference of Votes (10)"))

{

DVR(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Electoral College"))

{

WMR(vec, out out2);

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Constant 1"))

{

out2 = 1;

outputText = outputText + "\t\t" + out2.ToString();

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

else if (fun2.Equals("Constant -1"))

{

out2 = -1;

outputText = outputText + "\t\t" + out2.ToString();

118

if (out1 == out2)

{

outputText = outputText + "\t\t" + "Yes";

count = count + 1;

}

else

{

outputText = outputText + "\t\t" + "No";

}

}

}

}

}

}

The C# code below was the code used to create the profiles and run the aggregation functions
written above.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace kin2

{

public partial class VotingMethodComp : Form

{

int N;

public VotingMethodComp()

{

InitializeComponent();

//Setup the progress bar

progressBar1.Visible = false;

progressBar1.Minimum = 1;

progressBar1.Maximum = 100;

progressBar1.Step = 1;

}

private void Run_Click(object sender, EventArgs e)

{

bool res = int.TryParse(txtN.Text, out N);

//Check if a numeric value has been entered for N

if (!res)

{

MessageBox.Show("Please enter a valid numeric value for N", "Error",

MessageBoxButtons.OK, MessageBoxIcon.Error);

119

}

//Check if both options are chosen , if not return an error message

else if (f1.SelectedIndex == -1 || f2.SelectedIndex == -1)

{

MessageBox.Show("Please make selection for both function 1

and function 2",

"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

else

{

//Clear out any previous output

Output.Text = string.Empty;

string fun1 = f1.SelectedItem.ToString();

string fun2 = f2.SelectedItem.ToString();

string sampleOutputs = string.Empty;

int count = 0;

decimal prob = 0;

if (fun1.Equals(fun2))

{

Output.Text = "Functions agree 100%";

}

else

{

//Display the progress bar

progressBar1.Visible = true;

progressBar1.Value = 1;

Output.Text = "Function 1 Value Function 2 Value Agree(Y/N)";

for(int j = 1; j < 101; j++)

{

string newOutputText = string.Empty;

//get the output text for this current sample

int countSample = 0;

//gets the count for current sample

//Invoke the method to create a new sample

CalculationClass newCalcInstance = new CalculationClass();

newCalcInstance.NewSample(fun1, fun2, N,

out newOutputText, out countSample);

//Aggregate values collected from current sample

Output.Text = Output.Text + newOutputText;

count = count + countSample;

//update the progressbar

progressBar1.PerformStep();

}

prob = (count / 100);

Output.Text = Output.Text + "\r\n\tLikelihood of Agreement is "

+ Convert.ToString(count) + "%";

//hide the progress bar again

progressBar1.Visible = false;

}

120

}

}

}

}

121

CURRICULUM VITAE

Sarah Schulz King

Academic Record

University of Louisville, Louisville, KY
Ph.D. in Applied and Industrial Mathematics Expected August 2017
Areas of Concentration: Social Choice Theory
Specialty Areas: Operations Research, Optimization, Efficiency, Statistical Reason-
ing, Social Choice and Voting Theory
Advisor: Dr. Robert Powers
Qualifiers Passed: Real Analysis, Modern Algebra, Mathematical Statistics
Topics Studied: Adv. Combinatorics, Adv. Graph Theory, Foundations of Opti-
mization, Adv. Modern Algebra, Probability and Measure Theory, Mathematical
Modeling, Adv. Topics in Social Choice Theory, Complex Analysis, Mathematical
Programming, Simulating Discrete Systems, Statistical Inference, Linear Statistical
Modeling, Regression Analysis with R full transcripts available upon request.

Eastern Kentucky University, Richmond, KY
M.A. Mathematics July 2013
Master’s Thesis: Eigenvalue Comparisons and Positive Solutions to a Fourth-Order
Three-Point Boundary Value Problem
Advisor: Dr. Jeffrey Neugebauer
Topics Studied: Advanced Seminar in Differential Equations, Multivariate Statis-
tics, Modern Algebra, Mathematical Statistics, Complex Analysis, Advanced Real
Analysis

University of Evansville, Evansville, IN
B.A. Mathematics May 2010
Undergraduate Thesis: Using Differential Equations to Model Human Evacuation
and Determine Room Capacities Based on Seconds Allotted to Evacuate.
Advisor: Dr. Talitha Washington
B.S. Political Science May 2010
Undergraduate Research Area: Revamping Neoliberalism in Columbia
Concentration: International Political Economy
Advisor: Dr. Wesley Milner
American University, Washington Semester Program Spring 2008

122

Economic Policy and Procedure
Research Intern at Hudson Institute, Supervisor: Richard Weitz
Concentration: Central Asian Economics and the Need for Kazakhstani Leadership

Presentations and Papers

EKU Mathematics Symposium / Eastern Kentucky University / April 21,
2017: Beyond Neutrality: Extending Difference of Votes Rules. Advisor: Dr.
Robert Powers

EKU Mathematics Colloquium / Eastern Kentucky University / April 19,
2017: Extending Difference of Votes Rules of Three Domains. Advisor: Dr. Robert
Powers

S. S. King, R. Powers, Beyond Neutrality: Extended Difference of Votes
Rules, in progress.

KyMAA Kentucky State Meeting / Northern Kentucky University / April
2016: Extending Mk Rules to a Countable Population. Advisor: Dr. Robert Powers

EKU Mathematics Symposium / Eastern Kentucky University / April 2015:
Mays Theorem; Majority Rule and Extensions through Axiomatic Modifications.
Advisor: Dr. Robert Powers

S. S. King, J. T. Neugebauer, Smallest eigenvalues, extremal points, and
positive solutions of a fourth order three point boundary value problem, Dynam.
Systems Appl., 23 (2014) no. 4

AMS Regional Conference / Louisville, KY / October 2013: Special Section:
Extremal points of a fourth order three point boundary value problem. Advisor:
Dr. Jeffrey Neugebauer

SEARCDE / University of Tennessee / September 2013 Smallest eigenval-
ues and positive solutions of a fourth order three point boundary value problem.
Advisor: Dr. Jeffrey Neugebauer

Mathematics in Everyday / University of Evansville / May 2010: Using Dif-
ferential Equations to Model Human Evacuation and Determine Room Capacities
Based on Seconds Allotted to Evacuate.

MESCON / University of Evansville / March 2010: Using Differential Equa-
tions to Model the Cellular Takeover, Growth, and Regeneration of DNA by the
HIV Viron. Advisor: Dr. Talitha Washington

NAM Math Fest 2009: University of the District of Columbia, November

123

2009: Using Differential Equations to Model the Cellular Takeover, Growth, and
Regeneration of DNA by the HIV Viron.

Teaching Experience

University of Louisville, August 2013-Present, Graduate Fellow
Courses Resuscitated: College Algebra, Elements of Calculus, Elementary Statistics
Courses Taught: College Algebra, Contemporary Mathematics

Christian Academy of Indiana, August 2015-June 2016, Instructor
Courses Taught: AP and Dual Credit Calculus, Dual Credit offered through Ivy
Tech in Sellersburg, IN

Eastern Kentucky University, January 2012-July 2013, Graduate Assistant
Courses Assisted: Mathematics with Application, College Algebra, Pre-Calculus,
Calculus I, Calculus II, Introduction to Statistical Reasoning, Applied Statistics,
Business Statistics
Courses Taught: Pre-Algebra, Algebra

University of Evansville, August 2006-May 2010, Official Department Tutor
Aided students with sight and hearing impairments in Calculus II and Calculus III
Tutored Students in College Algebra, Calculus I, World History, U.S. History, Psy-
chology, American Government, and World Politics

Leadership and Volunteer Experience

Hope Southern Indiana: New Albany, IN, July 2015-Present
Organizing, planning and strategizing block parties and other outreach events to
the local, impoverished community, to help raise awareness for the services offered
at Hope. Teaching and developing new leaders to carry on the tasks of the block
party, so myself and other leaders can focus on scaling the events to have the great-
est community impact.

Fitness 19 KY 200: Lexington KY, August 2010-Present
Club Manager: Organized and Analyzed Personnel and Membership Data, Facili-
tated Payroll, and Managed Accounts Payable and Receivable, Co-Lead Monthly
Team Meetings, cooperated with other Managers in the area to set up Promotional
Events, Marketing Strategies, and Advertising Campaigns

Senior Representative: Model U.N, University of Evansville, 2007-2010
Aided in the Arrangements of Mock Debates and Student events, Competed in mul-
tiple State-Wide Events, and winning awards for our school

Kids Club Supervisor: Crossroads Christian Church, 2006-2010
Managed, scheduled and processed payroll for child caregivers during multiple events

124

offered at the church. Planned and organized children’s crafts, stories, and snacks.

Admissions Ambassador: University of Evansville, 2007- 2010
Facilitated tours and festivities for potential and future students visiting campus
through events such as ”Road Trip” and Open Houses, as well as individual daily
visits

Junior Statesmen of America: Stanford University, 2005; Georgetown Uni-
versity, 2004
Participated in congressional style debates, went to numerous political functions
and took Collegiate Level American and Comparative Politics at the Host School

Technical Skills and Other Abilities

Highly experienced and trained in Adobe, C and C++ Languages, Intuit, Microsoft
Office Suite, LINGO/LINDO, MATLAB, OPNET, Oracle Database, R, and SAS.
Able to learn new skills quickly and with little direction
Self-motivated, task orientated with a focus on the bigger picture, and able to work
collaboratively

Honors, Recognitions, and Awards

April 17, 2015, Eastern Kentucky University Symposium - Best Graduate Presen-
tation
2014, University of Louisville, School of Graduate Studies - Graduate Fellowship
2012, Eastern Kentucky University, Dept. of Mathematics - Graduate Assistantship
Scholarship
2010, University of Evansville - Mathematics Presentation of the Year
2009, NAM Math Fest - Best Undergraduate Presentation
2009, University of Evansville - College of Arts and Sciences Undergraduate Re-
search Grant
2008, American University Washington Semester Program - Dean’s Scholarship
2006-2010, University of Evansville - Academic Achievement Scholarship

125

	Extending difference of votes rules on three voting models.
	Recommended Citation

	tmp.1500822865.pdf.kS1Py

